Software Engineering

Lydie du Bousquet Frédéric Lang

Software Engineering – Verification using formal methods

Part I: Sequential programs

1. INTRODUCTION

1. Introduction

Code should be « working » not only « running »

This is why testing was introduced

 Testing is good and necessary, but it has limitations

Limitation of testing #1

100 % test coverage is out of reach

too many lines of code, too many branches, parallelism,

...

- ⇒ Many bugs may survive the testing phase
- The probability of a rare bug to occur during the software lifetime may be far above the probability that it occurs during testing

Limitation of testing #2

- Tested program may behave unpredictably
- Several possible causes:
 - Variable execution environment
 e.g., compiler, architecture, load, ...
 - Unpredictable effect of uncaught programming errors e.g., use of non-initialized variable, div-by-0, ...
 - Intrinsic program nondeterminism
 (same input => different output)
 e.g., parallel systems (variable communication delays, asynchrony)
- It is difficult/impossible to test all situations

Example (1/3)

Test the following C program

```
int main () {
   int x = 1;
   x = x++;
   assert (x == 2);
}
```

Example (2/3)

 Tested on Linux iX86 with Gnu CC 4.4.5 compiler: test passes

Test is exhaustive and successful!

 Program can thus be safely deployed in the customer environment... Really?

Example (3/3)

- Customer uses 32-bit SunCC/Solaris compiler
- Assertion is violated: x == 1
- Cause: ambiguity of x = x++, unspecified order between assignment x = ... and increment x++

/*
$$x == 1 */ R = x; x = R + 1; x = R; /* $x == 1 */ S$.

/* $x == 1 */ R = x; x = R + 1; x == 1 */ S$

/* $x == 1 */ R = x; x = R; x = R + 1; x == 2 */ S$

read $x == 1 */ R = x; x = R; x = R + 1; sincrement $x == 1 */ S$$$$

where R is a register used to store the initial value of x

General problem: improve predictability

Motivation: errors are costly

« Normal » software:

Critical software:

e.g., avionics, aerospace, automotive, nuclear, chemicals, ...

- Cost increases over time!
- Verification methods complementary to test are needed to find bugs early

How to improve predictability?

- Use « clean » programming languages:
 - Static semantic checks to avoid common errors (uninitialized variable, division by 0, etc.)
 - Well-defined semantics
- But this is not enough to ensure that programs will always provide a correct result:
 - Need to describe the programmer's intent: logic
 - Need to determine how intent is achieved by the program: reasoning

Models of programs

- Programming languages are sometimes too low-level for formal reasoning
- Rather use models of higher abstraction level
 - Abstract away from implementation details to focus on algorithmic problems
 - Helps getting convinced of correctness
- Models are a generalization of programs, with additional abstraction mechanisms
 - Example: nondeterminism used to underspecify parts that are not essential to correctness
- In the sequel: program = model

Formal verification methods

- Formal = mathematically defined
- Relies on formal languages to model:
 - Programs
 - Requirements

Advantages:

- Eliminate the risk of ambiguities
- Offer mathematically based (rigorous) verification methods

Formal verification

- Several formal verification methods exist, with many criteria of choice
- One major criteria is whether the program is transformational or reactive/concurrent

This lecture:

- Week 10: transformational programs proof techniques
- Week 11: reactive & concurrent programs automata-based verification

2. PROVING THE CORRECTNESS OF TRANSFORMATIONAL PROGRAMS

Transformational program

- Program (or part of a program)
 - Computes an output in function of an input
 - Essentially behaves sequentially (even though implementation may be parallel)
 - Execution should terminate (otherwise error)

- Examples:
 - Imperative programs (C, C++, Ada, ...)
 - Functional programs (ML, Scheme)

Proving transformational programs correct

- Goal: ensure that program behaves as expected
- Several possible notions of as expected
 - Absence of crash: No unexpected termination
 Examples: division by zero, out-of-bound array access, etc.
 - Correctness: A particular relation between program inputs and outputs holds
 - Termination: No infinite execution
 - Performance: Bounded usage of resources (e.g., time, memory, etc.)
- This lecture focuses essentially on program correctness

Program correctness

Proving a program correct requires:

- A formal specification of the program
- A formal specification of the mathematical property that the program should satisfy
- Formal deduction rules to relate property and program (reasoning)

2. Proving transformational programs

Methods to prove specifications of transformational programs

- Algebraic methods
- Hoare logic
- Set-based methods:
 - Z, VDM
 - B: combines ideas from Z and from Hoare logic

2. Proving transformational programs

2.1. ALGEBRAIC METHODS

Principle of algebraic methods

- Formal framework to demonstrate mathematical properties of programs
- Use of algebra and equational logic
- Specification by properties: objects are defined by the operations that generate or use them, as mathematical equations
- There are many algebraic specification languages (ACT ONE, LARCH, LPG, ...)

First example: Booleans

- Boolean values are written True/False; Bool = {True, False}
- Opns Not, Or, And are defined by the following equations:

```
Not (True) = False

Not (False) = True

(\forall X \in Bool) Or (True, X) = True

(\forall X \in Bool) Or (False, X) = X

(\forall X \in Bool) And (True, X) = X

(\forall X \in Bool) And (False, X) = False
```

 We call terms the variables, constants and operations applied (recursively) to terms

Second example: Natural numbers

- Natural numbers are written 0, S (0), S (S (0)), ...; Nat is the set of natural numbers (S and 0 are called constructors)
- Operations Pred (predecessor), +, and × are defined by the following equations:

$$(\forall X \in \textbf{Nat}) \qquad \textbf{Pred } (\textbf{S} (X)) = X \qquad \qquad \textbf{Déf. of Pred}$$

$$(\forall Y \in \textbf{Nat}) \qquad 0 + Y = Y \qquad \qquad \textbf{Déf. of +}$$

$$(\forall X, Y \in \textbf{Nat}) \qquad \textbf{S} (X) + Y = \textbf{S} (X + Y) \qquad \qquad \textbf{Déf. of +}$$

$$(\forall Y \in \textbf{Nat}) \qquad 0 \times Y = 0 \qquad \qquad \textbf{Déf. of } \times$$

$$(\forall X, Y \in \textbf{Nat}) \qquad \textbf{S} (X) \times Y = Y + (X \times Y) \qquad \qquad \textbf{Déf. of } \times$$

Example of proof (1)

```
Prove that S (S (0)) \times S (S (0)) = Pred (S (S (S (S (0))))))
Simple application of the equations:
S(S(0)) \times S(S(0))
    = S(S(0)) + (S(0) \times S(S(0)))
                                                      from (\forall X, Y \in \mathbf{Nat}) S(X) \times Y = Y + (X \times Y)
    = S(S(0)) + (S(S(0)) + (0 \times S(S(0)))) from (\forall X, Y \in Nat) S(X) \times Y = Y + (X \times Y)
    = S(S(0)) + (S(S(0)) + 0)
                                                      from (\forall Y \in Nat) \ 0 \times Y = 0
    = S (S (0) + S (S (0)))
                                                      from (\forall X, Y \in \mathbf{Nat}) S(X) + Y = S(X+Y)
    = S (S (0 + S (S (0)))
                                                      from (\forall X, Y \in \mathbf{Nat}) S(X) + Y = S(X+Y)
    = S (S (S (S (0))))
                                                      from (\forall Y \in Nat) 0 + Y = Y
    = Pred (S (S (S (S (O))))))
                                                      from (\forall X \in Nat) \text{ Pred } (S(X)) = X
```

Example of proof (2)

- Prove that $(\forall X \in \mathbf{nat}) X + 0 = X$
- By structural induction on X: Base case X = 0.

$$X + 0 = 0 + 0$$
 from the hypothesis $X = 0$
= 0 from the equation ($\forall Y \in \mathbf{nat}$) $0 + Y = Y$
= X from the hypothesis $X = 0$

• Inductive case suppose that $(\exists X' \in nat) X' + 0 = X'$ (induction hypothesis) and consider X = S(X').

$$X + 0$$
 = $S(X') + 0$ from the hypothesis $X = S(X')$
= $S(X' + 0)$ from $(\forall X, Y \in nat) S(X) + Y = S(X+Y)$
= $S(X')$ from the *induction hypothesis*
= X from the hypothesis $X = S(X')$

2. Proving transformational programs / Algebraic methods

Third example: factorial

 The factorial operation fact (X) of a natural number X can be defined by the following equations:

$$S(0) = fact(0)$$

($\forall X \in Nat$) $S(X) \times fact(X) = fact(S(X))$

Example of proof

Prove that

$$(\forall X \in nat) X \neq 0 \Rightarrow fact (X) = X \times fact (Pred (X))$$

• Suppose $X \neq 0$. Then there exists X' such that X = S(X').

```
fact (X) = fact (S (X')) (1)

= S (X') × fact (X') (2)

= S (X') × fact (Pred (S (X')) (3)

= X × fact (Pred (X)) (1)
```

- (1) from X = S(X')
- (2) from $(\forall X \in Nat) S(X) \times fact(X) = fact(S(X))$
- (3) from $(\forall X \in Nat) \text{ Pred } (S(X)) = X$

Exercise

- A type nat_list representing lists of natural numbers is defined using the constructors Nil: → nat_list and Cons: nat, nat_list → nat_list
- Define the operation last: nat_list → nat, which returns the last element of a non-empty list
- Define the operation append : nat, nat_list →
 nat_list which appends an element at the end of a
 list
- Show that:
 (∀X∈ nat, L ∈ nat_list) last (append (X, L)) = X

Solution (1/2)

- last : nat_list → nat
 (∀ X ∈ nat) last (Cons (X, Nil)) = X
 (∀ X, Y ∈ nat, L ∈ nat_list)
 last (Cons (X, Cons (Y, L))) = last (Cons (Y, L))
- append : nat, nat_list → nat_list
 (∀ X ∈ nat) append (X, Nil) = Cons (X, Nil)
 (∀ X, Y ∈ nat, L ∈ nat_list)
 append (X, Cons (Y, L)) = Cons (Y, append (X, L))

Solution (2/2)

```
We first prove the following Lemma:
   (\forall X \in nat, L \in nat\_list) (\exists Y \in nat, L' \in nat\_list) append (X, L) = Cons (Y, L')
Proof: By case on L (immediate from the definition of append)
We now prove by induction on L:
   (\forall X \in nat, L \in nat\_list) \ last (append (X, L)) = X
  Base case : L = Nil
   last (append (X, Nil)) = last (Cons (X, Nil)) = X
   Inductive case: Assume that for some L, last (append (X, L)) = X
   and show that for L' = Cons(Y, L), last (append (X, L')) = X
                              = last (append (X, Cons (Y, L)))
    last (append (X, L'))
                              = last (Cons (Y, append (X, L))) by def. of append
                              = last (Cons (Y, Cons (Y', L''))) for some Y', L'' (Lemma)
                              = last (Cons (Y', L''))) by def. of last
                              = last (append (X, L))
                              = X by induction hypothesis
```

Automated proofs

- In general, it is not possible to automate proofs
- In specific cases, proofs can be made automatic by orienting the equations in the form of *rewriting rules* Example:

```
fact (0) \rightarrow S(0)
fact (S(X)) \rightarrow S(X) \times fact(X)
```

- Certain conditions (confluence and termination of the rewriting rules) must be fulfilled for the proof to be automated
- Confluence and termination of the rewriting rules cannot be proven automatically in general

Algebraic languages

Many algebraic languages exist:

- OBJ (J. Goguen Université de Californie, USA 1976)
 Ancestor of many dialects : OBJ3, CafeOBJ, BOBJ, ...
- Larch (J. Wing MIT, Massachussets, USA 1983)
- ACT ONE (H. Ehrig Technische Universität Berlin, Allemagne 1983)
 Reused in the LOTOS process algebra, followed by ACT TWO
- PLUSS (M.-C. Gaudel Université Paris Sud, France 1984)
- LPG (D. Bert et R. Echahed Grenoble, France 1984, révision 1991)
- **CASL** (*Common Algebraic Specification Language* Initiative of a group of researchers from several origins, 1997)
- etc.

Software tools for algebraic methods

- Larch prover (MIT, Massachussets, USA) www.sds.lcs.mit.edu/spd/larch Interactive prover for Larch (maintained but not anymore developed)
- Maude (SRI, Californie, USA) www.csl.sri.com/projects/maude
 Rewrite engine based on an inheritor of OBJ
- Elan (INRIA, Nancy, France) http://elan.loria.fr
 Rewrite engine
- CASL consistency checker (Bremen University, Germany) www.informatik.unibremen.de/cofi
 - Verification of the consistency of a specification
- ACL2 (Texas University, USA) www.cs.utexas.edu/users/moore/acl2
 - Theorem prover by rewriting based on a dialect of Lisp
 - Used by AMD to verify correctness of elementary operations on the floating point numbers of the Athlon processor
 - Laureat in 2005 of the "ACM Software System Award"

Conclusion on algebraic specifications

 Algebraic specifications are a formal framework to reason on transformational programs

But

- Writing algebraic specifications is hard
 - One does not always know whether enough equations have been written to fully model the program (completeness)
 - One does not always know whether contradicting equations have been written (consistency)
 - Completeness and consistency cannot be proven automatically
- Algebraic specifications are not executable if they are not oriented as rewriting rules
- Algebraic specifications languages are not well adapted to express the notion of *program state*

Exercise (1/4)

Consider the following specification of Booleans and lists of Booleans: false: \rightarrow Bool and: Bool \times Bool \rightarrow Bool Definition: true : \rightarrow Bool for all $b \in Bool$: (a1) true and b = b(a2) false and b = falseDefinition: $nil: \rightarrow Bool \ List \ cons: Bool \times Bool \ List \rightarrow Bool \ List$ cat : Bool List \times Bool List \rightarrow Bool List for all $b \in Bool$, l_0 , l_1 , $l_2 \in Bool$ List: (c1) cat (nil, I_0) = I_0 (c2) cat (cons $(b, I_1), I_2$) = cons $(b, cat (I_1, I_2))$ **Definition**: and list: Bool List \rightarrow Bool for all $b \in Bool$, $l \in Bool$ List: (11)and list (nil) = true (12)and list (cons (b, I)) = b and and list (I)We propose to show that for all I_1 , $I_2 \in Bool_List$: (egn) and list (cat (I_1, I_2)) = and list (I_1) and and list (I_2)

Exercise (2/4)

What does the cat operation do?

Exercise (2/4)

What does the cat operation do?

```
Concatenation of lists

example: cat ({true, false}, {true})

cat (cons (true, cons (false, nil)), cons (true, nil))

= cons (true, cat (cons (false, nil), cons (true, nil)) (c2)

= cons (true, cons (false, cat (nil, cons (true, nil)))) (c2)

= cons (true, cons (false, cons (true, nil))) (c1)

{true, false, true}
```

Exercise (3/4)

```
In (eqn), consider the particular case where I_1 = nil and I_2 is an arbitrary list complete the following lines: and_list (cat (nil, I_2)) = . . . by (c1) and_list (nil) and and_list (I_2) = . . . by (I1) = . . .
```

What can you conclude about (eqn) when $l_1 = nil$?

Exercise (3/4)

```
In (eqn), consider the particular case where
  I_1 = nil and I_2 is an arbitrary list
complete the following lines:
and_list (cat (nil, I_2)) = and_list (I_2)
                                                by (c1)
and_list (nil) and and_list (12)
  = true and and_list (I_2)
                                                by (11)
                                                by (a1)
  = and list (I_2)
What can you conclude about (eqn) when l_1 = nil?
It holds: and_list (cat (nil, l_2)) = and_list (nil) and and_list (l_2)
```

Exercise (4/4)

```
We now assume that there exists at least one list l_3 \in Bool\_List such that (eqn) holds, i.e., for all l_2 \in Bool\_List:

(ih) and l_3 \in Bool\_List:

(l_3) and l_3 \in Bool\_List:
```

We consider the list I_4 = cons (b, I_3) where b is an arbitrary Boolean, and we then show the following using (ih):

```
for all l2 ∈ Bool_List:
```

and_list (cat (I4, I2)) = and_list (I4) and and_list (I2) (The proof is not asked)

What can we conclude about (eqn)? How is called this kind of reasoning? What do the initials ih stand for?

Exercise (4/4)

We now assume that there exists at least one list $l_3 \in Bool_List$ such that (eqn) holds, i.e., for all $l_2 \in Bool_List$: (ih) and list (cat (l_3, l_2)) = and list (l_3) and and list (l_2)

We consider the list I_4 = cons (b, I_3) where b is an arbitrary Boolean, and we then show the following using (ih):

for all $l2 \in Bool_List$:

and_list (cat (I4, I2)) = and_list (I4) and and_list (I2) (The proof is not asked)

What can we conclude about (eqn)? holds for any l_1 : nil or cons (...) How is called this kind of reasoning? reasoning by induction What do the initials ih stand for? induction hypothesis

2. Proving transformational programs

2.2. HOARE LOGIC AND DESIGN BY CONTRACT

Hoare logic

- Seen earlier in the « compiler » class
- A framework for proving programs, proposed by Tony Hoare in 1969, inspired by Robert Floyd
- Mathematical formalization of deduction rules for reasoning on programs
- Motivations:
 - Rigorous definition of reasoning (teaching, research papers, ...)
 - Implementation in tools

Reminder about Hoare logic

- Hoare triples { P } C { Q } where P, Q are assertions in firstorder predicate logic, called precondition and postcondition
- Meaning: If P holds before executing C, then Q holds after executing C
- Hoare logic is about proving Hoare triples
- Proof requires additional user-given assertions called loop variants and loop invariants
- Many systems for proving sequential programs somehow rely on extensions of Hoare logic

Example: The B method

Reminder about first-order predicate logic

Terms represent data: constants, variables, function applications

```
Examples: x, 7, true, false, sin(x), x < y, y + 1
```

- Formulas may take several forms:
 - Predicates: terms that evaluate to true or false
 Examples: true, false, even (x), x < y, etc.
 - Propositional formulas: built using predicates and the logic connectors
 ∧, ∨, ⇒, ¬, etc.

```
Examples: f(x, y) \wedge f(y, z) \Rightarrow f(x, z)
```

- Quantified formulas: with logic quantifiers ($\forall x . A$), ($\exists x . A$)

2. Proving transformational programs / Hoare logic & contracts

Programming with Hoare logic assertions: design by contract

- A methodology proposed by B. Meyer (1986) and first implemented in the Eiffel programming language
- Write contract (what should be done) together with code (how this is done):
 - A pre and a postcondition with each function
 - An invariant and a variant with each loop
 - In OO programming, a property on state variables that should hold before and after every method call, named object invariant
- Contracts can be checked at runtime or, if the programming and assertion languages have formal semantics, connexion to provers is possible

Contracts in SPEC#

SPEC# (Microsoft Research)

http://research.microsoft.com/en-us/projects/specsharp

- Formal language for contracts
- Extends C#, integrated in Visual Studio
- Boogie program verifier connected to automatic prover of logic properties
- Web interface (for toy examples): <u>http://rise4fun.com/SpecSharp</u>
- Homework: watch <u>http://channel9.msdn.com/Blogs/Peli/The-Verification-</u> Corner-Specifications-in-Action-with-SpecSharp

Factorial in SPEC#

```
class Factorial {
   static int fact (int n)
   requires n >= 0;
   ensures
     result == product{int i in (1:n+1); i};
     /* product of ints from 1 to n */
      int x, r;
      x = n;
      r = 1;
```

```
while (x > 0)
     invariant x \ge 0;
     invariant x <= n;
     invariant
       r == product{int i in (x+1:n+1); i};
       /* product of ints from x+1 to n */
        r *= x;
        X--;
     return r;
```

Conclusion on Hoare logic and contracts

Beyond formal proof, assertions radically change the nature of software development in several ways:

- Design aid: build program + arguments that justify its correctness
- Testing and debugging: assertions can be checked at runtime
- Documentation: non-ambiguous and concise description of what the program does (instead of how this is done)

2. Proving transformational programs

2.3. SET-BASED METHODS

Set-based specification languages

- They are formal languages appropriate to describe:
 - The notion of program state, defined by a set of typed variables
 - Program operations, defined by their inputs, their outputs, an application condition (precondition) and an effect on the state variables
- They use set-based notations and first-order predicate logic
- They generally come with a method that defines good development practices and rely on software tools

Main set-based methods

- **VDM** (Vienna Development Method)
 - Ancestor of set-based methods
 - Invented at the Vienna IBM laboratory in the 60's
 - Used by some industries including DCC-International (Ada compiler),
 British Aerospace, Adelard, ...

The Z notation

- Set-based notation proposed par J.-R. Abrial (1977) and developed by the team of Tony Hoare in Oxford
- Standardized at ISO in 2002

The B method

Method proposed by J.-R. Abrial in the 80's

The B method

- Method based on Abstract State Machines, which unify the notions of (set-based) specification, proof and executable code
- With industrial usages:
 - Matra Transport and RATP: verification of the control system for safety equipments of Paris metro line 14 (automatic trains), from specification to Ada code generation
 - But also: Gemalto (smart cards), Siemens, Leirios
 Technologies, ...

B: Methodology

Seamless methodology from specification to executable code:

- 1. Program specification as an abstract state machine
- 2. Automatic generation of properties to be proven for the satisfaction of variants and invariants: the *proof obligations*
- 3. Progressive refinement of the state machine: Manual replacement of non-executable elements by executable ones
- 4. Automatic generation and proof of new **proof obligations** that express the preservation of properties proven at the previous step
- 5. Back to point 3 until obtention of executable code

B: ASM (Abstract State Machine)

It is defined by:

- Its name
- Its state variables
- A state invariant (formula of first-order predicate logic): property that must be true at initialisation and remain true after each application of an operation
- A variable initialisation clause
- A list of operations that read inputs, return outputs and modify the state

ASM example: Plane boarding system (1/2)

Property of

constants

Plane **MACHINE** Imported type Bool_TYPE **SEES**

PASSENGERS SETS

CONSTANTS cap

PROPERTIES $cap \in N$

VARIABLES onboard

INVARIANT

(onboard \subseteq PASSENGERS) \land (card (onboard) \leq cap)

INITIALISATION

onboard := \emptyset

Generalised substitution (variable assignment)

OPERATIONS

ASM example: Plane boarding system (2/2)

```
.../...
OPERATIONS
   Boarding (p) =
    PRE (p \in PASSENGERS) \land (p \notin onboard)
           onboard := onboard \cup { p }
    THEN
    END;
   b \leftarrow Onboard(p) =
    PRE p ∈ PASSENGERS
          IF p \in onboard
    THEN
        THEN b := TRUE
        ELSE b := FALSE
        END
    END
```

END

B: Operations

An operation has the following form:

```
outputs ← op (inputs) =
PRE
precondition
THEN
effect
END
where:
```

- precondition is a formula of first-order predicate logic
- inputs, outputs are lists of local variables
- effect is a statement (generalised substitution)

Examples of generalised substitutions

- Deterministic assignment: X := E
- Nondeterministic assignment: X : ∈ T
 X takes any value in the set T
- Sequential composition: S₁; S₂
 substitution S₁ followed by S₂
- Conditional branch: IF P THEN S₁ ELSE S₂ END
- Nondeterministic branch: CHOICE S_1 OR ... OR S_n END Arbitrary choice among S_1 , ..., S_n
- Loop: WHILE P DO S₀ VARIANT E INVARIANT Q END
- etc.

Proof obligations

- The B method defines first-order predicate logic formulas that must be proven for the invariant to hold: the proof obligations
- They are calculated by applying a substitution S to a formula Q, written "[S]Q"
- Relationship with Hoare logic: [S] Q = the (weakest) precondition that S must satisfy for postcondition Q to be satisfied
- Proving "P ⇒ [S] Q" is thus analoguous to proving the goal {P}S{Q}, but with a generalisation to nondeterministic statements

Application of substitutions (1/3)

• $[X := E] Q \equiv Q$ in which E replaces X

Example: $[x := 1] (x \le c) \equiv (1 \le c)$

• [$X :\in S$] $Q = (\forall y . y \in S \Rightarrow [X := y] Q)$

Example: $[x :\in N] p(x) \equiv$ $(\forall y . y \in N \Rightarrow p(y)) \equiv$ $p(0) \land p(1) \land p(2) \land ...$

• [CHOICE S_1 OR S_2 END] $Q \equiv ([S_1]Q) \land ([S_2]Q)$

Application of substitutions (2/3)

• [IF P THEN S_1 ELSE S_2 END] $Q \equiv$ $(P \Rightarrow [S_1] Q) \land (\neg P \Rightarrow [S_2] Q)$

Example:

[IF x > 0 THEN x := x-1 ELSE x := x+1 END]
$$p(x) \equiv (x > 0 \implies p(x-1)) \land (x \le 0 \implies p(x+1))$$

• $[S_1; S_2] Q \equiv [S_1] [S_2] Q$

Example:
$$[x := 2 * z; y := x+1] p(y) \equiv$$

$$[x := 2 * z] p(x+1) \equiv$$

$$p((2 * z) + 1)$$

Application of substitutions (3/3)

• [WHILE P DO S_0 INVARIANT | END] $Q \equiv$

$$I \wedge (\forall X) (I \wedge P \Rightarrow [S_0] I) \wedge (\forall X) (I \wedge \neg P \Rightarrow Q)$$

(we omit the **VARIANT** part here for simplification)

Example:

```
[WHILE X \neq N DO Y := Y+X; X := X+1

INVARIANT Y = \Sigma_{i \in 0..X-1}i END] (Y = \Sigma_{i \in 0..N-1}) \equiv

Y = \Sigma_{i \in 0..X-1}i

\wedge

(\forall X,Y,N) (Y = \Sigma_{i \in 0..X-1}i \wedge X \neq N \Longrightarrow [Y:=Y+X; X:=X+1 ] Y = \Sigma_{i \in 0..X-1}i)

\wedge

(\forall X,Y,N) (Y = \Sigma_{i \in 0..X-1}i \wedge X = N \Longrightarrow Y = \Sigma_{i \in 0..N-1})
```

Exercise

Compute the following substitution

[IF X < Y THEN MIN := X ELSE MIN := Y END] (MIN = X)

Solution

[IF X < Y THEN MIN := X ELSE MIN := Y END] (MIN = X)
$$\equiv$$
 (Applying IF-THEN-ELSE substitution) (X < Y \Rightarrow [MIN := X] (MIN = X)) \wedge (X \geq Y \Rightarrow [MIN := Y] (MIN = X)) \equiv (Applying assignment substitutions) (X < Y \Rightarrow X = X) \wedge (X \geq Y \Rightarrow X = Y) \equiv (Replacing X = X by true) (X < Y \Rightarrow true) \wedge (X \geq Y \Rightarrow X = Y) \equiv (Replacing P \Rightarrow true by true) true \wedge (X \geq Y \Rightarrow X = Y) \equiv (Replacing true \wedge P by P) X \geq Y \Rightarrow X = Y \equiv (Replacing P \Rightarrow Q by \neg P \vee Q) X $<$ Y \vee X = Y

Exercise

Compute the following expression

$$Y = \Sigma_{i \in 0..X-1} i \land X \neq N \Longrightarrow [Y:=Y+X; X:=X+1] Y = \Sigma_{i \in 0..X-1} i$$

and check that it is true

Solution

$$\begin{array}{l} \mathsf{Y} = \Sigma_{\mathsf{i} \in 0..\mathsf{X} - 1} \, \mathsf{i} \, \wedge \, \mathsf{X} \neq \, \mathsf{N} \implies [\mathsf{Y} := \mathsf{Y} + \mathsf{X} ; \, \mathsf{X} := \mathsf{X} + 1 \,] \, \, \mathsf{Y} = \Sigma_{\mathsf{i} \in 0..\mathsf{X} - 1} \, \mathsf{i} \equiv \\ \mathsf{Y} = \Sigma_{\mathsf{i} \in 0..\mathsf{X} - 1} \, \mathsf{i} \, \wedge \, \mathsf{X} \neq \, \mathsf{N} \implies [\mathsf{Y} := \mathsf{Y} + \mathsf{X}] \, \, \mathsf{Y} = \Sigma_{\mathsf{i} \in 0..\mathsf{X} + 1 - 1} \, \mathsf{i} \equiv \\ \mathsf{Y} = \Sigma_{\mathsf{i} \in 0..\mathsf{X} - 1} \, \mathsf{i} \, \wedge \, \mathsf{X} \neq \, \mathsf{N} \implies [\mathsf{Y} := \mathsf{Y} + \mathsf{X}] \, \, \mathsf{Y} = \Sigma_{\mathsf{i} \in 0..\mathsf{X}} \, \mathsf{i} \equiv \\ \mathsf{Y} = \Sigma_{\mathsf{i} \in 0..\mathsf{X} - 1} \, \mathsf{i} \, \wedge \, \mathsf{X} \neq \, \mathsf{N} \implies \mathsf{Y} + \mathsf{X} = \Sigma_{\mathsf{i} \in 0..\mathsf{X}} \, \mathsf{i} \equiv \\ \mathsf{Y} = \Sigma_{\mathsf{i} \in 0..\mathsf{X} - 1} \, \mathsf{i} \, \wedge \, \mathsf{X} \neq \, \mathsf{N} \implies \mathsf{Y} = \Sigma_{\mathsf{i} \in 0..\mathsf{X}} \, \mathsf{i} - \mathsf{X} \equiv \\ \mathsf{Y} = \Sigma_{\mathsf{i} \in 0..\mathsf{X} - 1} \, \mathsf{i} \, \wedge \, \mathsf{X} \neq \, \mathsf{N} \implies \mathsf{Y} = \Sigma_{\mathsf{i} \in 0..\mathsf{X} - 1} \, \mathsf{i} \equiv \\ \mathsf{true} \end{array}$$

Proof obligations

We write INV for the invariant of the state machine

 The substitution INIT which initialises the variables must establish the state invariant

```
⇒ proof obligation [ INIT ] INV
```

Analogy in Hoare logic: { true } INIT { INV }

Each operation

$$outputs \leftarrow op (inputs) = PRE P THEN S END$$

must preserve the state invariant

```
\Rightarrow proof obligation (INV \land P) \Rightarrow [S] INV
```

Analogy in Hoare logic: { INV ∧ P } S { INV }

Proof obligation examples (1/2)

PROPERTIES

 $cap \in N$

INVARIANT

(onboard \subseteq PASSENGERS) \land (card (onboard) \le cap)

INITIALISATION

onboard := \emptyset

Proof obligation (initialisation):

```
[ onboard := \varnothing ] (onboard \subseteq PASSENGERS) \wedge (card (onboard) \leq cap) \equiv (\varnothing \subseteq PASSENGERS) \wedge (card (\varnothing) \leq cap) \equiv true CQFD
```

Proof obligation examples (2/2)

```
Boarding (p) =  \begin{array}{ccc} \textbf{PRE} & (p \in PASSENGERS) \land (p \not\in onboard) \\ \textbf{THEN} & onboard := onboard \cup \{p\} \\ \textbf{END} \end{array}
```

Proof obligation:

```
(p \in PASSENGERS) \land (p \notin onboard) \land (onboard \subseteq PASSENGERS) \land (card (onboard) \le cap)
\Rightarrow
(onboard \cup \{ p \} \subseteq PASSENGERS) \land (card (onboard \cup \{ p \}) \le cap)
```

Not provable : ERROR if card (onboard) = cap

Conclusion: The specification is incorrect, we must add the missing precondition: card (onboard) < cap

B example: Voting machine (1/2)

- We specify in B a simplified voting machine that records the votes for 2 candidates, represented by the numbers 1 and 2.
- The variables votes1 and votes2 hold the number of votes for each of the candidates
- The variable cast holds the voters who have already voted

B example: Voting machine (2/2)

```
MACHINE Voting_Machine
SETS VOTERS
```

VARIABLES votes1 votes2 cast

INVARIANT votes $1 \in \mathbb{N} \land \text{votes} 2 \in \mathbb{N} \land \text{cast} \subseteq \text{VOTERS} \land$

card (cast) = votes1 + votes2

INITIALISATION vote

votes1 := 0; votes2 := 0; cast := \emptyset

OPERATIONS

```
Vote (e, n) = PRE e \in VOTERS \land n \in \{1, 2\} THEN
```

cast := cast \cup {e};

IF n = 1 **THEN**

votes1 := votes1 + 1

ELSE

votes2 := votes2 + 1

END

END

END

Question n°1

- What is the proof obligation that would allow to guarantee that the initialisation establishes the invariant?
- Explain the main steps of the computation
- Explain (even informally) why this proof obligation is true or false

Response to question n°1

 For an invariant INV and an initialisation substitution INIT, the proof obligation is [INIT] INV. Here:

```
[votes1 := 0; votes2 := 0; cast := \emptyset] (votes1 \in \mathbb{N} \land votes2 \in \mathbb{N} \land cast \subseteq VOTERS \land card (cast) = votes1 + votes2)

\equiv 0 \in \mathbb{N} \land 0 \in \mathbb{N} \land \emptyset \subseteq \text{VOTERS} \land \text{card} (\emptyset) = 0 + 0
```

- This property is true because:
 - 0 is indeed a natural number
 - The empty set is indeed a subset of VOTERS (since it is a subset of any set)
 - The cardinal of the empty set is indeed 0

Question n°2

- What is the proof obligation that would allow to guarantee that the operation Vote preserves the invariant?
- Explain the main steps of the computation
- Explain (even informally) why this proof obligation is true or false

Response to question n°2 (1/2)

 For an invariant INV, a precondition PRE and a substitution SUB, the proof obligation is INV ∧ PRE ⇒ [SUB] INV. Here:

```
votes1 ∈ \mathbb{N} \land votes2 ∈ \mathbb{N} \land cast \subseteq VOTERS \land card (cast) = votes1 + votes2 \land e ∈ VOTERS \land n ∈ {1, 2} \Rightarrow
```

[cast := cast \cup {e}; **IF** n = 1 **THEN** votes1 := votes1 + 1 **ELSE** votes2 := votes2 + 1 **END**] (votes1 \in N \wedge votes2 \in N \wedge cast \subseteq VOTERS \wedge card (cast) = votes1 + votes2)

The right-hand-side [SUB] INV of the implication yields:

```
(n = 1 \Rightarrow (votes1 + 1) \in \mathbb{N} \land votes2 \in \mathbb{N} \land cast \cup \{e\} \subseteq VOTERS \land card (cast \cup \{e\}) = votes1 + 1 + votes2) \land (\neg(n = 1) \Rightarrow votes1 \in \mathbb{N} \land (votes2 + 1) \in \mathbb{N} \land cast \cup \{e\} \subseteq VOTERS \land card (cast \cup \{e\}) = votes1 + votes2 + 1)
```

Response to question n°2 (2/2)

- The proof obligation INV ∧ PRE ⇒ [SUB] INV cannot be proven
- One should indeed always have:
 card (cast ∪ {e}) = card (cast) + 1
- But if e ∈ cast then cast ∪ {e} = cast, i.e., card (cast ∪ {e}) = card (cast)!
- For the invariant to be preserved, one should for instance strengthen the precondition of the Vote operation, to ensure that the voter has not yet cast his/her vote:

```
e \in VOTERS \land e \notin cast \land n \in \{1, 2\}
```

ASM refinement

- Goal: Transform the formal specification to executable code
- Successive manual modifications of the specification
 - Suppression of non-executable elements: preconditions,
 simultaneity, nondeterminism
 - Introduction of control structures
 - Transformation of abstract data structures (sets, relations,
 - ...) into programmable data structures (arrays, files, ...)

Example: Refinement of the plane (1)

Refinement of the plane in which a seat is assigned to each passenger admitted on board

MACHINE Plane_seats

REFINES Plane

SEES Bool_TYPE

SETS SEATS = 1..cap

VARIABLES as

assign

assign: partial function that assigns a passenger to each occupied seat

INVARIANT

(assign \in SEATS + \rightarrow PASSENGERS) \land (onboard = rng (assign))

INITIALISATION assign := \emptyset

initially, no seat is attributed

rng: image of a function (here, the set of passengers on board)

Software engineering - Formal methods

79

Example: Refinement of the plane (2)

OPERATIONS

Set of values on which the partial function is defined

```
Boarding (p) =
         (p \in PASSENGERS) \land (dom (assign) \subset SEATS) \land
     (p ∉ rng (assign))
 THEN
             x \text{ WHERE } x :\in (SEATS \setminus dom(assign))
     ANY
     THEN assign (x) := p
     END
                                        Extension of the function
 END;
```

END

Proof obligations of refinement

- The B method defines new proof obligations
 - To prove that the initialisation of the refined machine is compatible with the initialisation of the original machine
 - To prove that each operation of the refined machine is compatible with the corresponding operation of the original machine
 - And hence that the refined invariant is preserved by the refined machine
- Precise definition of these proof obligations is out of the scope of this course

Software tools for the B method

- Atelier B (http://www.atelierb.eu)
 - Commercial software developed by the company ClearSy
 - Several tools
 - Syntax analyser
 - Type controler
 - Proof obligation generator
 - Automated prover
 - Interactive prover
 - Translator into several programming languages
- Free software: JBTools, B4Free, ABTools, ProB, ...

Conclusion

- There exist formal methods to help developing reliable transformational programs
 - Set-based (or model-based) methods
 - Algebraic (or property-based) methods
- Formal methods provide many advantages: early error detection, quality and reliability, utilisability of formal specifications in the next steps of the software lifecycle (test, evolution)
- The knowledge of formal methods is a plus in your practice of programming

2. Proving transformational programs

To go further (1/3)

Hoare logic

- Original article by Tony Hoare: An axiomatic basis for computer programming.
 CACM, 1969.
- Wikipedia: http://en.wikipedia.org/wiki/Hoare_logic

VDM

- Cliff B. Jones. Systematic software development using VDM. Prentice Hall, 1986.
- Wikipedia: http://en.wikipedia.org/wiki/Vienna_Development_Method

The Z notation

- J. M. Spivey. The Z notation (2nd edition). Prentice Hall, 1998. 168 pages.
- David Lightfoot. Formal specification using Z (2nd edition). Palgrave, 2000. 176 pages.
- Wikipedia : http://en.wikipedia.org/wiki/Z_notation

2. Proving transformational programs

To go further (2/3)

The B method

- J.-R. Abrial. The B-Book, assigning programs to meanings. Cambridge University Press, 1996.
- Much information and resources on B: http://www-lsr.imag.fr/B/Bsite-pages.html
- Wikipedia: http://en.wikipedia.org/wiki/B-Method

Algebraic specifications

- H. Ehrig, B. Mahr. Fundamentals of algebraic specification. Springer, 1985. 321 pages.
- Wikipedia: http://en.wikipedia.org/wiki/Algebraic_specification

Synthesis on formal methods

- Marc Frappier, Henri Habrias (editors). Software specification methods: an overview using a case study. Springer, 2000. 312 pages.
 http://www.dmi.usherb.ca/~spec
- Wikipedia: http://en.wikipedia.org/wiki/Formal_Methods

To go further (3/3)

Tools based on higher-order languages and logics

- PVS (SRI, California, USA)
 - http://pvs.csl.sri.com
- LCF (Edinburgh, Scotland and Stanford, California, USA)
 - Ancestor of Isabelle and HOL
- Isabelle (Cambridge, UK and Munich, Germany)
 - http://www.cl.cam.ac.uk/research/hvg/Isabelle
- HOL (University of Pennsylvania, USA)
 - Acronym of Higher Order Logic
 - http://www.cis.upenn.edu/~hol
- Coq (INRIA, France)
 - http://coq.inria.fr

Competence and Knowledge which will be evaluated

be able to

- understand simple algebraic specifications, simple abstract state machines and operations
- carry on simple algebraic proofs, derive and prove simple proof obligations

know

- the general notions of precondition, postcondition, loop variant, loop invariant and state invariant
- reason rigorously on a transformational programs

