Software Engineering exam – Part II: Formal methods (5 points)

Write your answers directly on this sheet and hand it in with the rest of your copy. Don't write your name. Bad answers will count negatively, to avoid random answers.

Algebraic specifications

We consider natural numbers nat defined by constructors $0: \to \text{nat}$ and $s: \text{nat} \to \text{nat}$, as well as lists of natural numbers nat_list with constructors nil: $\to \text{nat_list}$ and cons: nat, nat_list $\to \text{nat_list}$. We define three functions f_1, f_2 , and cat as follows (the identifier between parentheses after each equation is the equation name):

$$\begin{array}{lll} f_1: {\rm nat_list}, {\rm nat} \to {\rm nat_list} & f_2: {\rm nat_list}, {\rm nat} \to {\rm nat_list} \\ f_1(l,0) = {\rm nil} & ({\rm f_1_1}) & f_2(l,0) = l & ({\rm f_2_1}) \\ f_1({\rm nil},{\rm s}(n)) = {\rm nil} & ({\rm f_1_2}) & f_2({\rm nil},{\rm s}(n)) = {\rm nil} & ({\rm f_2_2}) \\ f_1({\rm cons}(m,l),{\rm s}(n)) = {\rm cons}(m,f_1(l,n)) & ({\rm f_1_3}) & f_2({\rm cons}(m,l),{\rm s}(n)) = f_2(l,n) & ({\rm f_2_3}) \\ {\rm cat}: {\rm nat_list}, {\rm nat_list} \to {\rm nat_list} \\ {\rm cat}({\rm nil},l) = l & ({\rm cat_1}) \\ {\rm cat}({\rm cons}(m,l_1,l_2)) = {\rm cons}(m,{\rm cat}(l_1,l_2)) & ({\rm cat_2}) \\ \end{array}$$

1) What does the function $f_1(l, n)$ compute?

$$\square$$
 the list of the n first elements of l \square the list of the n last elements of l \square the list of all but the n first elements of l

2) We want to show that $(\forall l \in \text{nat_list}, n \in \text{nat}) \operatorname{cat}(f_1(l, n), f_2(l, n)) = l$. We first consider an arbitrary l and n = 0. Complete this part of the proof by applying the specified equations:

$$cat(f_1(l,0), f_2(l,0)) = \underbrace{cat(nil, f_2(l,0))}_{= \underbrace{f_2(l,0)}}$$

$$= \underbrace{l}$$
(f_1_1)
(cat_1)
(f_2_1)

3) We now assume that there exists n such that $(\forall l)$ $\operatorname{cat}(f_1(l,n), f_2(l,n)) = l$ and we call this equation (ih_1). We want to show that $\operatorname{cat}(f_1(l,s(n)), f_2(l,s(n))) = l$. To this aim, we first consider the case $l = \operatorname{nil}$. Complete this part of the proof (provide the name of each equation applied):

$$cat(f_1(\operatorname{nil}, \mathbf{s}(n)), f_2(\operatorname{nil}, \mathbf{s}(n))) = \underbrace{\operatorname{cat}(\operatorname{nil}, f_2(\operatorname{nil}, \mathbf{s}(n)))}_{= \underline{f_2(\operatorname{nil}, \mathbf{s}(n))}} = \underbrace{f_2(\operatorname{nil}, \mathbf{s}(n))}_{= \underline{\operatorname{nil}}}$$

$$(\underline{\operatorname{cat}.1})$$

$$(\underline{\operatorname{f}.2.2})$$

4) Finally, we prove that $cat(f_1(cons(m, l), s(n)), f_2(cons(m, l), s(n))) = cons(m, l)$ using (ih_1) as follows. Complete the proof by providing the equation that was used at each line:

$$\begin{array}{lll} \operatorname{cat}(f_1(\cos(m,l),\mathbf{s}(n)),f_2(\cos(m,l),\mathbf{s}(n))) &= \operatorname{cat}(\cos(m,f_1(l,n)),f_2(\cos(m,l),\mathbf{s}(n))) & & \underline{(\underline{\mathbf{f}}\underline{\mathbf{1}}\underline{\mathbf{3}})} \\ &= \operatorname{cat}(\cos(m,f_1(l,n)),f_2(l,n)) & & \underline{(\underline{\mathbf{f}}\underline{\mathbf{2}}\underline{\mathbf{3}})} \\ &= \cos(m,\operatorname{cat}(f_1(l,n),f_2(l,n))) & & \underline{(\underline{\operatorname{cat}}\underline{\mathbf{2}})} \\ &= \cos(m,l) & & \underline{(\underline{\mathbf{ih}}\underline{\mathbf{1}})} \end{array}$$

5) We now have proven that $(\forall l, n)$ cat $(f_1(l, n), f_2(l, n)) = l$. How do you call the type of reasoning that we have used?

This is called a proof by (structural) induction.

B method

- 6) What can you guarantee when you have proven the proof obligations of a B state machine?
- \square That the implemented system will have no bug
- \square That the invariant of the state machine is satisfied
- ☐ That the state machine is a concrete program
- 7) What is the result of [IF X < 0 THEN Y := Y 1 ELSE Y := Y + 1 END IF] Y = 10?

$$\square$$
 $(X < 0 \land Y = 11) \lor (X \ge 0 \land Y = 9)$

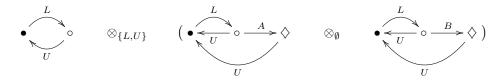
$$\square$$
 $(X < 0 \Rightarrow Y = 11) \land (X \ge 0 \Rightarrow Y = 9)$

$$\square$$
 $9 \le Y \land Y \le 11$

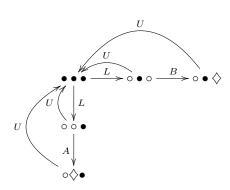
Both checked answers are equivalent. Giving only one of them was considered correct.

Automata-based verification

We consider the following product of automata, where \bullet, \circ , and \diamondsuit represent states and where \bullet is initial state:



8) The reachable states are depicted below. Draw the transitions of the product.



	quence of transitions consisting of zero or one a followed by one b , leading to a state
where the formula φ	holds
	uence of transitions consisting of (zero or more) a 's followed by one b , leading to a stat holds
•	ransitions consisting of zero or one a followed by one b lead to states where φ holds ransitions consisting of (zero or more) a 's followed by one b lead to states where φ holds