
UGA UFR IM2AG
Master CSI Year 2022-23

UE SCLAM - Software Security

TP “Security weaknesses in C”

Before you start :

Copy the tar file Examples.tar availabe on the Moodle web page and and untar it into a directory
of your choice :

tar -xvf Examples.tar

Exercise 1 Optimise

Look at the source code of optimise.c.

1. Compile it, execute it and explain the result obtained in each following case :

no option :
gcc -o optimise1 optimise.c

optimisation option :
gcc -O2 -o optimise2 optimise.c

overflow detection option :
gcc -fno-strict-overflow -o optimise3 optimise.c

optimisation and overflow detection option :
gcc -02 -fno-strict-overflow -o optimise4 optimise.c

(Look at the gcc manual to know the meaning of -O2 and -fno-strict-overflow . . .).

2. Propose a solution to make this function secure. You can use the following rule : https://
www.securecoding.cert.org/confluence/display/c/INT32-C.+Ensure+that+operations+

on+signed+integers+do+not+result+in+overflow

1

Examples.tar
https://www.securecoding.cert.org/confluence/display/c/INT32-C.+Ensure+that+operations+on+signed+integers+do+not+result+in+overflow
https://www.securecoding.cert.org/confluence/display/c/INT32-C.+Ensure+that+operations+on+signed+integers+do+not+result+in+overflow
https://www.securecoding.cert.org/confluence/display/c/INT32-C.+Ensure+that+operations+on+signed+integers+do+not+result+in+overflow


Exercise 2 WinLoose

Look at the source code of the C program winloose.c. This program takes as input two integer
arguments on the command line (argv[1] and argv[2]).

1. Compile this programm with gcc using the following command :
gcc -fno-stack-protector -o winloose winloose.c

(Have a look at the gcc manual to know the meaning of -fno-stack-protector . . .).

Execute it with some random arguments :

./winloose 5 10

./winloose 2 17

etc.

This program may leed to several possible results :
— print "You loose"

— infinite loop
— crash
— etc.

2. Explain each different result you get, drawing the execution stack.

3. Find the program input allowing to print "You win" !

4. Disassemble this program using the objdump command 1 :
objdump -S winloose

Look at the assembly code of functions <main>. Try to understand this code, and to retrieve
the offsets in the stack of the local variables.

Indication : in this 64-bits architecture registers ebp (frame pointer) and esp (stack pointer)
are called rbp end rsp ...

You can have a look to the file DemoDisassembling.pdf to see a concrete example.

5. Compile now the C program winloose.c with the “stack protection” enabled :
gcc -fstack-protector -o winloose winloose.c

What do you obtain now when running this new executable code with the inputs you pro-
vided for question 1 ?

6. Disassemble this program using the objdump command :
objdump -S winloose

Look at the assembly code of functions <main> to retrieve how the stack protection mecha-
nism is implemented.

1. alternatively you can use IDA if it is installed on your machine . . .

2



Exercise 3 Exploiting a Use-After-Free

The objective of this exercise is to show how a use-after-free vulnerability can be exploited by an
attacker to get an arbitrary code execution. The commands to be executed in the following questions
can be copy-pasted from the file exploit-uaf2.txt.

1. Have a look at the file uaf2.c to spot the use-after-free.
Compile this file using option -z execstack to set the stack as “executable” (which is not
a default option).

gcc -z execstack -o uaf2 uaf2.c

2. What do you obtain when executing the following command : ./uaf2 foo

Explain why you get this result . . .

3. Execution of uaf2 can be hijacked by an attacker and may lead to an arbitrary code execution
by giving as input a sequence of processor instructions (called a shellcode). An example of
such a shellcode allowing to open a shell under Linux x86/64 is given for instance here :
https://www.exploit-db.com/exploits/46907.

Run uaf2 with this shellcode a command line argument (see file exploit-uaf2.txt).

4. Re-compile now your code using Adress-Sanitizer in order to enforce memory safety :

gcc -g -fsanitize=address -z execstack -o uaf2 uaf2.c

Check that the previous “exploit” does not work anymore . . .

3

https://www.exploit-db.com/exploits/46907

