

UML language - 1

Lydie du Bousquet

Lydie.du-bousquet@univ-Grenoble-alpes.fr

En collaboration avec J.-M. Favre, I. Parissis, Ph. Lalanda

Need of representations to discuss, organize, build, document...

In SE, models are used

- As a starting point to
 - abstract and to understand
 - support the discussion
 - organize, plan
- To design and detail
- As support at the end of development
 - To test
 - To document
 - To maintain

UML = Unified Modeling Language

- A language
- For modeling
 - at the analysis and the design stages (Object-oriented)
- Unified
 - To cover as many domains as possible
 - To cover as many **notions** as possible
- Objective: different analysts can
 - Have a common language to discuss
 - Common tools

UML = standard

- International standard
 - Very large (many notions)
- More and more used in the industry
- Associated to several
 - methods
 - Tools
- Can be used with different level of details

UML: a language, several views

- Different needs
 - To model static or dynamical point of views
 - At different stage analysis, specification, design, ...
- Using views
 - Separation of concerns

UML: a language, several views

14 diagrams in UML 2.2

Structure diagrams

- Class diagram
- Object diagram
- Component diagram
- Composite structure diagram
- Deployment diagram
- Package diagram
- Profile diagram

Behaviour diagrams

- Use case diagram
- State Machine diagram
- Activity diagram

Interaction diagrams

- Sequence diagram
- Communication diagram
- Interaction overview diagram
- Timing diagram

UML 2.2

Use-case diagram

- Documents the system's intended behavior
- Representation of the relationships between actors and use-cases
- Arrows and lines are drawn
 - between actors and use cases (by default «communicates»)
 - between use cases to show their relationships
 - Between actors to show their relationships

Use-case diagram

Use cases

They are drawn as an ellipse

- Names are normally made up of
 - an active verb and a noun
 - noun phrase
- Names should be representative of the behavior

Actors

- People or systems that interact with use cases
- They represents roles
 (not John or Mary, but assistant or supervisor)

- They are connected with use cases with which they interact
- The name of the actors should be chosen carefully
- Generalization can be used between 2 actors

Relationships

- Association between actor and use-case
- Generalization between two actors
- Association between two use-cases
 - Include
 - Extend
- Generalization between two use-cases

Association between actor and use-case Example: Air flight company system

Association between actor and use-case Example: Air flight company system

An arrow can be used to specify the direction of the initial invokation

Air flight company system

A club customer is a special customer: generalization relation.

Behavior specification

- Use case diagram vs use case model
- A use case represents a sequence of activities that results in some observable outcome
- The activities have to be documented
 - Simple paragraph
 - Two-column presentation (actor and system)
 - UML sequence diagram, communication diagram, ...

Include and extend relationships

- << include >>
- encapsulates a functionality used at several point in the systems
- to avoid repetition

To deposit funds, it is necessary to achieve authentication

Include and extend relationships

<< extend >>

denotes the fact that the use case may be optionally extended

http://www.ropley.com/use-case-extend-relationships.aspx

Generalization between two use cases

 A parent use case may be specialized into one or more child use cases that represent more specific forms of the parent.

Use-case diagram example

use case diagram for the interaction of a client (actor) within a restaurant (system) https://en.wikipedia.org/wiki/Use_Case_Diagram

Unified Process

- (1) Define the use case model
 - (1) Introduce the system (small description)
 - (2) Find the actors
 - (3) Give a small description of each actor
 - (4) Find use-cases, express the relations
 - (5) Describe the system as a whole
- (2) Define the priority among the use cases
- (3) Detail the use cases (w.r.t. the priorities)

Advices

- Use strong verb and domain vocabulary for use cases:
 - withdraw is stronger than perform withdrow
 - Convey pakage vs deliver shipment
- Name actor with domain-relevant name and place primary actor on the top left
- Use an actor « time » to initiate scheduled event (can be represented as \(\mathbb{Z}\))

Use Case

Exercises

3.1

3.2

14 diagrams in UML 2.2

Structure diagrams

- Class diagram
- Object diagram
- Component diagram
- Composite structure diagram
- Deployment diagram
- Package diagram
- Profile diagram

Behaviour diagrams

- Use case diagram
- State Machine diagram
- Activity diagram

Interaction diagrams

- Sequence diagram
- Communication diagram
- Interaction overview diagram
- Timing diagram

UML State Machine diagram (statechart)

- Focused on a specific object
- Describes the flow between states
- Mostly used to describe the states of a class
- Can be used during the analysis, design, ...
- Main elements of the diagrams
 - States
 - Events: they trigger the state change
 - Transition: links two states, represented as arrow labeled with event

States in UML State machine diagram (statechart)

- It is a moment in the life cycle
- It corresponds to the presence or an absence of activity

Transition

- Movement from one state to another one
- Drawn a arrowed line
- A transition is always in response to an event (trigger)
- Some condition and action can be handle by transition

Transitions: Triggers [Guard] / Effect

- Trigger = cause of the transition
- Guard = condition which must be true in order for the trigger to cause the transition
- Effect = action which will be invoked directly on the object that owns the state machine as a result of the transition

Example 1: a light

A light is « on » or off (states).

The light can be « turned on » or « turned off » (triggers).

When a light is on, nothing happens if it is turned on

(the state do not change).

States in UML State diagram (statechart)

- Initial
- End •
- Simple A state

Example 2

High level behavioral state machine for bank ATM

States in UML State diagram (statechart)

- Initial
- End •
- Simple A state
- Composite
 - hierarchically nested states and
 - orthogonal regions

Composite states

- A composite state
 - Can have one, several or none states
- When leaving a state,
 - It is possible or not to keep memory of the left state

Composite State with parallel activities

https://www.stickyminds.com/article/state-transition-diagrams

States and labels

- Entry: behavior performed upon entry to the state
- Do: ongoing behavior, performed as long as the element is in the state
- Exit: behavior performed upon exit from the state

Waiting for User Input

entry/ welcome exit/ thanks

Example 4

UML State Machine diagram

Exercises

4.1

4.2

4.4

For the evaluations, you should be able to

- @Midterm
 - Understand a diagram and reformulate it in a textual description
 - Produce a diagram from a simple description
- @Final
 - Reformulate a medium size textual description with the appropriate UML diagram