Automata-Based Verification

We consider a system consisting of three concurrent processes P, Q_1 , and Q_2 :

• Process P is a lock, which can be modeled by the following Labelled Transition System, whose initial state is s_0 :

$$P: \qquad s_0 \underbrace{\sum_{\mathrm{Unlock}}^{\mathrm{Lock}} s_1}_{}$$

• Processes Q_1 and Q_2 are similar processes, each attemping to execute a sequence of actions "Open₁; Close₁" or "Open₂; Close₂", respectively. They use the lock in order to guarantee that they execute their sequence of actions atomically, i.e., without interleaving with that of the other process. Q_1 and Q_2 can be modeled as Labelled Transition Systems as follows, where the initial states are respectively $t_{1,0}$ and $t_{2,0}$:

$$Q_i \ (i \in \{1, 2\}): \qquad t_{i,0} \xrightarrow{\text{Lock}} t_{i,1} \xrightarrow{\text{Open}_i} t_{i,2} \xrightarrow{\text{Close}_i} t_{i,3}$$

- The whole system is defined as the parallel composition $P \otimes_{\{Lock, Unlock\}} (Q_1 \otimes_{\emptyset} Q_2)$.
- 1. Figure 1 (page 2) contains all states of the product $Q_1 \otimes_{\emptyset} Q_2$. Complete this figure by circling the initial state, and by adding the transitions of $Q_1 \otimes_{\emptyset} Q_2$.
- 2. Draw the (reachable part of the) product $P \otimes_{\{Lock, Unlock\}} (Q_1 \otimes_{\emptyset} Q_2)$.

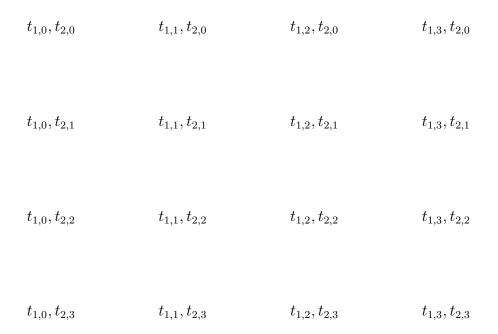


Figure 1: Product $Q_1 \otimes_{\emptyset} Q_2$ to be completed