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Software Engineering –
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Sequential programs
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1. INTRODUCTION
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Code should be « working »
not only « running »

• This is why testing was introduced

• Testing is good and necessary, but it has 
limitations

1. Introduction
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Limitation of testing #1

• 100 % test coverage is out of reach

too many lines of code,
too many branches,
parallelism, 
…

 Many bugs may survive the testing phase

• The probability of a rare bug to occur during 
the software lifetime may be far above the 
probability that it occurs during testing

1. Introduction
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Limitation of testing #2

• Tested program may behave unpredictably
• Several possible causes:

– Diverse execution environment
e.g., compiler, architecture, load, …

– Unpredictable effect of uncaught programming errors 
e.g., use of non-initialized variable, div-by-0, …

– Intrinsic program nondeterminism
(same input => different output)
e.g., parallel systems (variable communication delays, 
asynchrony)

• It is difficult/impossible to test all situations

1. Introduction
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Example (1/3)

Test the following C program

 int main () {

      int x = 1;

      x = x++;

      assert (x == 2);

 }

1. Introduction
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Example (2/3)

• Tested on Linux iX86 with Gnu CC 4.4.5 
compiler: test passes

• Test is exhaustive and successful!

• Program can thus be safely deployed in the 
customer environment… Really?

1. Introduction
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Example (3/3)

• Customer uses 32-bit SunCC/Solaris compiler

• Assertion is violated: x == 1

• Cause: ambiguity of x = x++, unspecified order 
between assignment x = … and increment x++ 

/* x == 1 */ R = x; x = R + 1; x = R;  /* x == 1 */

vs.
/* x == 1 */ R = x; x = R;  x = R + 1; /* x == 2 */

where R is a register used to store the initial value of x

1. Introduction
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General problem: improve predictability

• Motivation: errors are costly

• Cost increases along development phases! 

• Verification methods
complementary to test
are needed to find bugs early

1. Introduction

« Normal » software:

Critical software:
 e.g., avionics, aerospace, automotive, nuclear, chemicals, …
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How to improve predictability?

• Use « clean » programming languages:
– Static semantic checks to avoid common errors 

(uninitialized variable, division by 0, etc.)
– Well-defined semantics (cf. the PLCD course)

• But this is not enough to ensure that programs 
will always provide a correct result:
– Need to describe the programmer’s intent: logic
– Need to determine how intent is achieved by the 

program: reasoning
– Example: Hoare logic, but not only

1. Introduction
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Programs vs. models

• Programs (programming languages) are 
generally too low-level for formal reasoning

• Rather use models of higher abstraction level
– Abstract away from implementation details to 

focus on algorithmic problems
– Example: nondeterminism used to underspecify 

parts that are not essential to correctness
– Helps getting convinced of correctness

• In the sequel  we indifferently use the words 
program or model but generally mean model 
of a program
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Formal verification methods

• Formal = founded on mathematics

• Relies on formal languages to model:

– Programs

– Requirements

• Advantages:

– Eliminate the risk of ambiguities

– Offer mathematically based (rigorous) verification 
methods

1. Introduction
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Formal verification

• Several formal verification methods exist, with many 
criteria of choice

• One major criteria is whether the program is 
transformational or reactive/concurrent

This lecture:

• Week 10: transformational programs – proof 
techniques

• Week 11: reactive & concurrent programs – 
automata-based verification

1. Introduction
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2. PROVING THE CORRECTNESS OF 
TRANSFORMATIONAL PROGRAMS
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Transformational program

• Program (or part of a program) 
– Computes an output in function of an input 

– Essentially behaves sequentially (even though implementation may be 
parallel)

– Execution should terminate  (otherwise error)

• Example : programs of the While and Proc languages seen in PLCD

Transformational
program

Input Output

2. Proving transformational programs
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Proving transformational programs correct

• Goal:  ensure that program behaves as expected 

• Several possible notions of as expected
– Absence of crash: No unexpected termination

Examples:  division by zero, out-of-bound array access, etc.

– Correctness: A particular relation between program inputs 
and outputs holds

– Termination: No infinite execution

– Performance: Bounded usage of resources  (e.g., time, 
memory, etc.)

• This lecture focuses essentially on program correctness

2. Proving transformational programs
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Program correctness

Proving a program correct requires:

• A formal specification (model) of the program

• A formal specification of the property that the 
program should satisfy

• Formal deduction rules to relate property and 
program (reasoning)

2. Proving transformational programs
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Methods to prove specifications of 
transformational programs

• Algebraic methods

• Hoare logic

• Set-based methods:

– Z, VDM

– B: combines ideas from Z and from Hoare logic

2. Proving transformational programs
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2.1. ALGEBRAIC METHODS

2. Proving transformational programs 
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Principle of algebraic methods

• Formal framework to prove mathematical properties of 

programs

• Use of algebra and equational logic

• Specification by properties: objects are defined by the 

operations that generate or use them, as mathematical 

equations

• Implementation should be derivable from the equations

• There are many algebraic specification languages (ACT 

ONE, LARCH, LPG, ... )

2. Proving transformational programs / Algebraic methods
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First example: Booleans

• Boolean values are written True/False; Bool = {True, False}

• Opns Not, Or, And are defined by the following equations:

    Not (True) = False

    Not (False) = True

  (X  Bool) Or (True, X) = True

  (X  Bool) Or (False, X) = X

  (X  Bool) And (True, X) = X

  (X  Bool) And (False, X) = False

• We call terms the variables, constants and operations applied 
(recursively) to terms 

2. Proving transformational programs / Algebraic methods
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Second example: Natural numbers

• Natural numbers are written 0, S (0), S (S (0)), ...; Nat is the set 
of natural numbers (S and 0 are called constructors)

• Operations Pred (predecessor), +, and  are defined by the 
following equations:

  (X  Nat)  Pred (S (X)) = X

  (Y  Nat)  0 + Y = Y 

  (X, Y  Nat)  S (X) + Y = S (X + Y)

  (Y  Nat)  0  Y = 0

  (X, Y  Nat)  S (X)  Y = Y + (X  Y)

2. Proving transformational programs / Algebraic methods
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Example of proof (1)

Prove that S (S (0))  S (S (0)) = Pred (S (S (S (S (S (0)))))) (i.e., 22=5-1)

Simple application of the equations in algebraic logic:

S (S (0))  S (S (0))

 = S (S (0)) + (S (0)  S (S (0)))  from (X, YNat) S (X)  Y = Y + (X  Y)

 = S (S (0)) + (S (S (0))+(0S (S (0)))) from (X, YNat) S (X)Y = Y+(XY)

 = S (S (0)) + (S (S (0)) + 0)  from (Y  Nat) 0  Y = 0

 = S (S (0) + S (S (0)))  from (X, YNat) S (X)+Y = S (X+Y)

 = S (S (0 + S (S (0)))   from (X, YNat) S (X)+Y = S (X+Y)

 = S (S (S (S (0))))   from (Y  Nat) 0 + Y = Y

 = Pred (S (S (S (S (S (0))))))  from (X  Nat) Pred (S (X)) = X
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Example of proof (2)

• Prove that (X  nat) X + 0 = X

• By structural induction on X: Base case X = 0.

 X + 0 = 0 + 0 from the hypothesis X = 0

  = 0  from the equation (Y  nat) 0 + Y = Y

  = X  from the hypothesis X = 0

• Inductive case suppose that ( X’  nat) X' + 0 = X‘ (induction 

hypothesis) and consider X = S (X').

X + 0 = S (X') + 0 from the hypothesis X = S (X')

  = S (X' + 0) from (X, Y  nat) S(X) + Y = S(X+Y) 

  = S (X')  from the induction hypothesis 

  = X  from the hypothesis X = S (X‘)

2. Proving transformational programs / Algebraic methods
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Third example: factorial

• The factorial operation fact (X) of a natural number X 
can be characterized by the following equations:

    S (0) = fact (0)

 (X  Nat) S (X)  fact (X) = fact (S (X))

2. Proving transformational programs / Algebraic methods
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Example of proof

• Prove that 

(X  nat) X  0  fact (X) = X  fact (Pred (X))

• Suppose X  0. Then there exists X' such that X = S (X').

 fact (X) = fact (S (X'))   (1)

   = S (X')  fact (X')  (2)

   = S (X')  fact (Pred (S (X')) (3)

   = X  fact (Pred (X))  (1)

 (1) from X = S (X')

 (2) from (X  Nat) S (X)  fact (X) = fact (S (X))

 (3) from (X  Nat) Pred (S (X)) = X

2. Proving transformational programs / Algebraic methods
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Exercise

• A type nat_list representing lists of natural numbers is 
defined using the constructors Nil: → nat_list and 
Cons: nat, nat_list → nat_list
Ex. [] is Nil, [n] is Cons (n, Nil), [n1, n2] is Cons (n1, Cons(n2, Nil))

• Define the operation last: nat_list → nat, which 
returns the last element of a non-empty list 

• Define the operation append : nat, nat_list → nat_list 
which appends an element at the end of a list

• Show that:
(X nat, L  nat_list) last (append (X, L)) = X

Software engineering - Formal methods 28
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Solution (1/2)

• last : nat_list → nat

 ( X  nat) last (Cons (X, Nil)) = X

 ( X, Y  nat, L  nat_list) 
 last (Cons (X, Cons (Y, L))) = last (Cons (Y, L))

• append : nat, nat_list → nat_list

 ( X  nat) append (X, Nil) = Cons (X, Nil)

 ( X, Y  nat, L  nat_list) 
 append (X, Cons (Y, L)) = Cons (Y, append (X, L))

Software engineering - Formal methods 29
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Solution (2/2)

We first prove the following Lemma :
(X nat, L  nat_list) ( Y  nat, L’  nat_list) append (X, L) = Cons (Y, L’)

Proof: By case on L (immediate from the definition of append)

We now prove by induction on L :
(X nat, L  nat_list) last (append (X, L)) = X

• Base case : L = Nil
last (append (X, Nil)) = last (Cons (X, Nil)) = X

• Inductive case : Assume that for some L, last (append (X, L)) = X 
and show that for L’ = Cons (Y, L), last (append (X, L’)) = X 

  last (append (X, L’)) = last (append (X, Cons (Y, L)))
   = last (Cons (Y, append (X, L))) by def. of append
   = last (Cons (Y, Cons (Y’, L’’))) for some Y’, L’’ (Lemma)
   = last (Cons (Y’, L’’))) by def. of last
   = last (append (X, L))

    = X by induction hypothesis
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Automated proofs

• In general, it is not possible to automate proofs
• In specific cases, proofs can be made automatic by 

orienting the equations in the form of rewriting rules
 Example :
  fact (0) → S (0)
  fact (S (X)) → S (X) x fact (X)
• Certain conditions (confluence and termination of 

the rewriting rules) must be fulfilled for the proof to 
be automated

• Confluence and termination of the rewriting rules 
cannot be proven automatically in general 

• Remark: rewriting rules also provide implementation

2. Proving transformational programs / Algebraic methods
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Algebraic languages

Many algebraic languages exist:

• OBJ (J. Goguen - Université de Californie, USA - 1976)

Ancestor of many dialects : OBJ3, CafeOBJ, BOBJ, ...

• Larch (J. Wing - MIT, Massachussets, USA – 1983)

• ACT ONE (H. Ehrig - Technische Universität Berlin, Allemagne – 1983)

Reused in the LOTOS process algebra, followed by ACT TWO

• PLUSS (M.-C. Gaudel - Université Paris Sud, France – 1984)

• LPG (D. Bert et R. Echahed - Grenoble, France - 1984, révision 1991)

• CASL (Common Algebraic Specification Language - Initiative  of a group of 

researchers from several origins, 1997)

• etc.

2. Proving transformational programs / Algebraic methods
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Software tools for algebraic methods

• Larch prover (MIT, Massachussets, USA) www.sds.lcs.mit.edu/spd/larch

Interactive prover for Larch (maintained but not anymore developed)

• Maude (SRI, Californie, USA) www.csl.sri.com/projects/maude

Rewrite engine based on an inheritor of OBJ

• Elan (INRIA, Nancy, France) http://elan.loria.fr

Rewrite engine

• CASL consistency checker (Bremen University, Germany) www.informatik.uni-
bremen.de/cofi

Verification of the consistency of a specification

• ACL2 (Texas University, USA) www.cs.utexas.edu/users/moore/acl2

Theorem prover by rewriting based on a dialect of Lisp 

Used by AMD to verify correctness of elementary operations on the floating point 
numbers of the Athlon processor

Laureat in 2005 of the "ACM Software System Award"

2. Proving transformational programs / Algebraic methods
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Conclusion on algebraic specifications

• Algebraic specifications are a formal framework to reason on 
transformational programs

But
• Writing algebraic specifications is hard

– One does not always know whether enough equations have been 
written to fully model the program (completeness)

– One does not always know whether contradicting equations have 
been written (consistency)

– Completeness and consistency cannot be proven automatically

• Algebraic specifications are not executable if they are not 
oriented as rewriting rules

• Algebraic specification languages are not well adapted to 
express the notion of program state

2. Proving transformational programs / Algebraic methods

34Software engineering - Formal methods



Exercise (1/4)

Consider the following specification of Booleans and lists of Booleans:
Definition : true : → Bool false : → Bool and : Bool × Bool → Bool
for all b  Bool:
(a1) true and b = b
(a2) false and b = false 
Definition: nil : → Bool_List cons : Bool × Bool_List → Bool_List

cat : Bool_List × Bool_List → Bool_List
for all b  Bool, l0, l1, l2  Bool_List:
(c1) cat (nil, l0) = l0
(c2) cat (cons (b, l1), l2) = cons (b, cat (l1, l2))
Definition: and_list : Bool_List → Bool
for all b  Bool, l  Bool_List:
(l1) and_list (nil) = true 
(l2) and_list (cons (b, l)) = b and and_list (l)
We propose to show that for all l1, l2  Bool_List:
(eqn) and_list (cat (l1, l2)) = and_list (l1) and and_ list (l2)
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Exercise (2/4)

What does the cat operation do?
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Exercise (2/4)

What does the cat operation do?

Concatenation of lists

example:

cat (cons (true, cons (false, nil)), cons (true, nil))

 = cons (true, cat (cons (false, nil), cons (true, nil))) (c2)

 = cons (true, cons (false, cat (nil, cons (true, nil)))) (c2)

 = cons (true, cons (false, cons (true, nil)))   (c1)
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Exercise (3/4)

In (eqn), consider the particular case where
l1 = nil and l2 is an arbitrary list

complete the following lines:

and_list (cat (nil, l2)) = . . . by (c1)

and_list (nil) and and_list (l2)
= . . . by (l1)

 = . . .      by (a1)

What can you conclude about (eqn) when l1 = nil?
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Exercise (3/4)

In (eqn), consider the particular case where
l1 = nil and l2 is an arbitrary list

complete the following lines:

and_list (cat (nil, l2)) = and_list (l2) by (c1)

and_list (nil) and and_list (l2)
= true and and_list (l2) by (l1)

 = and_list (l2)     by (a1)

What can you conclude about (eqn) when l1 = nil?

It holds: and_list (cat (nil, l2)) = and_list (nil) and and_list (l2)

Software engineering - Formal methods
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Exercise (4/4)

We now assume that there exists at least one list l3  Bool_List such
that (eqn) holds, i.e., for all  l2  Bool_List:
(ih) and_list (cat (l3, l2)) = and_list (l3) and and_list (l2)

We consider the list l4 = cons (b, l3) where b is an arbitrary Boolean,
and we then show the following using (ih):
for all l2  Bool_List: 

and_list (cat (l4, l2)) = and_list (l4) and and_list (l2)
(The proof is not asked)

What can we conclude about (eqn)?
How is called this kind of reasoning?
What do the initials ih stand for?
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Exercise (4/4)

We now assume that there exists at least one list l3  Bool_List such
that (eqn) holds, i.e., for all  l2  Bool_List:
(ih) and_list (cat (l3, l2)) = and_list (l3) and and_list (l2)

We consider the list l4 = cons (b, l3) where b is an arbitrary Boolean,
and we then show the following using (ih):
for all l2  Bool_List: 

and_list (cat (l4, l2)) = and_list (l4) and and_list (l2)
(The proof is not asked)

What can we conclude about (eqn)? holds for any  l1 : nil or cons (...)
How is called this kind of reasoning? reasoning by induction
What do the initials ih stand for? induction hypothesis
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2.2. HOARE LOGIC AND DESIGN BY 
CONTRACT

2. Proving transformational programs
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Hoare logic

• Seen earlier in the PLCD course

• A framework for proving programs, proposed by 
Tony Hoare in 1969, inspired by Robert Floyd

• Mathematical formalization of deduction rules 
for reasoning on programs

• Motivations:

– Rigorous definition of reasoning (teaching, research 
papers, …)

– Implementation in tools

2. Proving transformational programs / Hoare logic & contracts
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Reminder about Hoare logic

• Hoare triples { P } S { Q } where P, Q are assertions in first-
order predicate logic, called precondition and postcondition

• Meaning: If P holds before executing S, then Q holds after 
executing S

• Hoare logic is about proving Hoare triples

• Proof requires additional user-given assertions called loop 
variants and loop invariants

• Many systems for proving sequential programs  somehow rely 
on extensions of Hoare logic
Example: The B method
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Reminder about first-order predicate logic

• Terms represent data: constants, variables, function 

applications

 Examples : x, 7, true, false, sin(x), x < y, y + 1

• Formulas may take several forms:

– Predicates: terms that evaluate to true or false

Examples: true, false, even (x), x < y, etc.

– Propositional formulas: built using predicates and the logic connectors 

, , , , etc.

Examples : f (x, y)  f (y, z)  f (x, z)

– Quantified formulas: with logic quantifiers  x: A,  x: A

45Software engineering - Formal methods
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Programming with Hoare logic 
assertions: design by contract

• A methodology proposed by B. Meyer (1986) and first 
implemented in the Eiffel programming language

• Write contract (what should be done) together with 
code (how this is done):
– A pre and a postcondition with each function
– An invariant and a variant with each loop
– In OO programming, a property on state variables that 

should hold before and after every method call, named 
class invariant

• Contracts may be checked at runtime or, if the 
programming and assertion languages have formal 
semantics, connexion to provers is possible

46Software engineering - Formal methods
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Contracts in SPEC#

SPEC# (Microsoft Research)

http://research.microsoft.com/en-us/projects/specsharp

• Formal language for contracts

• Extends C#, integrated in Visual Studio

• Connection to an automatic prover of logic 
properties

• Homework: watch 
https://www.youtube.com/watch?v=HOl11mP4V68

47Software engineering - Formal methods
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Factorial in SPEC#

class Factorial {

static int fact (int n)

     requires n >= 0;

ensures

result == product{int i in (1:n+1); i};

/* product of ints from 1 to n */

     {

          int x, r;

          x = n;

          r = 1;

   

while (x > 0)

          invariant x >= 0;

          invariant x <= n;

invariant
r == product{int i in (x+1:n+1); i};

/* product of ints from x+1 to n */

          {

               r *= x;

               x--;

          }

          return r;

     }

}

48Software engineering - Formal methods
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Conclusion on Hoare logic and contracts

Beyond formal proof, assertions radically change the 
nature of software development in several ways:

• Design aid: build program + arguments that justify its 
correctness

• Testing and debugging: assertions can be checked at 
runtime

• Documentation: non-ambiguous and concise 
description of what the program does (instead of 
how this is done)

• Limitation: No abstraction primitive

49Software engineering - Formal methods
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2.3. SET-BASED METHODS

2. Proving transformational programs
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Set-based specification languages

• They are formal languages appropriate to describe:

– The notion of program state, defined by a set of typed variables

– Program operations, defined by their inputs, their outputs, an 

application condition (precondition) and an effect on the state 

variables

• They use set-based notations, first-order predicate logic, and 

are derived from Hoare logic

• They generally come with a method that defines good 

development practices and rely on software tools

2. Proving transformational programs / Set-based methods
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Main set-based methods

• VDM (Vienna Development Method)

– Ancestor of set-based methods

– Invented at the Vienna IBM laboratory in the 60’s

– Used by some industries including DCC-International (Ada compiler), 
British Aerospace, Adelard, ... 

• The Z notation
– Set-based notation proposed par J.-R. Abrial (1977) and developed by 

the team of Tony Hoare in Oxford

– Standardized at ISO in 2002

• The B method
– Method proposed by J.-R. Abrial in the 80’s

2. Proving transformational programs / Set-based methods
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The B method

• Method based on Abstract State Machines, which 

unify the notions of (set-based) specification, proof 

and executable code

• With industrial usages:

– Matra Transport and RATP : verification of the control 

system for safety equipments of Paris metro line 14 

(automatic trains), from specification to Ada code 

generation

– But also: Gemalto (smart cards), Siemens, Leirios 

Technologies, ...

2. Proving transformational programs / Set-based methods
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B: Methodology

Seamless methodology from specification to executable code:

1. Program specification as an abstract state machine

2. Automatic generation of properties to be proven for the satisfaction of 

variants and invariants: the proof obligations

3. Progressive refinement of the state machine : Manual replacement of  

non-executable elements by executable ones

4. Automatic generation and proof of new proof obligations that express 

the preservation of properties proven at the previous step

5. Back to point 3 until obtention of executable code

2. Proving transformational programs / Set-based methods
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B: ASM (Abstract State Machine)

It is defined by:

• Its name

• Its state variables

• A state invariant (formula of first-order predicate 

logic): property that must be true at initialisation and 

remain true after each application of an operation

• A variable initialisation clause

• A list of operations that read inputs, return outputs 

and modify the state

2. Proving transformational programs / Set-based methods
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ASM example: Plane boarding system (1/2)

MACHINE Plane

SEES  Bool_TYPE

SETS  PASSENGERS

CONSTANTS cap

PROPERTIES cap  N

VARIABLES onboard

INVARIANT

 (onboard  PASSENGERS)  (card (onboard)  cap)

INITIALISATION 

 onboard := 

OPERATIONS

 .../...

Generalised substitution 
(variable assignment)

Property of constants

Imported type (library)

2. Proving transformational programs / Set-based methods
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ASM example: Plane boarding system (2/2)

.../...

OPERATIONS

 Boarding (p) =
  PRE (p  PASSENGERS)  (p  onboard)
  THEN onboard := onboard  { p }
  END;

 b  Onboard (p) =
  PRE p  PASSENGERS
  THEN IF p  onboard
   THEN b := TRUE
   ELSE b := FALSE
   END
  END

END

2. Proving transformational programs / Set-based methods
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B: Operations

An operation has the following form:

  outputs  op (inputs) = 
   PRE
    precondition
   THEN
    effect
   END
where:

– precondition is a formula of first-order predicate 
logic

– inputs, outputs are lists of local variables
– effect is a statement (generalised substitution)
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Examples of generalised substitutions

• Deterministic assignment: X := E

• Nondeterministic assignment: X : T

 X takes any value in the set T

• Sequential composition: S1; S2

 substitution S1 followed by S2 

• Conditional branch: IF P THEN S1 ELSE S2 END

• Nondeterministic branch: CHOICE S1 OR … OR Sn END

 Arbitrary choice among S1, …, Sn

• Loop: WHILE P DO S0 VARIANT E INVARIANT Q END

• etc.

2. Proving transformational programs / Set-based methods

59Software engineering - Formal methods



Proof obligations

• The B method defines first-order predicate logic formulas that must 

be proven for the invariant to hold: the proof obligations

• Calculated by applying a generalized substitution S to a formula Q, 

written "[ S ] Q" 

• Relationship with Hoare logic: [ S ] Q = the weakest precondition 

that S must satisfy for postcondition Q to be satisfied

Generalization of wp (S, Q) seen in PLCD

• Proving "P  [ S ] Q" is thus analoguous to proving { P } S { Q },

with S generalized to nondeterministic statements
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Application of substitutions (1/3)

• [ X := E ] Q  Q in which E replaces X

Same as Q [E/X] in Hoare logic

Example : [ x := 1 ] (x  c)  (1  c)

• [ X : S ] Q = y: y  S  [ X := y ] Q

Example : [ x : N ] p(x) 

    y: y  N  p(y) 

   p(0)  p(1)  p(2)  ... 

• [ CHOICE S1 OR S2 END ] Q  ([ S1 ] Q)  ([ S2 ] Q)
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Application of substitutions (2/3)

• [ IF P THEN S1 ELSE S2 END ] Q 

   (P  [ S1 ] Q)  (P  [ S2 ] Q)

Example: 

[ IF x > 0 THEN x := x-1 ELSE x := x+1 END ] p(x) 

(x > 0   p(x-1))  (x  0   p(x+1))

• [ S1; S2 ] Q  [ S1 ] [ S2 ] Q

Example: [ x := 2 * z; y := x+1 ] p(y)  

    [ x := 2 * z ] p(x+1) 

   p((2 * z) + 1)
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Application of substitutions (3/3)

• [WHILE P DO S0 INVARIANT I END] Q 

   I  (X) (I  P  [S0] I)  (X) (I  P  Q)
where X is the set of variables occurring in I and P

(we omit the VARIANT part here for simplification)

 Example:

   [WHILE X  N DO Y := Y+X; X := X+1 
   INVARIANT Y = i0..X-1 i END] (Y = i0..N-1) 
 Y = i0..X-1 i

  
 (X,Y,N) (Y = i0..X-1 i  X  N  [Y:=Y+X; X:=X+1 ] Y = i0..X-1 i)

  

  (X,Y,N) (Y = i0..X-1 i  X = N  Y = i0..N-1)
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Exercise

Compute the following substitution

[ IF X < Y THEN MIN := X ELSE MIN := Y END ] (MIN = X)
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Solution
[ IF X < Y THEN MIN := X ELSE MIN := Y END ] (MIN = X) 

(Applying IF-THEN-ELSE substitution)

(X < Y  [MIN := X] (MIN = X))  (X  Y  [MIN := Y] (MIN = X)) 

(Applying assignment substitutions)

(X < Y  X = X)  (X  Y  X = Y) 

(Replacing X = X by true)

(X < Y  true)  (X  Y  X = Y) 

(Replacing P  true by true) 

true  (X  Y  X = Y) 

(Replacing true  P by P)

X  Y  X = Y 

(Replacing P  Q by P  Q)

X < Y  X = Y  X  Y
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Exercise

Compute the following expression

 Y = i0..X-1 i  X  N  [Y:=Y+X; X:=X+1 ] Y = i0..X-1 i

and check that it is true
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Solution
Y = i0..X-1 i  X  N  [Y:=Y+X; X:=X+1 ] Y = i0..X-1 i 

Y = i0..X-1 i  X  N  [Y:=Y+X] Y = i0..X+1-1 i 

Y = i0..X-1 i  X  N  [Y:=Y+X] Y = i0..X i 

Y = i0..X-1 i  X  N  Y+X = i0..X i 

Y = i0..X-1 i  X  N  Y = i0..X i - X 

Y = i0..X-1 i  X  N  Y = i0..X-1 i 

true
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Proof obligations

We write INV for the invariant of the state  machine

• The substitution INIT which initialises the variables must 

establish the state invariant

 proof obligation [ INIT ] INV

Analogy in Hoare logic: { true } INIT { INV } 

• Each operation

 outputs  op (inputs) = PRE P THEN S END

 must preserve the state invariant

 proof obligation (INV  P)  [ S ] INV

 Analogy in Hoare logic: { INV  P } S { INV }
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Proof obligation examples (1/2)

 PROPERTIES cap  N

  INVARIANT

   (onboard  PASSENGERS)  (card (onboard)  cap)

  INITIALISATION 

   onboard := 

Proof obligation (initialisation) : [INIT] INV

 [ onboard :=  ] (onboard  PASSENGERS)  (card (onboard)  cap )
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Computing and proving the obligation

[ onboard :=  ]
(onboard  PASSENGERS)  (card (onboard)  cap ) 
=
(  PASSENGERS)  (card ()  cap) 


 true   ✓
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Proof obligation examples (2/2)

 Boarding (p) =
    PRE (p  PASSENGERS)  (p  onboard) (P)
    THEN onboard := onboard  { p }  (S)
    END

Proof obligation: INV  P  [S] INV

 (onboard  PASSENGERS)  (card (onboard)  cap)  (INV) 
(p  PASSENGERS)  (p  onboard)    (P)


 [onboard := onboard  { p }]    (S)
((onboard  PASSENGERS)  (card (onboard)  cap)) (INV)
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Computing and proving the obligation

[onboard := onboard  { p }]
((onboard  PASSENGERS)  (card (onboard)  cap)) =

(onboard  { p }  PASSENGERS)  
(card (onboard  { p })  cap)

Thus, assuming the hypothesis 
(onboard  PASSENGERS)  (card (onboard)  cap) 
(p  PASSENGERS)  (p  onboard) 

we must show 
(onboard  { p }  PASSENGERS) 
(card (onboard  { p })  cap)

This does not hold when card (onboard) = cap
Conclusion: The specification is incorrect! 

Missing precondition: card (onboard) < cap
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B example: Voting machine (1/2)

• We specify in B a simplified voting machine 

that records the votes for 2 candidates, 

represented by the numbers 1 and 2.

• The variables votes1 and votes2 hold the 

number of votes for each of the candidates

• The variable cast holds the voters who have 

already voted
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B example: Voting machine (2/2)

MACHINE Voting_Machine

SETS  VOTERS

VARIABLES votes1 votes2 cast

INVARIANT votes1  N  votes2  N  cast  VOTERS 

    card (cast) = votes1 + votes2

INITIALISATION votes1 := 0; votes2 := 0; cast := 

OPERATIONS

  Vote (e, n) = PRE e  VOTERS  n  {1, 2} THEN

     cast := cast  {e};

     IF n = 1 THEN

      votes1 := votes1 + 1

     ELSE

      votes2 := votes2 + 1

     END

    END

END
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Question n°1

• What is the proof obligation that would allow 

to guarantee that the initialisation establishes 

the invariant?

• Explain the main steps of the computation

• Explain (even informally) why this proof 

obligation is true or false
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Response to question n°1

• For an invariant INV and an initialisation substitution 

INIT, the proof obligation is [ INIT ] INV. Here: 

 [votes1 := 0; votes2 := 0; cast := ] (votes1  N  votes2  N 

 cast  VOTERS  card (cast) = votes1 + votes2)

  0  N  0  N    VOTERS  card () = 0 + 0

• This property is true because:

– 0 is indeed a natural number

– The empty set is indeed a subset of VOTERS (it is a subset of any set)

– The cardinal of the empty set is indeed 0 
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Question n°2

• What is the proof obligation that would allow 

to guarantee that the operation Vote 

preserves the invariant?

• Explain the main steps of the computation

• Explain (even informally) why this proof 

obligation is true or false
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Response to question n°2 (1/2)

• For an invariant INV, a precondition PRE and a substitution 
SUB, the proof obligation is
INV  PRE  [ SUB ] INV. Here:

 votes1  N  votes2  N  cast  VOTERS  card (cast) = votes1 + votes2  
e  VOTERS  n  {1, 2} 

 

 [ cast := cast  {e}; IF n = 1 THEN votes1 := votes1 + 1 ELSE votes2 := 
votes2 + 1 END] (votes1  N  votes2  N  cast  VOTERS  card (cast) = 
votes1 + votes2)

• The right-hand-side [ SUB ] INV of the implication yields:

 (n = 1  (votes1 + 1)  N  votes2  N  cast  {e}  VOTERS  card (cast 
 {e}) = votes1 + 1 + votes2)  

 ((n = 1)  votes1  N  (votes2 + 1)  N  cast  {e}  VOTERS  card 
(cast  {e}) = votes1 + votes2 + 1)
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Response to question n°2 (2/2)

• The proof obligation INV  PRE  [ SUB ] INV cannot be 

proven

• One should indeed always have: 

card (cast  {e}) = card (cast) + 1

• But if e  cast then cast  {e} = cast, i.e., card (cast  {e}) = 

card (cast) !

• For the invariant to be preserved, one should for instance 

strengthen the precondition of the Vote operation, to ensure 

that the voter has not yet cast his/her vote: 

e  VOTERS  e  cast  n  {1, 2} 
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ASM refinement

• Goal: Transform the formal specification to 

executable code

• Successive manual modifications of the specification

– Suppression of non-executable elements: preconditions, 

simultaneity, nondeterminism

– Introduction of control structures

– Transformation of abstract data structures (sets, relations, 

...) into programmable data structures (arrays, files, ...)
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Example : Refinement of the plane (1)

Refinement of the plane in which a seat is assigned to each 

passenger admitted on board

MACHINE  Plane_seats

REFINES  Plane

SEES   Bool_TYPE

SETS   SEATS = 1..cap

VARIABLES assign

INVARIANT 

(assign  SEATS +→ PASSENGERS)  (onboard = rng (assign))

INITIALISATION assign := 

assign: partial function that assigns a 
passenger to each occupied seat

rng : image of a function (here, the set of 
passengers on board)

initially, no seat is 
attributed
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Example : Refinement of the plane (2)

OPERATIONS

 Boarding (p) =

  PRE (p  PASSENGERS)  (dom (assign)  SEATS)  
  (p  rng (assign)) 
 THEN

   ANY x WHERE x : (SEATS \ dom (assign)) 

   THEN assign (x) := p

   END

  END;

 ...

END

Set of values on which the partial 
function is defined

Extension of the function
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Proof obligations of refinement

• The B method defines new proof obligations

– To prove that the initialisation of the refined machine is 

compatible with the initialisation of the original machine

– To prove that each operation of the refined machine is 

compatible with the corresponding operation of the original 

machine

– And hence that the refined invariant is preserved by the 

refined machine

• Precise definition of these proof obligations is out of 

the scope of this course
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Software tools for the B method

• Atelier B (http://www.atelierb.eu)

– Commercial software developed by the company 
ClearSy 

– Several tools

• Syntax analyser

• Type controler

• Proof obligation generator

• Automated prover

• Interactive prover

• Translator into several programming languages

• Free software: JBTools, B4Free, ABTools, ProB, ...
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Conclusion

• There exist formal methods to help developing 
reliable transformational programs
– Set-based (or model-based) methods

– Algebraic (or property-based) methods

• Formal methods provide many advantages : early 
error detection, quality and reliability, utilisability of 
formal specifications in the next steps of the 
software lifecycle (test, evolution)

• The knowledge of formal methods is a plus in your 
practice of programming
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To go further (1/3)

• Hoare logic

– Original article by Tony Hoare: An axiomatic basis for computer programming. 
CACM, 1969.

– Wikipedia : http://en.wikipedia.org/wiki/Hoare_logic

• VDM

– Cliff B. Jones. Systematic software development using VDM. Prentice Hall, 
1986.

– Wikipedia : http://en.wikipedia.org/wiki/Vienna_Development_Method 

• The Z notation

– J. M. Spivey. The Z notation (2nd edition). Prentice Hall, 1998. 168 pages.

– David Lightfoot. Formal specification using Z (2nd edition). Palgrave, 2000. 176 
pages.

– Wikipedia : http://en.wikipedia.org/wiki/Z_notation
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To go further (2/3)

• The B method

– J.-R. Abrial. The B-Book, assigning programs to meanings. Cambridge 
University Press, 1996.

– Much information and resources on B : 
http://www-lsr.imag.fr/B/Bsite-pages.html

– Wikipedia : http://en.wikipedia.org/wiki/B-Method

• Algebraic specifications

– H. Ehrig, B. Mahr. Fundamentals of algebraic specification. Springer, 1985. 321 
pages.

– Wikipedia : http://en.wikipedia.org/wiki/Algebraic_specification

• Synthesis on formal methods

– Marc Frappier, Henri Habrias (editors). Software specification methods: an 
overview using a case study. Springer, 2000. 312 pages. 
http://www.dmi.usherb.ca/~spec 

– Wikipedia : http://en.wikipedia.org/wiki/Formal_Methods
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To go further (3/3)

Tools based on higher-order languages and logics

• PVS (SRI, California, USA) 

– http://pvs.csl.sri.com

• LCF (Edinburgh, Scotland and Stanford, California, USA)

– Ancestor of Isabelle and HOL

• Isabelle (Cambridge, UK and Munich, Germany)

• http://www.cl.cam.ac.uk/research/hvg/Isabelle

• HOL (University of Pennsylvania, USA)

– Acronym of Higher Order Logic

– https://www.cs.ox.ac.uk/tom.melham/res/hol.html

• Coq (INRIA, France)

– http://coq.inria.fr
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Competence and Knowledge
which will be evaluated

• be able to
– understand simple algebraic specifications, simple 

abstract state machines and operations

– carry on simple algebraic proofs, derive and prove simple 
proof obligations

• know
– the general notions of precondition,

postcondition, loop variant, loop
invariant and state invariant

– reason rigorously on a transformational
programs
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