Software Engineering
Week 11: Programming

Software engineering
is not the same as programming

* Every software engineer knows how to program, but
not every programmer is a software engineer.
» Software engineering is typically
— a group effort,
— with differing and often fluid roles and responsibilities
* Engineers develop software
— to meet specifications set for their client, and
— generally must adhere to specific standards and practices.
* Engineering projects have
— timelines, release dates, and

— considerable interaction between people responsible for
various components.

http://www.wikihow.com/Become-a-Software-Engineer

Programming

* Deadlines and realease dates
— Be efficient
— Know tools you use
— Program efficiently

* Group effort and interaction

— Code esthetic
* Working: means correct, meets specification
e Easy to understand: well structured & documented
— Agreed upon specification
* Changing the spec is a team decision

Timeis
precious

Programming

* Use languages properly: ‘

Procedural, OOP, ... by Il Make
the right
choices

Use Patterns ,,_, = ;» N\
O L ==

* Recognize the programming style
eg. threads vs events

Programming is a craft

Software engineering is also a craft

 Understand ﬁ

the problems
.. and solutions What the vser asked for

* Apply them J
during prOjeCtS How the system was designed A5 the proerammer wrots it

)

What the user really wanted How it actually r]ﬁ

Software Engineering
Week 11: Testing

1. Introduction

Code should be « working »
not only « running »

* OK. Let’s test a program !

* Exercise 1
Test the IntegerDivision Program

Exercise 1: test the program

public class IntegerDivision ({
public static int IntDiv(int x, int y) {
int z = 0;
int signe = 1;
if (x < 0) {
signe = -1;
x = -x; }
if (y < 0) {
signe = -signe;
y = -Vi}
if (y == 0) {
throw new IllegalArgumentException ("Arg nul:"+y) ;}
while (x >= y) {
X = X = V7
z =z + 1;
}
Z = signe * z;
return z;

1. Introduction

Code should be « working »
not only « running »

1. What is testing? What does it mean?
2. Why do you test?

Take a pen and write your answers

1. Introduction

Definition of Testing
e Testing is the process of executing the
software (system) in order to find bugs -

* It consists in
— |dentifying relevant input data (to find bugs)
— Executing the Software with the data
— Observing and judging outputs

1. Introduction

Developping vs Testing

Developping Testing

1. Introduction

Developping vs Testing

* |t is difficult to test its own programs
* It was difficult to build them (usually) ss

— You don’t want to destroy
what you have built

— You will avoid the critical points

* Use methods to select data systematically

1. Introduction

Code should be « working »
not only « running »

3. How did you select input data for ex1?
How can we do in general?

Take a pen and write your answers

2. Test data selection

2. Selecting test data

* From the code structure vs
from the specification

* On purpose or at random

* To check
— Normal behaviors
— Limits,
— QOutside the limits
* Functional and non-functional

2. Test data selection > code-based selection (white-box testing)

Control-flow graph

* Representation of all paths that might be
traversed through a program during its
execution

(a) (b)
(a) if-then-else % % (b) While loop

"Some types of control flow graphs" by JMP EAX - Own work. Licensed under CC BY-SA 4.0 via Commons —
https://commons.wikimedia.org/wiki/File:Some_types_of_control_flow_graphs.svg

2. Test data selection > code-based selection (white-box testing)

DO O T R I

b b
WwnNKHo

Example : is the size of a word even ?

M <- ReadWord

L=0

while M[L] !'= END do
L=L+1

end

if(Lmod2)=0

then print("L is even”)
Else print("L is odd")
Print("™.”)

if (L1=23)

then print(".”)

else print(“.."”)

end

What is the control-flow
graph of this program?

2. Test data selection > code-based selection (white-box testing)

Example : is the size of a word even ?

1. M <-ReadWord

2. L=0

3. while M[L]!'= END do
4. L=L+1

5. end

6. if(Lmod2)=0

7. then print("L is even”)
8. Else print("L is odd”)
9. Print(".")

10. if (L!'=23)

11. then print(".”)

12. else print("..”")

[
=

end

Exercise 2

* For the “word even program”
propose test data to achieve:
— 100% line coverage
— 100% condition coverage
— 100% path coverage

e What is the difference between line and
condition coverage ?

2. Test data selection > code-based selection (white-box testing)

DO O T R I

e
N = O

Example : is the size of a word even ?

M <- ReadWord

L=0

while M[L] !'= END do
L=L+1

end

if(Lmod2)=0

then print("L is even”)
Else print("L is odd")
Print("™.”)

if (L1=23)
then print(".”)
end

What is the control-flow
graph of this program?

2 Test data selection > code-based selection (white-box testing)

EclEmma

* Code coverage tool
Show which statements have been executed

* Eclipse plug-in

* Adds a so called launch mode L IMER B

f. Problems (@ Javadoc |z}, Declaration [Console [m Coverage &3
TD4 (1 oct. 2015 14:56:38)

Elernent Coverage Cowvered Instructio... Missed Instructions Total Instructions
4 {20 Weekd = 576% 34 25 59
4 B src B 576% 34 25 59

4 8 (default package) B 576% 34 25 54

] IntegerDivision java 49.0 % 24 25 49
[4] TD4 java | 100,0 %4 10 0 10

2. Test data selection > code-based selection (white-box testing)

EclEmma

* Line coverage
— green for fully covered lines
— yellow for partly covered lines
-
* Decision branches
¢ green for fully covered branches,
yellow for partly covered branches and

¢ red when no branches in the particular line have
been executed.

2. Test data selection > code-based selection (white-box testing)

Experiment at home

Install Junit and EclEmma,
Construct a JUnit test file for IntegerDivision.java
Execute it with EclEmma

= W

Answer the following questions

Q1. What do you observe?

Q2. What does it means?

Q3. Achieve 100% line coverage

Q4. Achieve 100% condition coverage

Q5. Fell the difference between line and condition coverage

2. Test data selection

Selecting test data

* From the code structure vs
from the specification

* On purpose or at random
e To check

— Normal behaviors
— Limits,
— Qutside the limits
* Functional and non-functional

2. Test data selection > specification-based selection (black-box testing)

Input Space Partition testing

* |dentify input partition in the input set
from the specification
— Valid values
— Boundaries
— Normal uses
— And (if relevant) invalid values & extreme uses

* Choose at least one input data in each
equivalence partition

2. Test data selection > specification-based selection (black-box testing)

Combination strategies criteria

F(x, Y, 2)
xe {a,b,c} vy e{1,2,3} 1z e{true, false}
* All combination coverage
— 3%3*2
* Each choice coverage
— (a,1,true) (b,2,false) (c,3,true)
* Pairwise coverage

2. Test data selection > specification-based selection (black-box testing)

Combination strategies criteria
Pairwise coverage

* Pairs to be covered
—(a,1) (9,2) (a,3) (b,1) (b,2) (b,3) (c,1) (c,2) (c,3)
— (a,t) (a,f) (b,t) (b,f) (c,t) (c,f)
—(1,t) (1,) (2,t) (2,f) (3,t) (3,f)

* Possible tests

(a,1,t) (a,2,f) (a,3,t)

9 tests instead of 18
(b,l,f) (b,2,t) (b,3,f) Wtithtall-c;mbinations
(Clllt) (Clzlf) (Cl3lt)

2. Test data selection > specification-based selection (black-box testing)

Partitions and combinations

Applying partition and
combination strategies,
means applying hypotheses

All behaviours in a partition are
« equivalent » w.r.t. finding errors

The chosen combination type
is « adequat » to find errors

2. Test data selection > specification-based selection (black-box testing)

Exercise 3

Q1. Apply the input partition technique and all-
combination strategy to select tests for the
IntegerDivision program

Q2. Complete your tests

Q3. What can you say about your tests now?
Is the program free of bugs? Why?

3. Test data evaluation

Code should be « working »
not only « running »

4. How can | be convinced that my tests are
good enough to find bugs?

Take a pen and write your answers

3. Test data evaluation

Fault injection and
mutation testing

* Atestisgood ifitisable to find bug

* Mutation testing introduces systematically
elementary fault in the code

— Long

— Tedious

* Inject some faults to evaluate your tests
(and remove them after!) (*5

S

4. Test oracle

Tests might not find bugs
or find bugs that are not bugs

2 possible reasons
 Test data are not well-chosen
 Test oracle is not correct

Oracle: mechanism for determining
whether a test has passed or failed ¢
(assert in Junit) '

T
'.'iu,

4. Test oracle

This is not a test... Why?

@ Test
public void test1() {
int res= IntegerDivision.IntDiv(4, 2);

}

4. Test oracle

This is a (very simple) test

@Test
public void test1() {

int res= IntegerDivision.IntDiv(4, 2);

« Oracle »

5. Stopping criteria

Code should be « working »
not only « running »

5. When should testing stop?

Take a pen and write your answers

.|.
~

5. Stopping criteria

When should testing stop?

* One of the most difficult questions to a tester

* Test is to reveal failures
* Test everything is impossible

* Need to choose a compromise between
— Test many behaviours but it is expensive
— Test too few behaviours and failing finding errors

5. Stopping criteria

When should testing stop?

* Few of the common Test Stop criteria
1. All the high priority bugs are fixed
2. The rate at which bugs are found is too small

The testing budget is exhausted

The project duration is completed

The risk in the project is under

acceptable limit.

e W

6. Practical considerations

Practical considerations

e Testing levels
* Testing purpose
* Test automation

e Test code esthetics

 Test and validation

6. Practical considerations

Testing levels

User

Requirements
Engineering

\

Requirements
Engineering

System

\

Architecture
Engineering

\

Design

\

Coding (SW)
Fabrication (HW)

Acceptance
Testing
System
Testing
System
Integration
Testing
Subsystem
Integration
Testing

/

O

Unit Testing

6. Practical considerations

Testing purposes

* Functional properties

* Non-functional properties
— Usability
— Robustness
— Reliability
— Efficiency
— Portability, Compatibility
— Load, Performance, Efficiency
— Security

6. Practical considerations

Manual or automated tests?

* Automate testing has a cost
e |t should be useful

— Continuous integration

— Regression testing

* |t is not a guarantee that all bugs will be found

6. Practical considerations

Test code esthetic

e Test programs are also programs!
— Shared, maintained, have to evolve
— Need to be commented

* Given-When-Then style

— template intended to guide the writing of acceptance
tests for a User Story

— |dea beyond
* (Given) some context
* (When) some action is carried out

* (Then) a particular set of observable consequences should
obtain

6. Conclusions

Test vs Validation

* Validation is more general than test

* Process of evaluating a system during or at the end of
the development process to determine whether it
satisfies specified requirements [IEEE]

e Validation may consist in
— Code review
— Static analysis
— Verification
— Testing

Competence and Knowledge
which will be evaluated

e Be able to

— draw the control-flow graph of a simple program
— select data to achieve line/branch coverage

—useirputpartition-method-and-combinationstrategies

e know

— the testing philosophy and ‘
ical " : (?!r

