Software Engineering

Lydie du Bousquet
Frédéric Lang

Software engineering - Formal methods

Software Engineering —
Verification using formal methods

Part I
Sequential programs

1. INTRODUCTION

1. Introduction

Code should be « working »
not only « running »

e This is why testing was introduced

e Testing is good and necessary, but it has
limitations

Software engineering - Formal methods

1. Introduction

Limitation of testing #1

100 % test coverage is out of reach

too many lines of code,
too many branches,
parallelism,

—> Many bugs may survive the testing phase

 The probability of a rare bug to occur during
the software lifetime may be far above the
probability that it occurs during testing

Software engineering - Formal methods

1. Introduction

Limitation of testing #2

* Tested program may behave unpredictably

e Several possible causes:

— Variable execution environment
e.g., compiler, architecture, load, ...

— Unpredictable effect of uncaught programming errors
e.g., use of non-initialized variable, div-by-0, ...

— Intrinsic program nondeterminism
(same input => different output)
e.g., parallel systems (variable communication delays,
asynchrony)

* [tis difficult/impossible to test all situations

Software engineering - Formal methods

1. Introduction

Example (1/3)

Test the following C program

int main () {
int x = 1;
X = X++;

assert (x == 2);

1. Introduction

Example (2/3)

e Tested on Linux iX86 with Gnu CC4.4.5
compiler: test passes

e Test is exhaustive and successful!

* Program can thus be safely deployed in the
customer environment... Really?

Software engineering - Formal methods

1. Introduction

Example (3/3)

* Customer uses 32-bit SunCC/Solaris compiler
e Assertion is violated: x ==

e Cause: ambiguity of x = x++, unspecified order
between assignment x = ... and increment x++

[*x==1*/ R=x; x=R+1, x=R; [*x==1%*/

VS read x Increment x assign x

[*x==1* R=x; x=R; x=R+1, [¥x==2%/
read x assign x increment x

where R is a register used to store the initial value of x

Software engineering - Formal methods

1. Introduction

General problem: improve predictability

* Motivation: errors are costly
« Normal » software: &

o e =
Critical software: 3% @ &

———

e.g., avionics, aerospace, automotive, nuclear, chemicals, ...

e Costincreases over time!

e Verification methods
complementary to test
are needed to find bugs early

Software engineering - Formal methods 10

1. Introduction

How to improve predictability?

* Use « clean » programming languages:

— Static semantic checks to avoid common errors
(uninitialized variable, division by 0, etc.)

— Well-defined semantics

e But this is not enough to ensure that programs
will always provide a correct result:
— Need to describe the programmer’s intent: logic

— Need to determine how intent is achieved by the
program: reasoning

1. Introduction

Models of programs

* Programming languages are sometimes too
ow-level for formal reasoning
* Rather use models of higher abstraction level

— Abstract away from implementation details to
focus on algorithmic problems

— Helps getting convinced of correctness

* Models are a generalization of programs, with
additional abstraction mechanisms

— Example: nondeterminism used to underspecify
parts that are not essential to correctness

* In the sequel: program = model

1. Introduction

Formal verification methods

* Formal = mathematically defined
* Relies on formal languages to model:

— Programs
— Requirements
* Advantages:

— Eliminate the risk of ambiguities

— Offer mathematically based (rigorous) verification
methods

Software engineering - Formal methods

13

1. Introduction

Formal verification

e Several formal verification methods exist, with many
criteria of choice

* One major criteria is whether the program is
transformational or reactive/concurrent

This lecture:

 Week 10: transformational programs — proof
techniques

* Week 11: reactive & concurrent programs —
automata-based verification

2. PROVING THE CORRECTNESS OF
TRANSFORMATIONAL PROGRAMS

2. Proving transformational programs

Transformational program

* Program (or part of a program)
— Computes an output in function of an input

— Essentially behaves sequentially (even though implementation may be
parallel)

— Execution should terminate (otherwise error)

Transformational
Input Output
program

 Examples:
— Imperative programs (C, C++, Ada, ...)
— Functional programs (ML, Scheme)

2. Proving transformational programs

Proving transformational programs correct

 Goal: ensure that program behaves as expected

* Several possible notions of as expected

— Absence of crash: No unexpected termination
Examples: division by zero, out-of-bound array access, etc.

— Correctness: A particular relation between program inputs
and outputs holds

— Termination: No infinite execution

— Performance: Bounded usage of resources (e.g., time,
memory, etc.)

* This lecture focuses essentially on program correctness

Software engineering - Formal methods 17

2. Proving transformational programs

Program correctness

Proving a program correct requires:
* A formal specification of the program

* A formal specification of the mathematical
property that the program should satisfy

 Formal deduction rules to relate property and
program (reasoning)

Software engineering - Formal methods

18

2. Proving transformational programs

Methods to prove specifications of
transformational programs

* Algebraic methods
* Hoare logic

e Set-based methods:
—Z, VDM
— B: combines ideas from Z and from Hoare logic

2. Proving transformational programs

2.1. ALGEBRAIC METHODS

Software engineering - Formal methods

20

2. Proving transformational programs / Algebraic methods

Principle of algebraic methods

e Formal framework to demonstrate mathematical

properties of programs
* Use of algebra and equational logic

* Specification by properties: objects are defined by
the operations that generate or use them, as
mathematical equations

 There are many algebraic specification languages
(ACT ONE, LARCH, LPG, ...)

2. Proving transformational programs / Algebraic methods

First example: Booleans

* Boolean values are written True/False; Bool = {True, False}
* Opns Not, Or, And are defined by the following equations:
Not (True) = False
Not (False) = True
(VX € Bool) Or (True, X) = True
(VX € Bool) Or (False, X) =X
(VX € Bool) And (True, X) =X
(VX € Bool) And (False, X) = False

 We call terms the variables, constants and operations applied
(recursively) to terms

2. Proving transformational programs / Algebraic methods

Second example: Natural numbers

* Natural numbers are written 0, S (0), S (S (0)), ...; Nat is the set
of natural numbers (S and O are called constructors)

* QOperations Pred (predecessor), +, and x are defined by the
following equations:

(VX € Nat) Pred (S (X)) = X Déf. of Pred
(VY € Nat) 0+Y=Y

Déf. of +
(VX,Y € Nat) S(X)+Y=S(X+Y)
(VY € Nat) OxY=0

Déf. of x
(VX,Y € Nat) S(X)xY=Y+(XxY)

2. Proving transformational programs / Algebraic methods

Example of proof (1)

Prove that S (S (0)) x S (S (0)) =Pred (S (S (S (S (S (0))))))

Simple application of the equations:

S(5(0))xs(s(0)

=S (S (0)) + (S (0) x S (S (0)))

from (VX,YeNat) S (X) x Y=Y + (X xY)

=S (S (0)) + (S (S (0))+(0xS (S (0)))) from (¥X, YeNat) S (X)xY = Y+(XxY)

=S (S (0)) + (S (S (0)) + 0)
=S (S(0)+S (S (0)))

=S (S(0+S(S(0)))

=S (S(S(S(0))))

=Pred (S (S (S (S (S (0))))))

from (VY e Nat) 0 xY=0

from (VX, YeNat) S (X)+Y =S (X+Y)
from (VX, YeNat) S (X)+Y =S (X+Y)
from (VY e Nat)0+Y=Y

from (VX € Nat) Pred (S (X)) = X

2. Proving transformational programs / Algebraic methods

Example of proof (2)

* Provethat (VX e nat) X+0=X
e By structural induction on X: Base case X = 0.

X+0=0+0 from the hypothesis X =0
=0 from the equation (VY e nat) 0+Y =Y
=X from the hypothesis X =0

* Inductive case suppose that (3 X’ € nat) X' + 0 = X’ (induction
hypothesis) and consider X =S (X').

X+0 =S(X')+0 from the hypothesis X =S (X')
=S (X'+0) from (VX, Y € nat) S(X) + Y = S(X+Y)
=S (X") from the induction hypothesis

= X from the hypothesis X = S (X‘)

2. Proving transformational programs / Algebraic methods

Third example: factorial

* The factorial operation fact (X) of a natural number X
can be defined by the following equations:

S (0) = fact (0)
(VX € Nat) S (X) x fact (X) = fact (S (X))

2. Proving transformational programs / Algebraic methods

Example of proof

* Prove that
(VX € nat) X # 0 = fact (X) = X x fact (Pred (X))
e Suppose X # 0. Then there exists X' such that X =S (X').

fact (X) = fact (S (X')) (1)
=S (X') x fact (X') 2)
=S (X') x fact (Pred (S (X')) ©
= X x fact (Pred (X)) (1)

@) from X =S (X')
) from (VX € Nat) S (X) x fact (X) = fact (S (X))
B) from (VX € Nat) Pred (S (X)) = X

2. Proving transformational programs / Algebraic methods

Exercise

* Atype nat_list representing lists of natural numbers
is defined using the constructors Nil: — nat_list and
Cons: nat, nat_list > nat_list

* Define the operation last: nat_list — nat, which
returns the last element of a non-empty list

* Define the operation append : nat, nat_list —>
nat_list which appends an element at the end of a
list

e Show that:

(VXe nat, L € nat_list) last (append (X, L)) = X

2. Proving transformational programs / Algebraic methods

Solution (1/2)

* last: nat_list —» nat
(V X € nat) last (Cons (X, Nil)) = X

(V X, Y € nat, L € nat_list)
last (Cons (X, Cons (Y, L))) = last (Cons (Y, L))

* append : nat, nat_list > nat_list
(V X € nat) append (X, Nil) = Cons (X, Nil)

(V X, Y € nat, L € nat_list)
append (X, Cons (Y, L)) = Cons (Y, append (X, L))

Solution (2/2)

We first prove the following Lemma :
(VXe nat, L € nat_list) (3 Y € nat, L' € nat_list) append (X, L) = Cons (Y, L)

Proof: By case on L (immediate from the definition of append)

We now prove by inductionon L:
(VXe nat, L € nat_list) last (append (X, L)) = X
 Basecase:L=Nil
last (append (X, Nil)) = last (Cons (X, Nil)) = X
* Inductive case : Assume that for some L, last (append (X, L)) = X
and show that for L' = Cons (Y, L), last (append (X, L)) = X
last (append (X, L)) = last (append (X, Cons (Y, L)))
last (Cons (Y, append (X, L))) by def. of append
last (Cons (Y, Cons (Y’, L’))) for some Y’, L’ (Lemma)
last (Cons (Y’, L”’))) by def. of last
last (append (X, L))
=X by induction hypothesis

2. Proving transformational programs / Algebraic methods

Automated proofs

* In general, it is not possible to automate proofs

* |n specific cases, proofs can be made automatic by
orienting the equations in the form of rewriting rules

Example :
fact (0) > S (0)
fact (S (X)) — S (X) x fact (X)

e Certain conditions (confluence and termination of
the rewriting rules) must be fulfilled for the proof to
be automated

e Confluence and termination of the rewriting rules
cannot be proven automatically in general

2. Proving transformational programs / Algebraic methods

Algebraic languages

Many algebraic languages exist:

* OBJ (J. Goguen - Université de Californie, USA - 1976)
Ancestor of many dialects : OBJ3, CafeOBJ, BOBJ, ...

* Larch (J. Wing - MIT, Massachussets, USA — 1983)

* ACT ONE (H. Ehrig - Technische Universitat Berlin, Allemagne — 1983)
Reused in the LOTOS process algebra, followed by ACT TWO

* PLUSS (M.-C. Gaudel - Université Paris Sud, France — 1984)
* LPG (D. Bert et R. Echahed - Grenoble, France - 1984, révision 1991)

* CASL (Common Algebraic Specification Language - Initiative of a group of
researchers from several origins, 1997)

* etc.

2. Proving transformational programs / Algebraic methods

Software tools for algebraic methods

Larch prover (MIT, Massachussets, USA) www.sds.lcs.mit.edu/spd/larch
Interactive prover for Larch (maintained but not anymore developed)
* Maude (SRI, Californie, USA) www.csl.sri.com/projects/maude
Rewrite engine based on an inheritor of OBJ
* Elan (INRIA, Nancy, France) http://elan.loria.fr
Rewrite engine

* CASL consistency checker (Bremen University, Germany) www.informatik.uni-
bremen.de/cofi

Verification of the consistency of a specification
* ACL2 (Texas University, USA) www.cs.utexas.edu/users/moore/acl2
Theorem prover by rewriting based on a dialect of Lisp

Used by AMD to verify correctness of elementary operations on the floating point
numbers of the Athlon processor

Laureat in 2005 of the "ACM Software System Award"

Software engineering - Formal methods 33

2. Proving transformational programs / Algebraic methods

Conclusion on algebraic specifications

* Algebraic specifications are a formal framework to reason on
transformational programs

But

* Writing algebraic specifications is hard

— One does not always know whether enough equations have been
written to fully model the program (completeness)

— One does not always know whether contradicting equations have
been written (consistency)

— Completeness and consistency cannot be proven automatically

* Algebraic specifications are not executable if they are not
oriented as rewriting rules

* Algebraic specifications languages are not well adapted to
express the notion of program state

Exercise (1/4)

Consider the following specification of Booleans and lists of Booleans:
Definition : true : = Bool false : — Bool and : Bool x Bool — Bool
for all b € Bool:
(a1) trueandb=>b
(a2) false and b = false
Definition: nil : = Bool_List cons : Bool x Bool_List — Bool_List
cat : Bool_List x Bool_List — Bool_List
forall b € Bool, I, I,, I, € Bool_List:

(c1) cat (nil, 1)) =/,

(c2) cat (cons (b, /;), I,) = cons (b, cat (/,, 1,))
Definition: and_list : Bool_List — Bool
for all b € Bool, | € Bool_List:

(11) and_list (nil) = true

(12) and_list (cons (b, 1)) = b and and_list (/)

We propose to show that for all /,, [, € Bool_List:
(egn) and_list (cat (/,, /,)) = and_list (/;) and and_list (/,)

Exercise (2/4)

What does the cat operation do?

Exercise (2/4)

What does the cat operation do?

Concatenation of lists

example: cat ({true, false}, {true})
cat (cons (true, cons (false, nil)), cons (true, nil))
= cons (true, cat (cons (false, nil), cons (true, nil))
= cons (true, cons (false, cat (nil, cons (true, nil))))
= cons (true, cons (false, cons (true, nil)))
{true, false, true}

Software engineering - Formal methods

(c2)
(c2)
(c1)

37

Exercise (3/4)

In (egn), consider the particular case where
[, =nil and [, is an arbitrary list

complete the following lines:
and_list (cat (nil, ,)) = . .. by (c1)

and_list (nil) and and_list (/,)
=... by (/1)

=... by (al)
What can you conclude about (eqgn) when |, = nil?

Exercise (3/4)

In (egn), consider the particular case where
[, =nil and [, is an arbitrary list

complete the following lines:

and_list (cat (nil, ,)) = and_list (/,) by (c1)
and_list (nil) and and_list (/,)
=true and and_list (/,) by (/1)
= and_list (/,) by (al)

What can you conclude about (eqgn) when |, = nil?
It holds: and_list (cat (nil, 1,)) = and_list (nil) and and_list (/,)

39
Software engineering - Formal methods

Exercise (4/4)

We now assume that there exists at least one list /; € Bool_List such
that (egn) holds, i.e., for all I, € Bool_List:
(ih) and_list (cat (/5, /,)) = and_list (/5) and and_list (/,)

We consider the list |, = cons (b, /5) where b is an arbitrary Boolean,
and we then show the following using (ih):
for all /12 € Bool_List:
and_list (cat (/4, 12)) = and_list (/4) and and_list (/2)
(The proof is not asked)

What can we conclude about (eqn)?
How is called this kind of reasoning?
What do the initials ih stand for?

Exercise (4/4)

We now assume that there exists at least one list /; € Bool_List such
that (egn) holds, i.e., for all I, € Bool_List:
(ih) and_list (cat (/5, /,)) = and_list (/5) and and_list (/,)

We consider the list |, = cons (b, /5) where b is an arbitrary Boolean,
and we then show the following using (ih):
for all /12 € Bool_List:
and_list (cat (/4, 12)) = and_list (/4) and and_list (/2)
(The proof is not asked)

What can we conclude about (egn)? holds for any |, : nil or cons (...)
How is called this kind of reasoning? reasoning by induction
What do the initials ih stand for? induction hypothesis

2. Proving transformational programs

2.2. HOARE LOGIC AND DESIGN BY
CONTRACT

2. Proving transformational programs / Hoare logic & contracts

Hoare logic

* Seen earlier in the « compiler » class

* A framework for proving programs, proposed by
Tony Hoare in 1969, inspired by Robert Floyd

e Mathematical formalization of deduction rules
for reasoning on programs
e Motivations:

— Rigorous definition of reasoning (teaching, research
papers, ...)
— Implementation in tools

Software engineering - Formal methods

43

2. Proving transformational programs / Hoare logic & contracts

Reminder about Hoare logic

 Hoare triples{P } C{Q } where P, Q are assertions in first-
order predicate logic, called precondition and postcondition

 Meaning: If P holds before executing C, then Q holds after
executing C

* Hoare logic is about proving Hoare triples

* Proof requires additional user-given assertions called loop
variants and loop invariants

* Many systems for proving sequential programs somehow rely
on extensions of Hoare logic
Example: The B method

Software engineering - Formal methods 44

2. Proving transformational programs / Hoare logic & contracts

Reminder about first-order predicate logic

 Terms represent data: constants, variables, function
applications
Examples : x, 7, true, false, sin(x), x<y,y+ 1
* Formulas may take several forms:

— Predicates: terms that evaluate to true or false
Examples: true, false, even (x), x <, etc.

— Propositional formulas: built using predicates and the logic connectors
N, VvV, =, —, etc.
Examples : f(x, y) Af(y, z) = f(x, z)

— Quantified formulas: with logic quantifiers (V x. A), (3 x. A)

Software engineering - Formal methods 45

2. Proving transformational programs / Hoare logic & contracts

Programming with Hoare logic

assertions: design by contract

* A methodology proposed by B. Meyer (1986) and first
implemented in the Eiffel programming language

* Write contract (what should be done) together with
code (how this is done):
— A pre and a postcondition with each function
— An invariant and a variant with each loop

— In OO programming, a property on state variables that
should hold before and after every method call, named
object invariant

 Contracts can be checked at runtime or, if the
programming and assertion languages have formal
semantics, connexion to provers is possible

Software engineering - Formal methods

46

2. Proving transformational programs / Hoare logic & contracts

Contracts in SPEC#H

SPEC# (Microsoft Research)
http://research.microsoft.com/en-us/projects/specsharp

Formal language for contracts
Extends C#, integrated in Visual Studio

Boogie program verifier connected to automatic prover
of logic properties

Web interface (for toy examples):
http://rise4fun.com/SpecSharp

Homework: watch
http://channel9.msdn.com/Blogs/Peli/The-Verification-

Corner-Specifications-in-Action-with-SpecSharp

Software engineering - Formal methods 47

http://research.microsoft.com/en-us/projects/specsharp
http://rise4fun.com/SpecSharp
http://channel9.msdn.com/Blogs/Peli/The-Verification-Corner-Specifications-in-Action-with-SpecSharp

2. Proving transformational programs / Hoare logic & contracts

Factorial in SPECH#

class Factorial { while (x > 0)
static int fact (int n) invariant x >= 0;
requires n >=0; invariant x <=n;
ensures invariant
result == product{int i in (1:n+1); i}; r == product{intiin (x+1:n+1); i};
/* product of ints from 1 to n */ /* product of ints from x+1 ton */
{ {
intx, r; r*=x;
X =n; X=
r=1; }
} returnr;
}

Software engineering - Formal methods 48

2. Proving transformational programs / Hoare logic & contracts

Conclusion on Hoare logic and contracts

Beyond formal proof, assertions radically change the
nature of software development in several ways:

* Design aid: build program + arguments that justify its
correctness

* Testing and debugging: assertions can be checked at
runtime

 Documentation: non-ambiguous and concise
description of what the program does (instead of
how this is done)

2. Proving transformational programs

2.3. SET-BASED METHODS

Software engineering - Formal methods

50

2. Proving transformational programs / Set-based methods

Set-based specification languages

* They are formal languages appropriate to describe:

— The notion of program state, defined by a set of typed variables

— Program operations, defined by their inputs, their outputs, an
application condition (precondition) and an effect on the state
variables

* They use set-based notations and first-order predicate logic

* They generally come with a method that defines good
development practices and rely on software tools

2. Proving transformational programs / Set-based methods

Main set-based methods

* VDM (Vienna Development Method)
— Ancestor of set-based methods
— Invented at the Vienna IBM laboratory in the 60’s

— Used by some industries including DCC-International (Ada compiler),
British Aerospace, Adelard, ...

e The Z notation

— Set-based notation proposed par J.-R. Abrial (1977) and developed by
the team of Tony Hoare in Oxford

— Standardized at ISO in 2002
* The B method
— Method proposed by J.-R. Abrial in the 80’s

2. Proving transformational programs / Set-based methods

The B method

e Method based on Abstract State Machines, which
unify the notions of (set-based) specification, proof

and executable code

 With industrial usages:

— Matra Transport and RATP : verification of the control
system for safety equipments of Paris metro line 14
(automatic trains), from specification to Ada code

generation
— But also: Gemalto (smart cards), Siemens, Leirios

Technologies, ...

Software engineering - Formal methods 53

2. Proving transformational programs / Set-based methods

B: Methodology

Seamless methodology from specification to executable code:

1.

2.

Program specification as an abstract state machine

Automatic generation of properties to be proven for the satisfaction of

variants and invariants: the proof obligations

Progressive refinement of the state machine : Manual replacement of

non-executable elements by executable ones

Automatic generation and proof of new proof obligations that express

the preservation of properties proven at the previous step

Back to point 3 until obtention of executable code

Software engineering - Formal methods 54

2. Proving transformational programs / Set-based methods

B: ASM (Abstract State Machine)

It is defined by:
* |ts name
e |ts state variables

* A state invariant (formula of first-order predicate
logic): property that must be true at initialisation and
remain true after each application of an operation

e A variable initialisation clause

* A list of operations that read inputs, return outputs
and modify the state

Software engineering - Formal methods 55

2. Proving transformational programs / Set-based methods

ASM example: Plane boarding system (1/2)

MACHINE Plane Qrted type }
SEES Bool TYPE

SETS PASSENGERS

CONSTANTS cap Property of }
constants

PROPERTIES cap € N

VARIABLES onboard

INVARIANT
(onboard < PASSENGERS) A (card (onboard) < cap)
INITIALISATION _ .
Generalised substitution
onboard := J (variable assignment) }
OPERATIONS

ol e

2. Proving transformational programs / Set-based methods

ASM example: Plane boarding system (2/2)

.

OPERATIONS

Boarding (p) =
PRE (p € PASSENGERS) A (p ¢ onboard)
THEN onboard := onboard U {p }
END;

b < Onboard (p) =

PRE p € PASSENGERS

THEN IF p € onboard
THEN b :=TRUE
ELSE b := FALSE
END

END

END

2. Proving transformational programs / Set-based methods

B: Operations

An operation has the following form:

outputs < op (inputs) =
PRE
precondition
THEN

effect

END
where:

— precondition is a formula of first-order predicate
logic

— inputs, outputs are lists of local variables
— effect is a statement (generalised substitution)

2. Proving transformational programs / Set-based methods

Examples of generalised substitutions

* Deterministic assighment: X :=E

* Nondeterministic assignment: X :e T
X takes any value in the set T

* Sequential composition: S;; S,
substitution S; followed by S,

* Conditional branch: IF P THEN S, ELSE S, END

* Nondeterministic branch: CHOICE S; OR ... OR'S_ END
Arbitrary choice amongs,, ..., S,

* Loop: WHILE P DO S, VARIANT E INVARIANT Q END

* etc.

2. Proving transformational programs / Set-based methods

Proof obligations

 The B method defines first-order predicate logic formulas that must

be proven for the invariant to hold: the proof obligations

* They are calculated by applying a substitution S to a formula Q,
written "[S] Q"

e Relationship with Hoare logic: [S] Q = the (weakest) precondition

that S must satisfy for postcondition Q to be satisfied

* Proving"P = [S] Q" is thus analoguous to proving the goal
{P}S{Q}, but with a generalisation to nondeterministic

statements

2. Proving transformational programs / Set-based methods

Application of substitutions (1/3)

e [X:=E] Q=Qin which E replaces X

Example: [x:=1](x<c)=(1<¢c)

e [X:eS]Q=(Vy.yeS=[X:=y]Q)
Example: [x:e N]p(x)=

(Vy.y e N=ply)) =
p(0) A p(1) A p(2) A ...

» [CHOICES, ORS,END]Q=([S,1Q) A ([S,]Q)

Software engineering - Formal methods 61

2. Proving transformational programs / Set-based methods

Application of substitutions (2/3)

* [IFPTHENS, ELSES,END] Q=
(P=1[S,]Q A(=P=1[5,1Q)

Example:
[IF x>0 THEN x := x-1 ELSE x := x+1 END] p(x) =
(x>0 = p(x-1)) A (x<0 = p(x+1))

* [SyS;1a=[S5;][S;]1Q
Example: [x:=2*z;y:=x+1]p(y)=
[x:=2*z] p(x+1) =
p((2*2) +1)

Software engineering - Formal methods

62

2. Proving transformational programs / Set-based methods

Application of substitutions (3/3)

* [WHILE P DO S, INVARIANT | END] Q =
IA(VX) (AP =[Sl 1) A (VX) (I A=P=Q)
(we omit the VARIANT part here for simplification)
Example:

[WHILEXN DOY :=Y+X; X := X+1
INVARIANT Y = 2. _, ;i END](Y=2_4 1) =
Y=2ic0x1l
A
(VXYUN) (Y =2 o g i AXEN = [Vi2Y4X X=X+ 1] Y = 5y oy)
A
(VXYN) (Y =2 o x1i AX=N=Y =24 i)

2. Proving transformational programs / Set-based methods

Exercise

Compute the following substitution

[IF X <Y THEN MIN := X ELSE MIN :=Y END] (MIN = X)

2. Proving transformational programs / Set-based methods

Solution

[IFX <Y THEN MIN := X ELSE MIN :=Y END] (MIN = X) =
(Applying IF-THEN-ELSE substitution)
(X<Y = [MIN := X] (MIN = X)) A (X>Y = [MIN := Y] (MIN = X)) =
(Applying assignment substitutions)

(X<Y=>X=X)A(X>Y=X=Y)
(Replacing X = X by true)
(X<Y=true) A(X>2Y=X=Y)

(Replacing P = true by true)
trueAn (XY= X=Y)=
(Replacing true A P by P)
X2Y=>X=Y=
(Replacing P = Q by —P v Q)
X<YvX=Y

2. Proving transformational programs / Set-based methods

Exercise

Compute the following expression

Y=2 o x1 i AXEN=S[Y:=YHX; X=X+ [Y =2 g o q]

and check that it is true

2. Proving transformational programs / Set-based methods

Solution

cox 1 I AXEN [Yi=Y+HX; Xe=X+1] Y =2, 5 (1=
icox1 I AXZN=[Y=Y+X] Y =2,y 1 =

cox I AXENS [Y=YHX] Y =2 (i =

cox 1 AXEN=SYEX =2 5 (i =

cox1 I AXEN=Y =2 (4 i-X=
cox1 I AXEN=Y =2 1=

2. Proving transformational programs / Set-based methods

Proof obligations

We write INV for the invariant of the state machine

The substitution INIT which initialises the variables must
establish the state invariant

= proof obligation [INIT] INV

Analogy in Hoare logic: { true } INIT { INV }

Each operation

outputs < op (inputs) = PRE P THEN S END

must preserve the state invariant
—> proof obligation (INVAP) = [S]INV

Analogy in Hoare logic: { INV AP} S{INV }

Software engineering - Formal methods

68

2. Proving transformational programs / Set-based methods

Proof obligation examples (1/2)

PROPERTIES cap € N
INVARIANT

(onboard < PASSENGERS) A (card (onboard) < cap)
INITIALISATION

onboard := &

Proof obligation (initialisation) :
[onboard := &] (onboard < PASSENGERS) A (card (onboard) < cap) =
(&2 < PASSENGERS) A (card () < cap) =
true CQFD

2. Proving transformational programs / Set-based methods

Proof obligation examples (2/2)

Boarding (p) =
PRE (p € PASSENGERS) A (p ¢ onboard)
THEN onboard := onboard U { p }
END

Proof obligation:

(p € PASSENGERS) A (p € onboard) A
(onboard < PASSENGERS) A (card (onboard) < cap)
—

(onboard U { p } € PASSENGERS) A
(card (onboard U { p }) < cap)

Not provable : ERROR if card (onboard) = cap

Conclusion: The specification is incorrect, we must add the
missing precondition: card (onboard) < cap

2. Proving transformational programs / Set-based methods

B example: Voting machine (1/2)

* We specify in B a simplified voting machine
that records the votes for 2 candidates,
represented by the numbers 1 and 2.

e The variables votes1 and votes2 hold the
number of votes for each of the candidates

e The variable cast holds the voters who have
already voted

2. Proving transformational programs / Set-based methods

B example: Voting machine (2/2)

MACHINE Voting_Machine

SETS VOTERS

VARIABLES votesl votes2 cast

INVARIANT votesl € N A votes2 € N A cast € VOTERS A

card (cast) = votes1 + votes2
INITIALISATION votesl := 0; votes2 := 0; cast := &
OPERATIONS
Vote (e,n)= PREe € VOTERS An € {1, 2} THEN
cast := cast U {e};
IFn=1THEN
votesl :=votesl + 1
ELSE
votes2 :=votes2 + 1
END
END
END

2. Proving transformational programs / Set-based methods

Question n°1

* What is the proof obligation that would allow

to guarantee that the initialisation establishes
the invariant?

* Explain the main steps of the computation

e Explain (even informally) why this proof
obligation is true or false

2. Proving transformational programs / Set-based methods

Response to question n°1

e For aninvariant INV and an initialisation substitution
INIT, the proof obligation is [INIT] INV. Here:

[votesl := 0; votes2 := 0; cast := J] (votesl € N A votes2 € N

A cast — VOTERS A card (cast) = votes1 + votes?2)

=0ceNAOeNAIDcVOTERS Acard (J)=0+0

* This property is true because:

— Ois indeed a natural number

— The empty set is indeed a subset of VOTERS (since it is a subset of any

set)

— The cardinal of the empty set is indeed 0

2. Proving transformational programs / Set-based methods

Question n°2

* What is the proof obligation that would allow
to guarantee that the operation Vote
preserves the invariant?

* Explain the main steps of the computation

e Explain (even informally) why this proof
obligation is true or false

2. Proving transformational programs / Set-based methods

Response to question n°2 (1/2)

For an invariant INV, a precondition PRE and a substitution
SUB, the proof obligation is
INV A PRE = [SUB] INV. Here:

votesl € N A votes2 € N A cast — VOTERS A card (cast) = votes1 + votes2 A
e € VOTERS A n € {1, 2}
—

[cast := cast U {e}; IFn =1 THEN votesl := votes1 + 1 ELSE votes2 :=
votes2 + 1 END] (votesl € N A votes2 € N A cast € VOTERS A card (cast) =
votesl + votes2)

The right-hand-side [SUB] INV of the implication yields:

(h=1= (votesl +1) € N A votes2 € N A cast U {e} = VOTERS A card (cast
U {e}) = votesl + 1 + votes2) A

(—(n =1) = votesl € N A (votes2 + 1) € N A cast U {e} = VOTERS A card
(cast U {e}) = votes1 + votes2 + 1)

2. Proving transformational programs / Set-based methods

Response to question n°2 (2/2)

* The proof obligation INV A PRE = [SUB] INV cannot be

proven

* One should indeed always have:
card (cast U {e}) = card (cast) + 1

 Butif e € cast then cast U {e} = cast, i.e., card (cast U {e}) =

card (cast) !

* For the invariant to be preserved, one should for instance
strengthen the precondition of the Vote operation, to ensure
that the voter has not yet cast his/her vote:

e € VOTERS A e g cast An € {1, 2}

2. Proving transformational programs / Set-based methods

ASM refinement

* Goal: Transform the formal specification to

executable code

e Successive manual modifications of the specification

— Suppression of non-executable elements: preconditions,

simultaneity, nondeterminism
— Introduction of control structures

— Transformation of abstract data structures (sets, relations,

...) into programmable data structures (arrays, files, ...)

Software engineering - Formal methods 78

2. Proving transformational programs / Set-based methods

Example : Refinement of the plane (1)

Refinement of the plane in which a seat is assigned to each
passenger admitted on board

MACHINE Plane_seats

REFINES Plane
SEES Bool TYPE
SETS SEATS = 1..cap

VARIABLES assign assign: partial function that assigns a
passenger to each occupied seat
INVARIANT

(assign € SEATS +— PASSENGERS) A (onboard = rng (assign))
INITIALISATION assign :=

. , rng : image of a function (here, the set of
initially, no seat is
, passengers on board)
attributed

2. Proving transformational programs / Set-based methods

Example : Refinement of the plane (2)

Set of values on which the partial
OPERATIONS function is defined

Boarding (p) =

PRE (p € PASSENGERS) A (dom (assign) — SEATS) A

(p ¢ rng (assign))
THEN

ANY x WHERE x :€ (SEATS \ dom (assign))
THEN assign (x) :=p

END
END: Extension of the function 1

END

2. Proving transformational programs / Set-based methods

Proof obligations of refinement

 The B method defines new proof obligations

— To prove that the initialisation of the refined machine is
compatible with the initialisation of the original machine

— To prove that each operation of the refined machine is
compatible with the corresponding operation of the original

machine

— And hence that the refined invariant is preserved by the

refined machine

* Precise definition of these proof obligations is out of
the scope of this course

2. Proving transformational programs / Set-based methods

Software tools for the B method

* Atelier B (http://www.atelierb.eu)

— Commercial software developed by the company
ClearSy
— Several tools

* Syntax analyser

* Type controler

Proof obligation generator
* Automated prover
* |nteractive prover

* Translator into several programming languages

* Free software: JBTools, B4Free, ABTools, ProB, ...

2. Proving transformational programs

Conclusion

* There exist formal methods to help developing
reliable transformational programs
— Set-based (or model-based) methods
— Algebraic (or property-based) methods

* Formal methods provide many advantages : early
error detection, quality and reliability, utilisability of
formal specifications in the next steps of the
software lifecycle (test, evolution)

* The knowledge of formal methods is a plus in your
practice of programming

2. Proving transformational programs

To go further (1/3)

* Hoare logic

— Original article by Tony Hoare: An axiomatic basis for computer programming.
CACM, 1969.

— Wikipedia : http://en.wikipedia.org/wiki/Hoare_logic
VDM

— CIiff B. Jones. Systematic software development using VDM. Prentice Hall,
1986.

— Wikipedia : http://en.wikipedia.org/wiki/Vienna_Development_Method
* The Z notation
— J. M. Spivey. The Z notation (2"? edition). Prentice Hall, 1998. 168 pages.

— David Lightfoot. Formal specification using Z (2"¢ edition). Palgrave, 2000. 176
pages.

— Wikipedia : http://en.wikipedia.org/wiki/Z_notation

Software engineering - Formal methods 84

2. Proving transformational programs

To go further (2/3)

* The B method

— J.-R. Abrial. The B-Book, assigning programs to meanings. Cambridge
University Press, 1996.

— Much information and resources on B :
http://www-Isr.imag.fr/B/Bsite-pages.html

— Wikipedia : http://en.wikipedia.org/wiki/B-Method
* Algebraic specifications

— H. Ehrig, B. Mahr. Fundamentals of algebraic specification. Springer, 1985. 321
pages.

— Wikipedia : http://en.wikipedia.org/wiki/Algebraic_specification
* Synthesis on formal methods

— Marc Frappier, Henri Habrias (editors). Software specification methods: an
overview using a case study. Springer, 2000. 312 pages.
http://www.dmi.usherb.ca/~spec

— Wikipedia : http://en.wikipedia.org/wiki/Formal _Methods

Software engineering - Formal methods 85

2. Proving transformational programs

To go further (3/3)

Tools based on higher-order languages and logics

PVS (SRI, California, USA)
— http://pvs.csl.sri.com

* LCF (Edinburgh, Scotland and Stanford, California, USA)
— Ancestor of Isabelle and HOL

* Isabelle (Cambridge, UK and Munich, Germany)
— http://www.cl.cam.ac.uk/research/hvg/lIsabelle

 HOL (University of Pennsylvania, USA)

— Acronym of Higher Order Logic

— http://www.cis.upenn.edu/~hol

 Coq (INRIA, France)
— http://cogq.inria.fr

Software engineering - Formal methods

86

Competence and Knowledge
which will be evaluated

 be ableto

— understand simple algebraic specifications, simple
abstract state machines and operations

— carry on simple algebraic proofs, derive and prove simple
proof obligations

* know A
— the general notions of precondition, ‘ A"‘!
v/

postcondition, loop variant, loop
invariant and state invariant

— reason rigorously on a transformational W/
programs V4

Software engineering - Formal methods 87

