
Software Engineering

Lydie du Bousquet

Frédéric Lang

1Software engineering - Formal methods

Software Engineering –
Verification using formal methods

Part I:
Sequential programs

2Software engineering - Formal methods

1. INTRODUCTION

3Software engineering - Formal methods

Code should be « working »
not only « running »

• This is why testing was introduced

• Testing is good and necessary, but it has
limitations

1. Introduction

4Software engineering - Formal methods

Limitation of testing #1

• 100 % test coverage is out of reach

too many lines of code,
too many branches,
parallelism,
…

 Many bugs may survive the testing phase

• The probability of a rare bug to occur during
the software lifetime may be far above the
probability that it occurs during testing

1. Introduction

5Software engineering - Formal methods

Limitation of testing #2

• Tested program may behave unpredictably
• Several possible causes:

– Variable execution environment
e.g., compiler, architecture, load, …

– Unpredictable effect of uncaught programming errors
e.g., use of non-initialized variable, div-by-0, …

– Intrinsic program nondeterminism
(same input => different output)
e.g., parallel systems (variable communication delays,
asynchrony)

• It is difficult/impossible to test all situations

1. Introduction

6Software engineering - Formal methods

Example (1/3)

Test the following C program

int main () {

int x = 1;

x = x++;

assert (x == 2);

}

1. Introduction

7Software engineering - Formal methods

Example (2/3)

• Tested on Linux iX86 with Gnu CC 4.4.5
compiler: test passes

• Test is exhaustive and successful!

• Program can thus be safely deployed in the
customer environment… Really?

1. Introduction

8Software engineering - Formal methods

Example (3/3)

• Customer uses 32-bit SunCC/Solaris compiler

• Assertion is violated: x == 1

• Cause: ambiguity ofx = x++, unspecified order
between assignment x = … and increment x++

/* x == 1 */ R = x; x = R + 1; x = R; /* x == 1 */

vs.
/* x == 1 */ R = x; x = R; x = R + 1; /* x == 2 */

where R is a register used to store the initial value of x

1. Introduction

9Software engineering - Formal methods

Increment x

increment x

assign x

assign x

read x

read x

General problem: improve predictability

• Motivation: errors are costly

• Cost increases over time!

• Verification methods
complementary to test
are needed to find bugs early

1. Introduction

« Normal » software:

Critical software:
e.g., avionics, aerospace, automotive, nuclear, chemicals, …

10Software engineering - Formal methods

How to improve predictability?

• Use « clean » programming languages:
– Static semantic checks to avoid common errors

(uninitialized variable, division by 0, etc.)
– Well-defined semantics

• But this is not enough to ensure that programs
will always provide a correct result:
– Need to describe the programmer’s intent: logic
– Need to determine how intent is achieved by the

program: reasoning

1. Introduction

11Software engineering - Formal methods

Models of programs

• Programming languages are sometimes too
low-level for formal reasoning

• Rather use models of higher abstraction level
– Abstract away from implementation details to

focus on algorithmic problems
– Helps getting convinced of correctness

• Models are a generalization of programs, with
additional abstraction mechanisms
– Example: nondeterminism used to underspecify

parts that are not essential to correctness
• In the sequel: program = model

Software engineering - Formal methods 12

1. Introduction

Formal verification methods

• Formal = mathematically defined

• Relies on formal languages to model:

– Programs

– Requirements

• Advantages:

– Eliminate the risk of ambiguities

– Offer mathematically based (rigorous) verification
methods

1. Introduction

13Software engineering - Formal methods

Formal verification

• Several formal verification methods exist, with many
criteria of choice

• One major criteria is whether the program is
transformational or reactive/concurrent

This lecture:

• Week 10: transformational programs – proof
techniques

• Week 11: reactive & concurrent programs –
automata-based verification

1. Introduction

14Software engineering - Formal methods

2. PROVING THE CORRECTNESS OF
TRANSFORMATIONAL PROGRAMS

15Software engineering - Formal methods

Transformational program

• Program (or part of a program)
– Computes an output in function of an input

– Essentially behaves sequentially (even though implementation may be
parallel)

– Execution should terminate (otherwise error)

• Examples :
– Imperative programs (C, C++, Ada, …)

– Functional programs (ML, Scheme)

Transformational
program

Input Output

2. Proving transformational programs

16Software engineering - Formal methods

Proving transformational programs correct

• Goal: ensure that program behaves as expected

• Several possible notions of as expected
– Absence of crash: No unexpected termination

Examples: division by zero, out-of-bound array access, etc.

– Correctness: A particular relation between program inputs
and outputs holds

– Termination: No infinite execution

– Performance: Bounded usage of resources (e.g., time,
memory, etc.)

• This lecture focuses essentially on program correctness

2. Proving transformational programs

17Software engineering - Formal methods

Program correctness

Proving a program correct requires:

• A formal specification of the program

• A formal specification of the mathematical
property that the program should satisfy

• Formal deduction rules to relate property and
program (reasoning)

2. Proving transformational programs

18Software engineering - Formal methods

Methods to prove specifications of
transformational programs

• Algebraic methods

• Hoare logic

• Set-based methods:

– Z, VDM

– B: combines ideas from Z and from Hoare logic

2. Proving transformational programs

19Software engineering - Formal methods

2.1. ALGEBRAIC METHODS

2. Proving transformational programs

20Software engineering - Formal methods

Principle of algebraic methods

• Formal framework to demonstrate mathematical

properties of programs

• Use of algebra and equational logic

• Specification by properties: objects are defined by

the operations that generate or use them, as

mathematical equations

• There are many algebraic specification languages

(ACT ONE, LARCH, LPG, ...)

2. Proving transformational programs / Algebraic methods

21Software engineering - Formal methods

First example: Booleans

• Boolean values are written True/False; Bool = {True, False}

• Opns Not, Or, And are defined by the following equations:

Not (True) = False

Not (False) = True

(X  Bool) Or (True, X) = True

(X  Bool) Or (False, X) = X

(X  Bool) And (True, X) = X

(X  Bool) And (False, X) = False

• We call terms the variables, constants and operations applied
(recursively) to terms

2. Proving transformational programs / Algebraic methods

22Software engineering - Formal methods

Second example: Natural numbers

• Natural numbers are written 0, S (0), S (S (0)), ...; Nat is the set
of natural numbers (S and 0 are called constructors)

• Operations Pred (predecessor), +, and  are defined by the
following equations:

(X  Nat) Pred (S (X)) = X

(Y  Nat) 0 + Y = Y

(X, Y  Nat) S (X) + Y = S (X + Y)

(Y  Nat) 0  Y = 0

(X, Y  Nat) S (X)  Y = Y + (X  Y)

2. Proving transformational programs / Algebraic methods

23Software engineering - Formal methods

Déf. of Pred

Déf. of +

Déf. of 

Example of proof (1)

Prove that S (S (0))  S (S (0)) = Pred (S (S (S (S (S (0))))))

Simple application of the equations:

S (S (0))  S (S (0))

= S (S (0)) + (S (0)  S (S (0))) from (X, YNat) S (X)  Y = Y + (X  Y)

= S (S (0)) + (S (S (0))+(0S (S (0)))) from (X, YNat) S (X)Y = Y+(XY)

= S (S (0)) + (S (S (0)) + 0) from (Y  Nat) 0  Y = 0

= S (S (0) + S (S (0))) from (X, YNat) S (X)+Y = S (X+Y)

= S (S (0 + S (S (0))) from (X, YNat) S (X)+Y = S (X+Y)

= S (S (S (S (0)))) from (Y  Nat) 0 + Y = Y

= Pred (S (S (S (S (S (0)))))) from (X  Nat) Pred (S (X)) = X

Software engineering - Formal methods 24

2. Proving transformational programs / Algebraic methods

Example of proof (2)

• Prove that (X  nat) X + 0 = X

• By structural induction on X: Base case X = 0.

X + 0 = 0 + 0 from the hypothesis X = 0

= 0 from the equation (Y  nat) 0 + Y = Y

= X from the hypothesis X = 0

• Inductive case suppose that ( X’  nat) X' + 0 = X‘ (induction

hypothesis) and consider X = S (X').

X + 0 = S (X') + 0 from the hypothesis X = S (X')

= S (X' + 0) from (X, Y  nat) S(X) + Y = S(X+Y)

= S (X') from the induction hypothesis

= X from the hypothesis X = S (X‘)

2. Proving transformational programs / Algebraic methods

25Software engineering - Formal methods

Third example: factorial

• The factorial operation fact (X) of a natural number X
can be defined by the following equations:

S (0) = fact (0)

(X  Nat) S (X)  fact (X) = fact (S (X))

2. Proving transformational programs / Algebraic methods

26Software engineering - Formal methods

Example of proof

• Prove that

(X  nat) X  0  fact (X) = X  fact (Pred (X))

• Suppose X  0. Then there exists X' such that X = S (X').

fact (X) = fact (S (X')) (1)

= S (X')  fact (X') (2)

= S (X')  fact (Pred (S (X')) (3)

= X  fact (Pred (X)) (1)

(1) from X = S (X')
(2) from (X  Nat) S (X)  fact (X) = fact (S (X))
(3) from (X  Nat) Pred (S (X)) = X

2. Proving transformational programs / Algebraic methods

27Software engineering - Formal methods

Exercise

• A type nat_list representing lists of natural numbers
is defined using the constructors Nil: → nat_list and
Cons: nat, nat_list → nat_list

• Define the operation last: nat_list → nat, which
returns the last element of a non-empty list

• Define the operation append : nat, nat_list →
nat_list which appends an element at the end of a
list

• Show that:
(X nat, L  nat_list) last (append (X, L)) = X

Software engineering - Formal methods 28

2. Proving transformational programs / Algebraic methods

Solution (1/2)

• last : nat_list → nat

( X  nat) last (Cons (X, Nil)) = X

( X, Y  nat, L  nat_list)
last (Cons (X, Cons (Y, L))) = last (Cons (Y, L))

• append : nat, nat_list → nat_list

( X  nat) append (X, Nil) = Cons (X, Nil)

( X, Y  nat, L  nat_list)
append (X, Cons (Y, L)) = Cons (Y, append (X, L))

Software engineering - Formal methods 29

2. Proving transformational programs / Algebraic methods

Solution (2/2)

We first prove the following Lemma :
(X nat, L  nat_list) ( Y  nat, L’  nat_list) append (X, L) = Cons (Y, L’)

Proof: By case on L (immediate from the definition of append)

We now prove by induction on L :
(X nat, L  nat_list) last (append (X, L)) = X

• Base case : L = Nil
last (append (X, Nil)) = last (Cons (X, Nil)) = X

• Inductive case : Assume that for some L, last (append (X, L)) = X
and show that for L’ = Cons (Y, L), last (append (X, L’)) = X
last (append (X, L’)) = last (append (X, Cons (Y, L)))

= last (Cons (Y, append (X, L))) by def. of append
= last (Cons (Y, Cons (Y’, L’’))) for some Y’, L’’ (Lemma)
= last (Cons (Y’, L’’))) by def. of last
= last (append (X, L))
= X by induction hypothesis

Software engineering - Formal methods 30

Automated proofs

• In general, it is not possible to automate proofs
• In specific cases, proofs can be made automatic by

orienting the equations in the form of rewriting rules
Example :

fact (0) → S (0)
fact (S (X)) → S (X) x fact (X)

• Certain conditions (confluence and termination of
the rewriting rules) must be fulfilled for the proof to
be automated

• Confluence and termination of the rewriting rules
cannot be proven automatically in general

2. Proving transformational programs / Algebraic methods

31Software engineering - Formal methods

Algebraic languages

Many algebraic languages exist:

• OBJ (J. Goguen - Université de Californie, USA - 1976)

Ancestor of many dialects : OBJ3, CafeOBJ, BOBJ, ...

• Larch (J. Wing - MIT, Massachussets, USA – 1983)

• ACT ONE (H. Ehrig - Technische Universität Berlin, Allemagne – 1983)

Reused in the LOTOS process algebra, followed by ACT TWO

• PLUSS (M.-C. Gaudel - Université Paris Sud, France – 1984)

• LPG (D. Bert et R. Echahed - Grenoble, France - 1984, révision 1991)

• CASL (Common Algebraic Specification Language - Initiative of a group of

researchers from several origins, 1997)

• etc.

2. Proving transformational programs / Algebraic methods

32Software engineering - Formal methods

Software tools for algebraic methods

• Larch prover (MIT, Massachussets, USA) www.sds.lcs.mit.edu/spd/larch

Interactive prover for Larch (maintained but not anymore developed)

• Maude (SRI, Californie, USA) www.csl.sri.com/projects/maude

Rewrite engine based on an inheritor of OBJ

• Elan (INRIA, Nancy, France) http://elan.loria.fr

Rewrite engine

• CASL consistency checker (Bremen University, Germany) www.informatik.uni-
bremen.de/cofi

Verification of the consistency of a specification

• ACL2 (Texas University, USA) www.cs.utexas.edu/users/moore/acl2

Theorem prover by rewriting based on a dialect of Lisp

Used by AMD to verify correctness of elementary operations on the floating point
numbers of the Athlon processor

Laureat in 2005 of the "ACM Software System Award"

2. Proving transformational programs / Algebraic methods

33Software engineering - Formal methods

Conclusion on algebraic specifications

• Algebraic specifications are a formal framework to reason on
transformational programs

But
• Writing algebraic specifications is hard

– One does not always know whether enough equations have been
written to fully model the program (completeness)

– One does not always know whether contradicting equations have
been written (consistency)

– Completeness and consistency cannot be proven automatically

• Algebraic specifications are not executable if they are not
oriented as rewriting rules

• Algebraic specifications languages are not well adapted to
express the notion of program state

2. Proving transformational programs / Algebraic methods

34Software engineering - Formal methods

Exercise (1/4)

Consider the following specification of Booleans and lists of Booleans:
Definition : true : → Bool false : → Bool and : Bool × Bool → Bool
for all b  Bool:
(a1) true and b = b
(a2) false and b = false
Definition: nil : → Bool_List cons : Bool × Bool_List → Bool_List

cat : Bool_List × Bool_List → Bool_List
for all b  Bool, l0, l1, l2  Bool_List:
(c1) cat (nil, l0) = l0
(c2) cat (cons (b, l1), l2) = cons (b, cat (l1, l2))
Definition: and_list : Bool_List → Bool
for all b  Bool, l  Bool_List:
(l1) and_list (nil) = true
(l2) and_list (cons (b, l)) = b and and_list (l)
We propose to show that for all l1, l2  Bool_List:
(eqn) and_list (cat (l1, l2)) = and_list (l1) and and_ list (l2)

Software engineering - Formal methods 35

Exercise (2/4)

What does the cat operation do?

Software engineering - Formal methods 36

Exercise (2/4)

What does the cat operation do?

Concatenation of lists

example: cat ({true, false}, {true})

cat (cons (true, cons (false, nil)), cons (true, nil))

= cons (true, cat (cons (false, nil), cons (true, nil)) (c2)

= cons (true, cons (false, cat (nil, cons (true, nil)))) (c2)

= cons (true, cons (false, cons (true, nil))) (c1)

{true, false, true}

Software engineering - Formal methods 37

Exercise (3/4)

In (eqn), consider the particular case where
l1 = nil and l2 is an arbitrary list

complete the following lines:

and_list (cat (nil, l2)) = . . . by (c1)

and_list (nil) and and_list (l2)
= . . . by (l1)

= . . . by (a1)

What can you conclude about (eqn) when l1 = nil?

Software engineering - Formal methods 38

Exercise (3/4)

In (eqn), consider the particular case where
l1 = nil and l2 is an arbitrary list

complete the following lines:

and_list (cat (nil, l2)) = and_list (l2) by (c1)

and_list (nil) and and_list (l2)
= true and and_list (l2) by (l1)

= and_list (l2) by (a1)

What can you conclude about (eqn) when l1 = nil?

It holds: and_list (cat (nil, l2)) = and_list (nil) and and_list (l2)

Software engineering - Formal methods
39

Exercise (4/4)

We now assume that there exists at least one list l3  Bool_List such
that (eqn) holds, i.e., for all l2  Bool_List:
(ih) and_list (cat (l3, l2)) = and_list (l3) and and_list (l2)

We consider the list l4 = cons (b, l3) where b is an arbitrary Boolean,
and we then show the following using (ih):
for all l2  Bool_List:

and_list (cat (l4, l2)) = and_list (l4) and and_list (l2)
(The proof is not asked)

What can we conclude about (eqn)?
How is called this kind of reasoning?
What do the initials ih stand for?

Software engineering - Formal methods 40

Exercise (4/4)

We now assume that there exists at least one list l3  Bool_List such
that (eqn) holds, i.e., for all l2  Bool_List:
(ih) and_list (cat (l3, l2)) = and_list (l3) and and_list (l2)

We consider the list l4 = cons (b, l3) where b is an arbitrary Boolean,
and we then show the following using (ih):
for all l2  Bool_List:

and_list (cat (l4, l2)) = and_list (l4) and and_list (l2)
(The proof is not asked)

What can we conclude about (eqn)? holds for any l1 : nil or cons (...)
How is called this kind of reasoning? reasoning by induction
What do the initials ih stand for? induction hypothesis

Software engineering - Formal methods 41

2.2. HOARE LOGIC AND DESIGN BY
CONTRACT

2. Proving transformational programs

42Software engineering - Formal methods

Hoare logic

• Seen earlier in the « compiler » class

• A framework for proving programs, proposed by
Tony Hoare in 1969, inspired by Robert Floyd

• Mathematical formalization of deduction rules
for reasoning on programs

• Motivations:

– Rigorous definition of reasoning (teaching, research
papers, …)

– Implementation in tools

2. Proving transformational programs / Hoare logic & contracts

43Software engineering - Formal methods

Reminder about Hoare logic

• Hoare triples { P } C { Q } where P, Q are assertions in first-
order predicate logic, called precondition and postcondition

• Meaning: If P holds before executing C, then Q holds after
executing C

• Hoare logic is about proving Hoare triples

• Proof requires additional user-given assertions called loop
variants and loop invariants

• Many systems for proving sequential programs somehow rely
on extensions of Hoare logic
Example: The B method

44Software engineering - Formal methods

2. Proving transformational programs / Hoare logic & contracts

Reminder about first-order predicate logic

• Terms represent data: constants, variables, function

applications

Examples : x, 7, true, false, sin(x), x < y, y + 1

• Formulas may take several forms:

– Predicates: terms that evaluate to true or false

Examples: true, false, even (x), x < y, etc.

– Propositional formulas: built using predicates and the logic connectors

, , , , etc.

Examples : f (x, y)  f (y, z)  f (x, z)

– Quantified formulas: with logic quantifiers ( x . A), ( x . A)

45Software engineering - Formal methods

2. Proving transformational programs / Hoare logic & contracts

Programming with Hoare logic
assertions: design by contract

• A methodology proposed by B. Meyer (1986) and first
implemented in the Eiffel programming language

• Write contract (what should be done) together with
code (how this is done):
– A pre and a postcondition with each function
– An invariant and a variant with each loop
– In OO programming, a property on state variables that

should hold before and after every method call, named
object invariant

• Contracts can be checked at runtime or, if the
programming and assertion languages have formal
semantics, connexion to provers is possible

46Software engineering - Formal methods

2. Proving transformational programs / Hoare logic & contracts

Contracts in SPEC#

SPEC# (Microsoft Research)
http://research.microsoft.com/en-us/projects/specsharp

• Formal language for contracts
• Extends C#, integrated in Visual Studio
• Boogie program verifier connected to automatic prover

of logic properties
• Web interface (for toy examples):

http://rise4fun.com/SpecSharp
• Homework: watch

http://channel9.msdn.com/Blogs/Peli/The-Verification-
Corner-Specifications-in-Action-with-SpecSharp

47Software engineering - Formal methods

2. Proving transformational programs / Hoare logic & contracts

http://research.microsoft.com/en-us/projects/specsharp
http://rise4fun.com/SpecSharp
http://channel9.msdn.com/Blogs/Peli/The-Verification-Corner-Specifications-in-Action-with-SpecSharp

Factorial in SPEC#

class Factorial {

static int fact (int n)

requires n >= 0;

ensures

result == product{int i in (1:n+1); i};

/* product of ints from 1 to n */

{

int x, r;

x = n;

r = 1;

}

while (x > 0)

invariant x >= 0;

invariant x <= n;

invariant
r == product{int i in (x+1:n+1); i};

/* product of ints from x+1 to n */

{

r *= x;

x--;

}

return r;

}

48Software engineering - Formal methods

2. Proving transformational programs / Hoare logic & contracts

Conclusion on Hoare logic and contracts

Beyond formal proof, assertions radically change the
nature of software development in several ways:

• Design aid: build program + arguments that justify its
correctness

• Testing and debugging: assertions can be checked at
runtime

• Documentation: non-ambiguous and concise
description of what the program does (instead of
how this is done)

49Software engineering - Formal methods

2. Proving transformational programs / Hoare logic & contracts

2.3. SET-BASED METHODS

2. Proving transformational programs

50Software engineering - Formal methods

Set-based specification languages

• They are formal languages appropriate to describe:

– The notion of program state, defined by a set of typed variables

– Program operations, defined by their inputs, their outputs, an

application condition (precondition) and an effect on the state

variables

• They use set-based notations and first-order predicate logic

• They generally come with a method that defines good

development practices and rely on software tools

2. Proving transformational programs / Set-based methods

51Software engineering - Formal methods

Main set-based methods

• VDM (Vienna Development Method)

– Ancestor of set-based methods

– Invented at the Vienna IBM laboratory in the 60’s

– Used by some industries including DCC-International (Ada compiler),
British Aerospace, Adelard, ...

• The Z notation
– Set-based notation proposed par J.-R. Abrial (1977) and developed by

the team of Tony Hoare in Oxford

– Standardized at ISO in 2002

• The B method
– Method proposed by J.-R. Abrial in the 80’s

2. Proving transformational programs / Set-based methods

52Software engineering - Formal methods

The B method

• Method based on Abstract State Machines, which

unify the notions of (set-based) specification, proof

and executable code

• With industrial usages:

– Matra Transport and RATP : verification of the control

system for safety equipments of Paris metro line 14

(automatic trains), from specification to Ada code

generation

– But also: Gemalto (smart cards), Siemens, Leirios

Technologies, ...

2. Proving transformational programs / Set-based methods

53Software engineering - Formal methods

B: Methodology

Seamless methodology from specification to executable code:

1. Program specification as an abstract state machine

2. Automatic generation of properties to be proven for the satisfaction of

variants and invariants: the proof obligations

3. Progressive refinement of the state machine : Manual replacement of

non-executable elements by executable ones

4. Automatic generation and proof of new proof obligations that express

the preservation of properties proven at the previous step

5. Back to point 3 until obtention of executable code

2. Proving transformational programs / Set-based methods

54Software engineering - Formal methods

B: ASM (Abstract State Machine)

It is defined by:

• Its name

• Its state variables

• A state invariant (formula of first-order predicate

logic): property that must be true at initialisation and

remain true after each application of an operation

• A variable initialisation clause

• A list of operations that read inputs, return outputs

and modify the state

2. Proving transformational programs / Set-based methods

55Software engineering - Formal methods

ASM example: Plane boarding system (1/2)

MACHINE Plane

SEES Bool_TYPE

SETS PASSENGERS

CONSTANTS cap

PROPERTIES cap  N

VARIABLES onboard

INVARIANT

(onboard  PASSENGERS)  (card (onboard)  cap)

INITIALISATION

onboard := 

OPERATIONS

.../...

Generalised substitution
(variable assignment)

Property of
constants

Imported type

2. Proving transformational programs / Set-based methods

56Software engineering - Formal methods

ASM example: Plane boarding system (2/2)

.../...

OPERATIONS

Boarding (p) =
PRE (p  PASSENGERS)  (p  onboard)
THEN onboard := onboard { p }
END;

b  Onboard (p) =
PRE p  PASSENGERS
THEN IF p  onboard

THEN b := TRUE
ELSE b := FALSE
END

END

END

2. Proving transformational programs / Set-based methods

57Software engineering - Formal methods

B: Operations

An operation has the following form:

outputs  op (inputs) =
PRE

precondition
THEN

effect
END

where:
– precondition is a formula of first-order predicate

logic
– inputs, outputs are lists of local variables
– effect is a statement (generalised substitution)

2. Proving transformational programs / Set-based methods

58Software engineering - Formal methods

Examples of generalised substitutions

• Deterministic assignment: X := E

• Nondeterministic assignment: X : T

X takes any value in the set T

• Sequential composition: S1; S2

substitution S1 followed by S2

• Conditional branch: IF P THEN S1 ELSE S2 END

• Nondeterministic branch: CHOICE S1 OR … OR Sn END

Arbitrary choice among S1, …, Sn

• Loop: WHILE P DO S0 VARIANT E INVARIANT Q END

• etc.

2. Proving transformational programs / Set-based methods

59Software engineering - Formal methods

Proof obligations

• The B method defines first-order predicate logic formulas that must

be proven for the invariant to hold: the proof obligations

• They are calculated by applying a substitution S to a formula Q,

written "[S] Q"

• Relationship with Hoare logic: [S] Q = the (weakest) precondition

that S must satisfy for postcondition Q to be satisfied

• Proving "P  [S] Q" is thus analoguous to proving the goal

{ P } S { Q }, but with a generalisation to nondeterministic

statements

2. Proving transformational programs / Set-based methods

60Software engineering - Formal methods

Application of substitutions (1/3)

• [X := E] Q  Q in which E replaces X

Example : [x := 1] (x  c)  (1  c)

• [X : S] Q = (y . y  S  [X := y] Q)

Example : [x : N] p(x) 

(y . y  N  p(y)) 

p(0)  p(1)  p(2)  ...

• [CHOICE S1 OR S2 END] Q  ([S1] Q)  ([S2] Q)

2. Proving transformational programs / Set-based methods

61Software engineering - Formal methods

Application of substitutions (2/3)

• [IF P THEN S1 ELSE S2 END] Q 

(P  [S1] Q)  (P  [S2] Q)

Example:

[IF x > 0 THEN x := x-1 ELSE x := x+1 END] p(x) 

(x > 0  p(x-1))  (x  0  p(x+1))

• [S1; S2] Q  [S1] [S2] Q

Example: [x := 2 * z; y := x+1] p(y) 

[x := 2 * z] p(x+1) 

p((2 * z) + 1)

2. Proving transformational programs / Set-based methods

62Software engineering - Formal methods

Application of substitutions (3/3)

• [WHILE P DO S0 INVARIANT I END] Q 

I  (X) (I  P  [S0] I)  (X) (I  P  Q)

(we omit the VARIANT part here for simplification)

Example:

[WHILE X  N DO Y := Y+X; X := X+1
INVARIANT Y = i0..X-1 i END] (Y = i0..N-1) 

Y = i0..X-1 i



(X,Y,N) (Y = i0..X-1 i  X  N  [Y:=Y+X; X:=X+1] Y = i0..X-1 i)



(X,Y,N) (Y = i0..X-1 i  X = N  Y = i0..N-1)

Software engineering - Formal methods 63

2. Proving transformational programs / Set-based methods

Exercise

Compute the following substitution

[IF X < Y THEN MIN := X ELSE MIN := Y END] (MIN = X)

Software engineering - Formal methods 64

2. Proving transformational programs / Set-based methods

Solution
[IF X < Y THEN MIN := X ELSE MIN := Y END] (MIN = X) 

(Applying IF-THEN-ELSE substitution)

(X < Y  [MIN := X] (MIN = X))  (X  Y  [MIN := Y] (MIN = X)) 

(Applying assignment substitutions)

(X < Y  X = X)  (X  Y  X = Y) 

(Replacing X = X by true)

(X < Y  true)  (X  Y  X = Y) 

(Replacing P  true by true)

true  (X  Y  X = Y) 

(Replacing true  P by P)

X  Y  X = Y 

(Replacing P  Q by P  Q)

X < Y  X = Y

Software engineering - Formal methods 65

2. Proving transformational programs / Set-based methods

Exercise

Compute the following expression

Y = i0..X-1 i  X  N  [Y:=Y+X; X:=X+1] Y = i0..X-1 i

and check that it is true

Software engineering - Formal methods 66

2. Proving transformational programs / Set-based methods

Solution
Y = i0..X-1 i  X  N  [Y:=Y+X; X:=X+1] Y = i0..X-1 i 

Y = i0..X-1 i  X  N  [Y:=Y+X] Y = i0..X+1-1 i 

Y = i0..X-1 i  X  N  [Y:=Y+X] Y = i0..X i 

Y = i0..X-1 i  X  N  Y+X = i0..X i 

Y = i0..X-1 i  X  N  Y = i0..X i - X 

Y = i0..X-1 i  X  N  Y = i0..X-1 i 

true

Software engineering - Formal methods 67

2. Proving transformational programs / Set-based methods

Proof obligations

We write INV for the invariant of the state machine

• The substitution INIT which initialises the variables must

establish the state invariant

 proof obligation [INIT] INV

Analogy in Hoare logic: { true } INIT { INV }

• Each operation

outputs  op (inputs) = PRE P THEN S END

must preserve the state invariant

 proof obligation (INV  P)  [S] INV

Analogy in Hoare logic: { INV  P } S { INV }

2. Proving transformational programs / Set-based methods

68Software engineering - Formal methods

Proof obligation examples (1/2)

PROPERTIES cap  N

INVARIANT

(onboard  PASSENGERS)  (card (onboard)  cap)

INITIALISATION

onboard := 

Proof obligation (initialisation) :

[onboard := ] (onboard PASSENGERS)  (card (onboard)  cap) 

( PASSENGERS)  (card ()  cap) 

true CQFD

2. Proving transformational programs / Set-based methods

69Software engineering - Formal methods

Proof obligation examples (2/2)

Boarding (p) =
PRE (p  PASSENGERS)  (p  onboard)
THEN onboard := onboard { p }
END

Proof obligation:
(p  PASSENGERS)  (p  onboard) 
(onboard  PASSENGERS)  (card (onboard)  cap)


(onboard { p }  PASSENGERS) 
(card (onboard { p })  cap)

Not provable : ERROR if card (onboard) = cap
Conclusion: The specification is incorrect, we must add the

missing precondition: card (onboard) < cap

2. Proving transformational programs / Set-based methods

70Software engineering - Formal methods

B example: Voting machine (1/2)

• We specify in B a simplified voting machine

that records the votes for 2 candidates,

represented by the numbers 1 and 2.

• The variables votes1 and votes2 hold the

number of votes for each of the candidates

• The variable cast holds the voters who have

already voted

2. Proving transformational programs / Set-based methods

71Software engineering - Formal methods

B example: Voting machine (2/2)

MACHINE Voting_Machine

SETS VOTERS

VARIABLES votes1 votes2 cast

INVARIANT votes1  N  votes2  N  cast  VOTERS 

card (cast) = votes1 + votes2

INITIALISATION votes1 := 0; votes2 := 0; cast := 

OPERATIONS

Vote (e, n) = PRE e  VOTERS  n  {1, 2} THEN

cast := cast {e};

IF n = 1 THEN

votes1 := votes1 + 1

ELSE

votes2 := votes2 + 1

END

END

END

2. Proving transformational programs / Set-based methods

72Software engineering - Formal methods

Question n°1

• What is the proof obligation that would allow

to guarantee that the initialisation establishes

the invariant?

• Explain the main steps of the computation

• Explain (even informally) why this proof

obligation is true or false

2. Proving transformational programs / Set-based methods

73Software engineering - Formal methods

Response to question n°1

• For an invariant INV and an initialisation substitution

INIT, the proof obligation is [INIT] INV. Here:

[votes1 := 0; votes2 := 0; cast := ] (votes1  N  votes2  N

 cast  VOTERS  card (cast) = votes1 + votes2)

 0  N  0  N    VOTERS  card () = 0 + 0

• This property is true because:

– 0 is indeed a natural number

– The empty set is indeed a subset of VOTERS (since it is a subset of any

set)

– The cardinal of the empty set is indeed 0

2. Proving transformational programs / Set-based methods

74Software engineering - Formal methods

Question n°2

• What is the proof obligation that would allow

to guarantee that the operation Vote

preserves the invariant?

• Explain the main steps of the computation

• Explain (even informally) why this proof

obligation is true or false

2. Proving transformational programs / Set-based methods

75Software engineering - Formal methods

Response to question n°2 (1/2)

• For an invariant INV, a precondition PRE and a substitution
SUB, the proof obligation is
INV  PRE  [SUB] INV. Here:

votes1  N  votes2  N  cast  VOTERS  card (cast) = votes1 + votes2 
e  VOTERS  n  {1, 2}



[cast := cast {e}; IF n = 1 THEN votes1 := votes1 + 1 ELSE votes2 :=
votes2 + 1 END] (votes1  N  votes2  N  cast  VOTERS  card (cast) =
votes1 + votes2)

• The right-hand-side [SUB] INV of the implication yields:

(n = 1  (votes1 + 1)  N  votes2  N  cast  {e}  VOTERS  card (cast
 {e}) = votes1 + 1 + votes2) 

((n = 1)  votes1  N  (votes2 + 1)  N  cast {e}  VOTERS  card
(cast {e}) = votes1 + votes2 + 1)

2. Proving transformational programs / Set-based methods

76Software engineering - Formal methods

Response to question n°2 (2/2)

• The proof obligation INV  PRE  [SUB] INV cannot be

proven

• One should indeed always have:

card (cast {e}) = card (cast) + 1

• But if e  cast then cast {e} = cast, i.e., card (cast {e}) =

card (cast) !

• For the invariant to be preserved, one should for instance

strengthen the precondition of the Vote operation, to ensure

that the voter has not yet cast his/her vote:

e  VOTERS  e  cast  n  {1, 2}

2. Proving transformational programs / Set-based methods

77Software engineering - Formal methods

ASM refinement

• Goal: Transform the formal specification to

executable code

• Successive manual modifications of the specification

– Suppression of non-executable elements: preconditions,

simultaneity, nondeterminism

– Introduction of control structures

– Transformation of abstract data structures (sets, relations,

...) into programmable data structures (arrays, files, ...)

2. Proving transformational programs / Set-based methods

78Software engineering - Formal methods

Example : Refinement of the plane (1)

Refinement of the plane in which a seat is assigned to each

passenger admitted on board

MACHINE Plane_seats

REFINES Plane

SEES Bool_TYPE

SETS SEATS = 1..cap

VARIABLES assign

INVARIANT

(assign  SEATS +→ PASSENGERS)  (onboard = rng (assign))

INITIALISATION assign := 

assign: partial function that assigns a
passenger to each occupied seat

rng : image of a function (here, the set of
passengers on board)

initially, no seat is
attributed

2. Proving transformational programs / Set-based methods

79Software engineering - Formal methods

Example : Refinement of the plane (2)

OPERATIONS

Boarding (p) =

PRE (p  PASSENGERS)  (dom (assign)  SEATS) 
(p  rng (assign))

THEN

ANY x WHERE x : (SEATS \ dom (assign))

THEN assign (x) := p

END

END;

...

END

Set of values on which the partial
function is defined

Extension of the function

2. Proving transformational programs / Set-based methods

80Software engineering - Formal methods

Proof obligations of refinement

• The B method defines new proof obligations

– To prove that the initialisation of the refined machine is

compatible with the initialisation of the original machine

– To prove that each operation of the refined machine is

compatible with the corresponding operation of the original

machine

– And hence that the refined invariant is preserved by the

refined machine

• Precise definition of these proof obligations is out of

the scope of this course

2. Proving transformational programs / Set-based methods

81Software engineering - Formal methods

Software tools for the B method

• Atelier B (http://www.atelierb.eu)

– Commercial software developed by the company
ClearSy

– Several tools

• Syntax analyser

• Type controler

• Proof obligation generator

• Automated prover

• Interactive prover

• Translator into several programming languages

• Free software: JBTools, B4Free, ABTools, ProB, ...

2. Proving transformational programs / Set-based methods

82Software engineering - Formal methods

Conclusion

• There exist formal methods to help developing
reliable transformational programs
– Set-based (or model-based) methods

– Algebraic (or property-based) methods

• Formal methods provide many advantages : early
error detection, quality and reliability, utilisability of
formal specifications in the next steps of the
software lifecycle (test, evolution)

• The knowledge of formal methods is a plus in your
practice of programming

2. Proving transformational programs

83Software engineering - Formal methods

To go further (1/3)

• Hoare logic

– Original article by Tony Hoare: An axiomatic basis for computer programming.
CACM, 1969.

– Wikipedia : http://en.wikipedia.org/wiki/Hoare_logic

• VDM

– Cliff B. Jones. Systematic software development using VDM. Prentice Hall,
1986.

– Wikipedia : http://en.wikipedia.org/wiki/Vienna_Development_Method

• The Z notation

– J. M. Spivey. The Z notation (2nd edition). Prentice Hall, 1998. 168 pages.

– David Lightfoot. Formal specification using Z (2nd edition). Palgrave, 2000. 176
pages.

– Wikipedia : http://en.wikipedia.org/wiki/Z_notation

2. Proving transformational programs

84Software engineering - Formal methods

To go further (2/3)

• The B method

– J.-R. Abrial. The B-Book, assigning programs to meanings. Cambridge
University Press, 1996.

– Much information and resources on B :
http://www-lsr.imag.fr/B/Bsite-pages.html

– Wikipedia : http://en.wikipedia.org/wiki/B-Method

• Algebraic specifications

– H. Ehrig, B. Mahr. Fundamentals of algebraic specification. Springer, 1985. 321
pages.

– Wikipedia : http://en.wikipedia.org/wiki/Algebraic_specification

• Synthesis on formal methods

– Marc Frappier, Henri Habrias (editors). Software specification methods: an
overview using a case study. Springer, 2000. 312 pages.
http://www.dmi.usherb.ca/~spec

– Wikipedia : http://en.wikipedia.org/wiki/Formal_Methods

2. Proving transformational programs

85Software engineering - Formal methods

To go further (3/3)

Tools based on higher-order languages and logics

• PVS (SRI, California, USA)

– http://pvs.csl.sri.com

• LCF (Edinburgh, Scotland and Stanford, California, USA)

– Ancestor of Isabelle and HOL

• Isabelle (Cambridge, UK and Munich, Germany)

– http://www.cl.cam.ac.uk/research/hvg/Isabelle

• HOL (University of Pennsylvania, USA)

– Acronym of Higher Order Logic

– http://www.cis.upenn.edu/~hol

• Coq (INRIA, France)

– http://coq.inria.fr

2. Proving transformational programs

86Software engineering - Formal methods

Competence and Knowledge
which will be evaluated

• be able to
– understand simple algebraic specifications, simple

abstract state machines and operations

– carry on simple algebraic proofs, derive and prove simple
proof obligations

• know
– the general notions of precondition,

postcondition, loop variant, loop
invariant and state invariant

– reason rigorously on a transformational
programs

87Software engineering - Formal methods

