
1

Software Engineering
Weeks 6.5 and 9: architecture & design

Lydie du Bousquet
Lydie.du-bousquet@imag.fr

In collaboration with J.-M. Favre, I. Parissis, Ph. Lalanda, Y. Ledru

2

Radar system

• Identify the limits of what has to be developed
• Identify what the system is supposed to do
• Propose a first design for Radar system

software

3

Example of Radar system

CyberRadar

Car/ driver
Operator

identification,
notification

data

copy

speed

Radar
Mesta 210

Camera

picturecommanddata

flash

command

national car
registration DB

Indirect stakeholder

4

Radar system : Use cases
• Records a vehicle’s speed
• Takes a photograph of the vehicle when it exceeds a threshold limit.
• Speeds camera, a high speed radar, camera, flashbulb
• Sends pictures and the related information to a management center
• Allows user to

– Identify automatically the number plate and the owner of the car,
– Check manually if the number plate is correctly identified
– Validate manually the penalty document
– Improve manually the picture
– Fill the penalty document
– Validate the penalty document

• Keeps data for a long time (?)
• Allows connection to national car registration DB

5

Radar system

• Why design is difficult in comparison with
finding functionalities?

6

Software design:
Why is it difficult?

• Inherent software complexity
• Requirements
• Regulatory constraints
• Team size, location and distribution
• Choices

– Modules, organisation
– Technical part

Problem is
complicated

People

Decisions
With

Impacts

7

Software design:
Why is it difficult?

• Inherent software complexity
• Requirements
• Regulatory constraints
• Team size, location and distribution
• Choices

– Modules, organisation
– Technical part

What

Management

How?

8

Software design:
Why is it difficult?

How?
(design)

What?
(req, spec)

http://www.slideshare.net/arslantumbin/software-architecture-vs-design

9

Did you say architecture?

How?
What?

Architecture
First step of design

http://www.slideshare.net/arslantumbin/software-architecture-vs-design

10

Software architecture

• Refers to the high level structures of a software
system

• Discipline of
– creating such structures, and
– documenting of these structures

• Advantages
– facilitates communication between stakeholders,
– captures early decisions about the high-level design,
– allows reuse of design components between projects

11

Schedule

• Software architecture
– Design
– Representation

12

Software design:
Solutions? Some directions

• Deal with complexity
– Divide and conquer
– Abstraction
– Separation of preoccupation

• Be rigorous
• Use “tools”

– Intellectual tool = methods

13

First level of design

• Propose a first decomposition of the
problem/solution
– Find a set of abstract components
– Organize them
– Check relevance

• Then detail

14

Detail: a component is refined

14

Global architecture

Architecture of a
component

15

Detail: add technical component
and/or specify the interfaces

15

Global architecture

Detailing a part of the architecture

16

Architecture representation
How?

• Using abstraction, separation of concerns
• With some UML views to capture

– the boundaries
– the functionalities
– the structure
– the behaviors
– the physical repartition

17

Architecture representation
How?

• Boundaries of the system
– UML context diagram

• Functionalities
– Use case diagram

18

Architecture representation
How?

• The structure at a high-level of abstraction
– « Logical views »
– Component diagram (or simplified class diagram)

• Some example of the behaviors
– « Dynamical views »
– Sequence diagrams

• The repartition on the machines
– « Physical views »
– Deployment diagram

19

Context diagram

• To describe the boundaries of the system to
develop

• The system is represented as a whole
• Each element interacting with the system is

identified with an actor
– Human or external system
– That uses or is used by the system to develop

20

Example of Radar system

Automated
Enforcement
systemOperator

identification,
notification

data

copy

Radar
Mesta 210

Camera

picturecommanddata

flash

command

national car
registration DB

Here, the system to be built is the
software part of (1) the boxes and
(2) the management center

21

Example of Radar system

Automated
Enforcement
system

Car/ driver
Operator

identification,
notification

data

copy

speed

national car
registration DB

Here, the system to be built is the (1)
the boxes (software and hardware)
and (2) the management center

22

Use cases

• To list the functionalities of the systems
• Don’t forget to express the constraints
• They will be used to elaborate a set of

components

23

Example of Radar system
• Records a vehicle’s speed
• Takes a photograph of the vehicle when it exceeds a threshold limit.
• Speeds camera, a high speed radar, camera, flashbulb
• Sends pictures and the related information to a management center
• Allows user to

– Identify automatically the number plate and the owner of the car,
– Check manually if the number plate is correctly identified
– Validate manually the penalty document
– Improve manually the picture
– Fill the penalty document
– Validate the penalty document

• Keeps data for a long time (?)
• Allows connection to national car registration DB

24

Logical views
Structure of the application

• Simple class diagram OR
• Simple component diagram

Component

Interfaces

Relations

25

Example of Radar system
Global logical view

radar
Management
center

Mesta 210
camera

flash

Operatormsg

National car DB

NB: For the moment, we do not want to focus on interface (abstraction);
So interface are not represented =>
The component diagram looks like a simplified class diagram

26

Example of Radar system
Focus on Management center
One solution among several

Initiate
Treatment

Data base (DB)

Automatic
Analysis

UI for
Penalty edition

Operator

Management center

ra
da

r

Graphic
software National car DB

Replication

27

Dynamical Views
to illustrate the system behaviors

• Choose relevant behaviors (not all)
• Describe them with sequence diagrams

28

Example of Radar system
Messages are recieved, registered and automatically treated

Initiate treatment« actor »
radar

Msg

Picture,
data

DB

id

Picture, data, id

Automatic treatment

Plate number

Name, address

Id, new picture, plate
number, name, address

29

Example of Radar system
Operator asks a new picture, treats it (automatic treatment failed)

fills penalty document

30

Physical view to represent
the repartition of the component

• Use a simplified UML deployment diagrams
• Machines (devices)

are represented as « cube »

• Components
are represented as usal

• Specify relation between machines
with cardinalities

31

Example of Radar system

Radar software

Micro-controler
Automatic
Analysis

server

1n

UI for
Penalty edition

Data base

n

pc

1

Initiate
treatment

Graphic soft.
First version :
A single server

Mesta 210
camera

flash

Operator

National car DB

32

Example of Radar system

Radar software

Micro-controler
Automatic
Analysis

server

nn

Server 2

UI for
Penalty edition

Data base

n

pc

n

n

n

Initiate
treatment

Graphic soft.
Second version :
Multiple servers

Mesta 210
camera

flash

Operator

National car DB

33

Architecture and difficulties

• Architecture = first step(s) of conception
• You are in the process of choosing a solution

– Choosing a set of components
– Choosing how to connect them

• That is why it is difficult
• Any methods?

– Is there any universal method to solve a problem?

34

Architecture design
some clues

• Identify a set of components
– Method CBSP (University of Southern California)
– Organize requirement into thematic groups
– Make components emerging from these groups
– Use abstraction if necessary

• Organize the components
– As you can

• Check

35

Architecture design
some clues

• Identify a set of components
– Method CBSP (University of Southern California)
– Organize requirement into thematic groups
– Make components emerging from these groups
– Use abstraction if necessary

• Organize the components
– As you can or with architectural styles

• Check

36

Architecture design
some clues

• To organize the component, it is possible to
use “architectural styles” (aka patterns)

• Architectural patterns are classical solutions
for component organization
– MVC (model-view-controller)
– Client-server
– 3 tiers
– Layers…

37

Architectural patterns

38

Architectural patterns - 1

• Solution to a classical problem
– Abstract
– Well-known behaviors
– Well-known advantages and drawbacks

• Helps
– Starting the architectural design
– Communication among stakeholders
– Evaluation of the architecture

39

Architectural patterns - 2

• More and more important
• Emerging catalogues

– Not well organized
– With different levels of abstractions

• Example of architectural pattern families / style
– data-flow
– data-centered
– hierarchical
– for distributed architectures
– for UI

40

Wikipédia/wikiwand

https://msdn.microsoft.com/

https://medium.com/

41

Data-flow style example:
Pipes and filters

• Architecture is organized as a set of transformations
– Filters are the components dedicated to transformations
– Pipes are dedicated to the communication

42

Data-flow style example:
Process-Control Architecture

• For systems that have to
– maintain an output to a specific value
– reach a specific objective

43

Data-centered style example:
Repository-style

• Architecture is organized around a repository
(data-base)

44

Hierachical style example:
Layered

• Components are organized
into layers

• Each layer deals with
a level of abstraction

• Each layer communicates with
its immediate neighbors

45

Hierarchical style example:
Master-slave

• A component (master) controls the execution
of the others (slaves)

46

Distributed architecture style example
Client-server (two-tier)

• Involve a separate client and server system,
connecting through a network.

47

Distributed architecture style example
three-tiers

• Separation of functionality into segments
(different from abstraction layers)

• Segment (tier) can be located on a physically
separate computer.

48

Distributed architecture style example
Service-oriented architecture

• Functionalities embedded in “services”
• Available services are “published”
• A service looks for what it needs through the

“service directory”

49

UI architectural style example
MVC

50

Can you recognize the following
architectural styles?

51
51

Bus suspension

52
52

Communication protocole

53

54
54

Example : WWW

• Users can access the
information from the
WWW which is the
front end software
supported for on-line
retrieval of information.

55
55

Example: JVM

• Code written in Java is transformed into platform-
neutral binary code.

• JVM is platform-specific in that there are different
implementations of the JVM for each operating
system and processor.

• The Java binary code is delivered to the JVM for
interpretation.

• This two-step translation process allows platform-
neutral source code and the delivery of binary code,
while maintaining platform independency.

56
56

57
57

DSP-Controlled UPS for Smart Power
Supplying and Protection

A multiple rate digital controller generates all the PWM control signals for the power
stage by using a set of synchronously detected feedback signals.

58
58

The Cisco IB HCA offers high-
performance 10-Gbps InfiniBand
connectivity to PCI-X and PCI-
Express-based servers.

59
59

All traffic in Network Gatekeeper flows in traffic paths.
A traffic path consists of an application-facing interface, with Web Services Security
enforcement, a Service Capability, and a network plug-in, where requests are
translated between the application-facing interface and underlying network node
protocols.

60

61

62

References
• Software architecture in practice - second edition

Len Bass, Paul Clements, Rick Kazman
Addison Wesley, 2003

• Pattern-oriented software architecture
Buschmann, Meunier, Rohnert, Sommerlad, Stal
Wiley, 1996

• Applied software architecture
Hofmeister, Nord, Soni
Addison Wesley, 2000

• Design and use of software architectures
Jan Bosch
Addison Wesley, 2000

62

63

For the final evaluation

• You should know
– Challenges and issues of software architecture

• You should be able to
– Read/complete an architectural description
– Recognize an architectural style (among those

which were presented)

64

Exercise

Reformulate the previous schema into an architectural description that follows
the principles of (1) separation of concerns and (2) abstraction.

