UGA UFR IM2AG
Master CSI Year 2022-23

UE SCLAM - Software Security

TP “Security weaknesses in C”

Before you start :

Copy the tar file Examples.tar|availabe on the Moodle web page and and untar it into a directory
of your choice :

tar -xvf Examples.tar

Exercise 1 Optimise

Look at the source code of optimise.c.

1. Compile it, execute it and explain the result obtained in each following case :
no option :
gcc -o optimisel optimise.c
optimisation option :
gcc -02 -o optimise2 optimise.c
overflow detection option :

gcc —fno-strict-overflow -o optimise3 optimise.c

optimisation and overflow detection option :
gcc -02 -fno-strict-overflow -o optimise4 optimise.c

(Look at the gcc manual to know the meaning of -02 and -fno-strict-overflow ...).

2. Propose a solution to make this function secure. You can use the following rule : https://
www.securecoding.cert.org/confluence/display/c/INT32-C.+Ensure+that+operations+
ont+signed+integers+do+not+result+in+toverflow


Examples.tar
https://www.securecoding.cert.org/confluence/display/c/INT32-C.+Ensure+that+operations+on+signed+integers+do+not+result+in+overflow
https://www.securecoding.cert.org/confluence/display/c/INT32-C.+Ensure+that+operations+on+signed+integers+do+not+result+in+overflow
https://www.securecoding.cert.org/confluence/display/c/INT32-C.+Ensure+that+operations+on+signed+integers+do+not+result+in+overflow

Exercise 2 WinLoose

Look at the source code of the C program winloose.c. This program takes as input two integer
arguments on the command line (argv[1] and argv[2]).

1. Compile this programm with gcc using the following command :
gcc —fno-stack-protector -o winloose winloose.c
(Have a look at the gcc manual to know the meaning of -fno-stack-protector ...).

Execute it with some random arguments :

./winloose 5 10
./winloose 2 17
etc.

This program may leed to several possible results :
— print "You loose"

— infinite loop

— crash

— etc.

2. Explain each different result you get, drawing the execution stack.
3. Find the program input allowing to print "You win"!

4. Disassemble this program using the objdump commandE] :
objdump -S winloose

Look at the assembly code of functions <main>. Try to understand this code, and to retrieve
the offsets in the stack of the local variables.

Indication : in this 64-bits architecture registers ebp (frame pointer) and esp (stack pointer)
are called rbp end rsp ...

You can have a look to the file DemoDisassembling.pdf to see a concrete example.

5. Compile now the C program winloose.c with the “stack protection” enabled :
gcc —fstack-protector -o winloose winloose.c

What do you obtain now when running this new executable code with the inputs you pro-
vided for question [I]?

6. Disassemble this program using the objdump command :
objdump -S winloose

Look at the assembly code of functions <main> to retrieve how the stack protection mecha-
nism is implemented.

1. alternatively you can use IDA if it is installed on your machine ...



Exercise 3 Exploiting a Use-After-Free

The objective of this exercise is to show how a use-after-free vulnerability can be exploited by an
attacker to get an arbitrary code execution. The commands to be executed in the following questions
can be copy-pasted from the file exploit-uaf2.txt.

1. Have a look at the file uaf2.c to spot the use-after-free.
Compile this file using option -z execstack to set the stack as “executable” (which is not

a default option).

gcc -z execstack -o uaf2 uaf2.c

2. What do you obtain when executing the following command : ./uaf2 foo
Explain why you get this result ...

3. Execution of uaf2 can be hijacked by an attacker and may lead to an arbitrary code execution
by giving as input a sequence of processor instructions (called a shellcode). An example of

such a shellcode allowing to open a shell under Linux x86/64 is given for instance here :
https://www.exploit-db.com/exploits/46907.

Run uvaf2 with this shellcode a command line argument (see file exploit-uaf2.txt).
4. Re-compile now your code using Adress-Sanitizer in order to enforce memory safety :
gcc -g -fsanitize=address -z execstack -o uaf2 uaf2.c

Check that the previous “exploit” does not work anymore ...


https://www.exploit-db.com/exploits/46907

