
OWL by example
Building an OWL ontology with Protegé

1

Philippe Genoud - Danielle Ziébelin – Université Grenoble Alpes (France)
(Philippe.Genoud@imag.fr, Danielle.Ziebelin@imag.fr)

Philippe Genoud Danielle Ziebelin - Université Grenoble Alpes

This lecture is a close adaptation of the Matthew Horridge tutorial :

A Practical Guide To Building OWL Ontologies
Using Protégé 4 and CO-ODE Tools Edition 1.3

http://owl.cs.manchester.ac.uk/research/co-ode/
http://130.88.198.11/tutorials/protegeowltutorial/

mailto:Philippe.Genoud@imag.fr
mailto:Danielle.Ziebelin@imag.fr
http://owl.cs.manchester.ac.uk/research/co-ode/
http://130.88.198.11/tutorials/protegeowltutorial/

OWL - Introduction

• OWL : Web Ontology Language

– a W3C standard
• OWL 1 : W3C recommendation 10 Feb. 2004

– http://www.w3.org/TR/owl-features/

• OWL 2 : W3C recommendation 11 Dec. 2012

– http://www.w3.org/TR/owl2-overview/

– OWL vocabulary : a set of primitives described in RDF
which extends the RDFS vocabulary
• OWL namespace
http://www.w3.org/2002/07/owl#  owl:

Philippe Genoud Danielle Ziebelin - Université Grenoble Alpes 2

http://www.w3.org/TR/owl-features/
http://www.w3.org/TR/owl2-overview/

OWL in the Semantic Web Stack

3
W3C, T Berners-Lee, Ivan Herman
Philippe Genoud Danielle Ziebelin - Université Grenoble Alpes

Components of OWL Ontologies
• Individuals: represent objects in the domain in which we are interested (the

domain of discourse)

Philippe Genoud Danielle Ziebelin - Université Grenoble Alpes 4

= individual (instance)

Belgium

Paraguay

China

Latvia

Elvis

Hai

Holger

Kylie

S.Claus

Rudolph

Flipper

• OWL does not use the Unique Name Assumption (UNA)
– two different names could actually refer to the same individual

– it must be explicitly stated that individuals are the same as each other, or different to each other —
otherwise they might be the same as each other, or they might be different to each other.

Components of OWL Ontologies

Philippe Genoud Danielle Ziebelin - Université Grenoble Alpes 5

= individual (instance)

Belgium

Paraguay

China

Latvia

Elvis

Hai

Holger

Kylie

S.Claus

Rudolph

Flipper

= property (relationship)

knows

• Properties: binary relations on individuals, properties link two individuals
together

• Properties can also link individual to literal values

Components of OWL Ontologies

Philippe Genoud Danielle Ziebelin - Université Grenoble Alpes 6

Person Country

= class (concept)

Animal

= individual (instance)

Belgium

Paraguay

China

Latvia

Elvis

Hai

Holger

Kylie

S.Claus

Rudolph

Flipper

= property (relationship)

knows

• Classes: OWL classes are interpreted as sets that contain individuals.

.

Components of OWL Ontologies

• Classes (continued)
– Classes can be described using formal (mathematical) descriptions

– Class descriptions state precisely the requirements for membership of
the class (the conditions that must be satisfied by an individual for it
to be a member of the class).

– Different types of class descriptions

• named classes

• enumeration of individuals

• union, intersection, complement of other class

• restrictions on properties

Philippe Genoud Danielle Ziebelin - Université Grenoble Alpes 7

Animal

Mamal

Cat

Components of OWL Ontologies

• Classes (continued)
– Classes may be organised into a superclass-subclass hierarchy (a taxonomy).

• Subclasses specialise (are subsumed by) their superclasses.

• subclass means necessary implication.

– if A is a subclass of B then ALL instances of A are instances of B (without exception)

Philippe Genoud Danielle Ziebelin - Université Grenoble Alpes 8

Animal

Mamal

Cat

• Individuals may belong
to more than one class.

Pet

Pet

• One of the key features of OWL-DL is that
these superclass-subclass relationships can be
computed automatically (inferred) by a
reasoner

Protégé

• Is a knowledge modelling environment

• Is free, open source software

• Is developed by Stanford / Manchester

• Has a large user community (approx 30k)

• Protégé 4 built solely on OWL modelling language

• Supports development of plugins to allow backend / interface
extensions

Philippe Genoud Danielle Ziebelin - Université Grenoble Alpes 9

http://protege.stanford.edu

Donwload and install Protégé on your computer

http://protege.stanford.edu/

Creating a new OWL Ontology

Philippe Genoud Danielle Ziebelin - Université Grenoble Alpes 10

1 Start Protégé

2 Replace the default URI with
http://www.pizza.com/ontologies/pizza.owl

Save your Ontology to a file: pizza.owl3

4 Select Turtle format for saving

allows information about the ontology to be specified.
For example, the ontology URI can be changed,
annotations on the ontology such as comments may
be added and edited, and namespaces and imports
can be set up via this tab.

owl:Ontology

Philippe Genoud Danielle Ziebelin - Université Grenoble Alpes 11

@prefix : <http://www.pizza.com/ontologies#> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix xml: <http://www.w3.org/XML/1998/namespace> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@base <http://www.pizza.com/ontologies> .

<http://www.pizza.com/ontologies> rdf:type owl:Ontology ;
rdfs:comment """ A pizza ontology that describes various pizzas

based on their toppings.""" .

<?xml version="1.0"?>

<rdf:RDF xmlns="http://www.pizza.com/ontologies#"
xml:base="http://www.pizza.com/ontologies"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:owl="http://www.w3.org/2002/07/owl#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
<owl:Ontology rdf:about="http://www.pizza.com/ontologies">

<rdfs:comment> A pizza ontology that describes various pizzas
based on their toppings.

</rdfs:comment>
</owl:Ontology>

</rdf:RDF>

ClassesTab: Class Editor

Philippe Genoud Danielle Ziebelin - Université Grenoble Alpes 12

editing of classes is carried out
using the ‘Classes Tab’

Class Description:
OWL axioms defining the selected class

Class hierarchy:
Subsumption hierarchy (superclass/subclass)
Structure as asserted by the ontology engineer

Class Annotations:
OWL axioms annotating the selected class

Ensure you have this initial
Class Hierarchy (taxonomy)

Creating classes

Philippe Genoud Danielle Ziebelin - Université Grenoble Alpes 13

Create classes Pizza, PizzaTopping and PizzaBase as subclasses of Thing

1

Press the
Add Subclass
button

2 Enter the class Name

Validate 3

Repeat to create PizzaTopping and PizzaBase
(try to use the Add Sibling Class button)

4

5

Disjoint classes

Philippe Genoud Danielle Ziebelin - Université Grenoble Alpes 14

Let's say the Pizza, PizzaBase and PizzaTopping classes are disjoint
 an individual (or object) cannot be an instance of more than one of these three classes

1 Select the Pizza class in
the hierarchy

Press the ‘Disjoint With’ button in
the ‘class description’ view

Select PizzaBase and PizzaTopping
in the dialog window that appears.

3

4
Validate. PizzaBase and PizzaTopping
should now appear int the Disjoint With
View.

2

Create a Class Hierarchy

Philippe Genoud Danielle Ziebelin - Université Grenoble Alpes 15

Create ThinAndCripsyBase and DeepPanBase as subclasses of PizzaBase

1

Select the PizzaBase
as the root class

2
Type in the names of the
classes to create

3
Make the new classes
disjoint

4

Ensure that the
class hierarchy is
correct

5 Ensure that
DeepPanBase and
ThinAndCripsyBase
classes have correct
descriptions

6

Create a Class Hierarchy (continued)

Philippe Genoud Danielle Ziebelin - Université Grenoble Alpes 16

Create some subclasses of PizzaTopping :
CheeseTopping, MeatTopping, …

Cheese
Mozarella
Paremezan

Meat
Ham
Pepperoni
Salami
SpicyBeef

Seafood
Anchovy
Prawn
Tuna

Vegetable
Caper
Mushroom
Olive
Onion
Pepper

GreenPepper
JalapenoPepper
RedPepper

Tomato

Enter the Topping suffix
for all the topping classes

1

2 Use tabs to indent the
class names according to
the hierarchy

Make all the sibling classes
disjoint when validating

Hierarchy to create (without the Topping suffix)

3

Philippe Genoud Danielle Ziebelin - Université Grenoble Alpes 17

Creating a Class Hierarchy (continued)

Ensure that the
class hierarchy is
correct

4

Ensure that the
class descriptions are
correct

5

Class Hierarchy

• In OWL subclass means necessary implication.

– if A is a subclass of B then ALL instances of A are instances
of B (without exception)

Philippe Genoud Danielle Ziebelin - Université Grenoble Alpes 18

VegetableTopping

PizzaTopping

TomatoTopping

OWL Properties

• OWL Properties represent relationships

• two main types of properties
– Object properties : relationships between two individuals

Philippe Genoud Danielle Ziebelin - Université Grenoble Alpes 19

– Datatype properties : link an individual to a literal

rdf:Property

owl:ObjectProperty

owl:DataTypeProperty

OWL properties

• a third type of property
– Annotation properties: can be used to add information (metadata -

data about data) to classes, individuals and object/datatype
properties.

Philippe Genoud Danielle Ziebelin - Université Grenoble Alpes 20

– Object properties and Datatype properties
may be marked as Annotation properties

rdf:Property

owl:ObjectProperty

owl:DataTypeProperty

owl:AnnotationProperty

dc:creator

Inverse properties

• Each object property may have a corresponding inverse
property.
– If some property links individual a to individual b then its inverse

property will link individual b to individual a.

Philippe Genoud Danielle Ziebelin - Université Grenoble Alpes 21

hasParent has an inverse property that is hasChild

Exemples

Object Properties Tab

Philippe Genoud Danielle Ziebelin - Université Grenoble Alpes 22

editing of Object Properties is
carried out using the ‘Classes Tab’

Property Description:
OWL axioms defining the selected
Property

Property hierarchy:
hierarchical structure
(superProperty/subProperty)
as asserted by the ontology engineer

PropertyAnnotations:
OWL axioms annotating the selected Property

Create an Object Property hierarchy

Philippe Genoud Danielle Ziebelin - Université Grenoble Alpes 23

Create an Object Property hasIngredient as subProperty of topObjectProperty

Press the Add
subproperty
button 1

2 Enter the property name

Validate

Create hasBase and hasTopping
as sub properties of hasIngredient

3

4

Ensure the Object Property
hierarchy is correct

5

Create inverse properties

Philippe Genoud Danielle Ziebelin - Université Grenoble Alpes 24

Create an Object Property isIngredientOf as the inverse of hasIngredient

Select topObjectProperty and
press the Add subproperty
button

1 2 Enter the property name

Validate 3

Press the Add icon next to
Inverse Of button on the
Property Description view

4

Select the hasIngredient
property in the property
selection dialog

5

Validate and ensure
that isIngredientOf
has a correct description

6

Create inverse properties (continued)

Philippe Genoud Danielle Ziebelin - Université Grenoble Alpes 25

Create an Object Property isBaseOf as the inverse of the hasBase property

Select the hasBase
property1

Press the Add icon next to
Inverse Of button on the
Property Description view

2

Create a new Property
named isBaseOf

3

You can optionally place the new isBaseOf
property as a sub-property of isIngredientOf
(N.B This will get inferred later anyway when you
use the reasoner).

Validate and ensure
that hasBase has a
correct description

4Create an Object Property
isToppingOf as the inverse of
the hasTopping property

5

Owl Object Property characteristics

• OWL allows the meaning of properties to be enriched through the use of
property characteristics.

• Functional Properties
– If a property is functional, for a given individual, there can be at most one individual that

is related to the individual via the property.

– Example : hasBirthMother a functional property : something can only have one birth
mother

Philippe Genoud Danielle Ziebelin - Université Grenoble Alpes 26

if Peggy and Margaret were explicitly stated to be two different individuals then the
above statements would lead to an inconsistency.

Owl Object Property characteristics

• Inverse Functional Properties
– If a property is inverse functional then it means that the inverse property is functional.

For a given individual, there can be at most one individual related to that individual via
the property.

– Example :

isBirthMotherOf : the inverse property of hasBirthMother

(since hasBirthMother is functional, isBirthMotherOf is inverse functional)

Philippe Genoud Danielle Ziebelin - Université Grenoble Alpes 27

Owl Object Property characteristics

• Transitive Properties
– If a property P is transitive, and the property relates individual a to individual b, and

also individual b to individual c, then we can infer that individual a is related to
individual c via property P.

– Example : hasAncestor

Philippe Genoud Danielle Ziebelin - Université Grenoble Alpes 28

Owl Object Property characteristics

• Symetric Properties
– If a property P is symmetric, and the property relates individual a to individual b then

individual b is also related to individual a via property P.

– Example : hasSibling

Philippe Genoud Danielle Ziebelin - Université Grenoble Alpes 29

• Asymetric Properties
– If a property P is asymmetric, and the property relates individual a to individual b then

individual b cannot be related to individual a via property P.

– Example : hasChild

Owl Object Property characteristics

• Reflexive Properties
– A property P is said to be reflexive when the property must relate individual a to itself.

– Example : knows

Philippe Genoud Danielle Ziebelin - Université Grenoble Alpes 30

• Irreflexive Properties
– If a property P is irreflexive, it can be described as a property that relates an individual

a to individual b, where individual a and individual b are not the same.

– Example : isMotherOf

Changing property characteristics

Philippe Genoud Danielle Ziebelin - Université Grenoble Alpes 31

Make the hasIngredient property transitive

Select the hasIngredient
property 1

Tick the Transitive tick box on
the Property Characteristics
View

2

Select the isIngredientOf property, which is the inverse of hasIngredient. Ensure that the transitive
tick box is ticked.

If a property is transitive then its inverse property should also be transitive.

3
this must be done manually in Protégé 4. However, the reasoner will assume that if a property is transitive, its

inverse property is also a transitive.

Make the hasBase property functional4

Individuals

Specify Domain and Range

Philippe Genoud Danielle Ziebelin - Université Grenoble Alpes 32

Specify the Pizza class as being the domain of the hasTopping property

Select the hasTopping
property1

4 Specify the PizzaTopping class as being
the range of the hasTopping property

Ensure the hasTopping
description is correct5

Press the Add icon next to
Domain button on the
Property Description view

2

Select Pizza and
validate

3

Individuals

Individuals Tab

Philippe Genoud Danielle Ziebelin - Université Grenoble Alpes 33

edition of Individuals is carried
out using the ‘Individuals Tab’

Selected Individual (pizza1) description:
OWL axioms the selected Individual is subject of.

List of individuals belonging*
to the selected class (here
Thing)

* the list of individuals for which

membership is asserted

Annotations

Class membership and
identity axioms

Object and DataType
properties the selected
Individual is subject of.

see the video to configure Individual View.

Individuals

Creating new Individuals

Philippe Genoud Danielle Ziebelin - Université Grenoble Alpes 34

Select a class in the Class
hierarchy view of the
Individuals Tab 1

Click on the Add individual
button on the Members list
view

2

identify the new individual
with a name3

Create new individuals p1, t1 in the class owl:Thing4

Create a new individual paremezan1 in the class ParemezanTopping

Individuals

Creating new Individuals

Philippe Genoud Danielle Ziebelin - Université Grenoble Alpes 35

Create a new hasTopping relation in between individual p1 and individual t1

Select p1 in the
owl:Thing
members list

1
Click on the Add object
property assertion in
the Property assertions
view for p1. 2

Select hasTopping property
and t1 value in the property
assertion dialog

3
Ensure that p1 description is correct 4

Let's do some (basic)
semantic reasoning

5

• ontologies that are described using OWL-DL can be processed
by a reasoner.
– thanks to the semantics of the description language the reasoner can

deduce new facts from the facts asserted in the ontology.

– example of services offered by a reasoner

• classification

– test whether or not one class is a subclass of another class.
 to compute the inferred ontology class hierarchy

• consistency checking

– Based on the description (conditions) of a class the reasoner can check
whether or not it is possible for the class to have any instances.
 class is inconsistent if it cannot possibly have any instances

• realization

– find the classes of individuals

Philippe Genoud Danielle Ziebelin - Université Grenoble Alpes 36

Reasoning

OWL Reasoners

Reasoners in Protege
• two reasoners integred to Protégé 4.3

– FaCT++ http://owl.man.ac.uk/factplusplus/
• C++ reasoner

– Hermit http://hermit-reasoner.com/
• Java reasoner (OWL-API) based on “hypertableau” calculus

Boris Motik, Rob Shearer, and Ian Horrocks.
Hypertableau Reasoning for Description Logics.

Journal of Artificial Intelligence Research, 36:165-228, 2009.
http://www.hermit-reasoner.com/publications/msh09hypertableau.pdf

Philippe Genoud Danielle Ziebelin - Université Grenoble Alpes 37

• other reasoners (commercial)
‒ Pelet

‒ RACER

http://owl.man.ac.uk/factplusplus/
http://hermit-reasoner.com/

Reasoning on individuals

Philippe Genoud Danielle Ziebelin - Université Grenoble Alpes 38

In the Reasoner drop dow menu
start the Hermit Reasoner

1

Inferences are displayed with a
yellow background

2

asserted
property

inferred
property

Ensure that t1 as been infered to be a
PizzaTopping member, an ingredient and
atopping of p1.

3

Reasoning on individuals

Philippe Genoud Danielle Ziebelin - Université Grenoble Alpes 39

Assert that individual paremezan1
isIngredientOf t11

Verify that
p1 hasIngredient paremezan1
has been inferred. If necessary
synchronize the reasoner.

2 3
Look for explanations about this
inference

Reasoning on individuals

Philippe Genoud Danielle Ziebelin - Université Grenoble Alpes 40

create a new individual p2 in the class owl;Thing

p2 hasTopping t1

make hasTopping inverseFonctional

 verify that p2 is the same as p1

Testing for Inconsistent Classes

Philippe Genoud Danielle Ziebelin - Université Grenoble Alpes 41

To demonstrate the use of the reasoner in detecting inconsistencies in the ontology create
a ProbeInconsistentTopping class that is a subclass of both CheeseTopping and also
VegetableTopping.

Create a subclass of
CheeseTopping named
ProbeInconsistentTopping

1
2

Click on the Add SubClass of button on
the ProbeInconsistentTopping
class Description View.

3
In the Class hierarchy tab of the
dialog select VegetableTopping class

ensure that the ProbeInconsistentTopping
class description is correct. 4

Reasoning about classes

Philippe Genoud Danielle Ziebelin - Université Grenoble Alpes 42

In the Reasoner drop dow menu
start the Hermit Reasoner

1

In the Class hierarchy(inferred) tab,
ProbeInconsistentTopping should
appear as a subclass of Nothing. In the
description view it should appear as Equivalent
to the Nothing class.

2

owl:Nothing is a predefined class
whose extension is the empty set.
Consequently, owl:Nothing is a
subclass of every class and a class
equivalent to owl:Nothing is
inconsistent, it can't have any instances.

Nothing ???

because its superclasses VegetableTopping
and CheeseTopping are disjoint from each
other individuals that are members of the class
CheeseTopping cannot be members of the class
VegetableTopping and vice-versa.

Why ProbeInconsistentTopping has
been found as inconsistent ?

Reasoning about classes

Testing for Inconsistent Classes

Reasoning about classes

Testing for Inconsistent Classes

Philippe Genoud Danielle Ziebelin - Université Grenoble Alpes 43

Remove the disjoint statement between CheeseTopping and VegetableTopping to see
what happens.

Select the
CheeseTopping class1

2
Click on the Remove Disjoint With
button on the CheeseTopping class
Description View.

Synchronize the reasoner to
take into account the change
to the ontology

3

Verify that ProbeInconsistentTopping is no longer inconsistent.4

Fix the ontology by making again CheeseTopping and its siblings classes disjoint from each other5

• Using properties to describe classes

– Properties restriction

Philippe Genoud Danielle Ziebelin - Université Grenoble Alpes 44

Properties Restrictions

• In the previous examples, classes were explicitly defined.

 named classes

• In OWL a class can be described or defined by the relationships that its
members (individuals) participate in.

 properties restrictions (another kind of classes)

– examples:

• The class of individuals that have more than three hasTopping
relationships.

• The class of individuals that have at least one hasTopping relationship to
individuals that are members of MozzarellaTopping – i.e. the class of
things that have at least one kind of mozzarella topping.

• The class of individuals that only have hasTopping relationships to
members of VegetableTopping – i.e. the class of individuals that only
have toppings that are vegetable toppings.

Philippe Genoud Danielle Ziebelin - Université Grenoble Alpes 45

Using properties to describe classes

Categories of restrictions

• three main categories of properties restrictions
– Quantifiers Restrictions

• Existential Restrictions (owl:someValuesFrom restricition ∃ quantifier in D.L.)

– classes of individuals that participate in at least one relationship along a specified
property to individuals that are members of a specified class.

– ex : the class of individuals that have at least one (some) hasTopping relationship to
members of MozzarellaTopping

• Universal Restrictions (owl:allValuesFrom restriction  ∀ quantifier in D.L.)

– classes of individuals that for a given property only have relationships along this property
to individuals that are members of a specified class.

– ex: the class of individuals that only have hasTopping relationships to members of
VegetableTopping.

– Cardinality Restrictions

– hasValue Restrictions

Philippe Genoud Danielle Ziebelin - Université Grenoble Alpes 46

Using properties to describe classes

Philippe Genoud Danielle Ziebelin - Université Grenoble Alpes 47

Select the
Pizza
class

1

Select the Add icon next to SubClass Of header
in the Class Description View .

2

Select the hasBase on
the property hierarchy in
Restricted property view.

3

Select the Some (existential)
restriction type.

4

Select the PizzaBase on
the xlass hierarchy in
Restricted property view.

5

Validate and ensure that the
Pizza description is correct.6

Add an existential restriction to the Pizza class that specifies a Pizza must have a PizzaBase

Using properties to describe classes

Creating a class with an existential restriction

Using properties to describe classes

Interpretation of existential restrictions

Philippe Genoud Danielle Ziebelin - Université Grenoble Alpes 48

Restrictions are used in OWL class descriptions to specify anonymous
superclasses (unnamed classes) of the class being described.
The anonymous class corresponding to a restriction contains all of the individuals that
satisfy the restriction – i.e. all of the individuals that have the relationships required to
be a member of the class.

Meaning of the restriction

:Pizza rdf:type owl:Class ;
rdfs:subClassOf [

rdf:type owl:Restriction ;
owl:onProperty :hasBase ;
owl:someValuesFrom :PizzaBase

] .

<!-- http://www.pizza.com/ontologies/pizza.owl#Pizza -->

<owl:Class rdf:about="http://www.pizza.com/ontologies/pizza.owl#Pizza">
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="http://www.pizza.com/ontologies/pizza.owl#hasBase"/>
<owl:someValuesFrom rdf:resource="http://www.pizza.com/ontologies/pizza.owl#PizzaBase"/>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

RDF/XML

Turtle blank node corresponding
to an anonymous class

Using properties to describe classes

Interpretation of existential restrictions

Philippe Genoud Danielle Ziebelin - Université Grenoble Alpes 49

:Pizza rdf:type owl:Class ;
rdfs:subClassOf [

rdf:type owl:Restriction ;
owl:onProperty :hasBase ;
owl:someValuesFrom :PizzaBase

] .

Turtle

the class Pizza is a subclass of Thing and a subclass of the
things that have a base which is some kind of PizzaBase.

Pizza
PizzaBase

Things that have at least
one PizzaBase

(hasBase some PizzaBase)

the someValuesFrom restriction defines a
necessary condition :
To be a Pizza an individual must at least
have one hasBase relationship with a
PizzaBase.

but it is not sufficient :
individuals that have a PizzaBase are not
necessary members of the Pizza class

Using properties to describe classes

Creating subclasses of the Pizza class

Philippe Genoud Danielle Ziebelin - Université Grenoble Alpes 50

Create a subclass of Pizza called NamedPizza, and a subclass of
NamedPizza called MargheritaPizza

1

Create an existential (some) restriction on
MargheritaPizza that acts along the property
hasTopping with a filler of MozzarellaTopping
to specify that a MargheritaPizza has at least one
MozzarellaTopping

2

Do the same for TomatoTopping3

Using properties to describe classes

Creating other subclasses of NamedPizza

Philippe Genoud Danielle Ziebelin - Université Grenoble Alpes 51

Now create the class to represent an Americana Pizza, which has
toppings of pepperoni, mozzarella and tomato.

Select the
MargheritaPizza class

1

Select Duplicate
selected class from
the Edit menu

name the duplicate class
AmericanaPizza

3

select the + icon next to

Subclass of header in the
AmericanaPizza
description view4

Add an existential (some)
restriction for property
hasTopping with filer
PepperoniTopping

5

2

Using properties to describe classes

Creating other subclasses of NamedPizza

Philippe Genoud Danielle Ziebelin - Université Grenoble Alpes 52

Create an AmericanaHotPizza class
same topping as AmericanaPizza + Jalapeno pepper

Create an SohoPizza class
same topping as MagheritaPizzaPizza + olives+ parmezan cheese

1

2

Select the MargheritaPizza
class

3 Make subclasses of NamedPizza disjoint from each other

a Select the Make primitive
siblings disjoint option in
the Edit menu

b

Philippe Genoud Danielle Ziebelin - Université Grenoble Alpes 53

Create a subclass of Pizza called CheesyPizza and specify that it has at least one
topping that is a kind of CheeseTopping

CheesyPizza

hasTopping some
CheeseTopping

if something is a CheesyPizza it is
necessarily a Pizza and it is necessary for
it to have at least one topping that is a
kind of CheeseTopping.

A necessary condition for CheesyPizza individuals
but not sufficient to determine that an individual with
a CheeseToping is a member of the CheesyPizza
class

What does it means ?

Pizza

Using properties to describe classes

Necessary and sufficient conditions

Philippe Genoud Danielle Ziebelin - Université Grenoble Alpes 54

http://www.pizza.com/ontologies/pizza.owl#CheesyPizza

:CheesyPizza rdf:type owl:Class ;
rdfs:subClassOf :Pizza ,

[rdf:type owl:Restriction ;
owl:onProperty :hasTopping ;
owl:someValuesFrom :CheeseTopping

] .

<!-- http://www.pizza.com/ontologies/pizza.owl#CheesyPizza -->

<owl:Class rdf:about="http://www.pizza.com/ontologies/pizza.owl#CheesyPizza">
<rdfs:subClassOf rdf:resource="http://www.pizza.com/ontologies/pizza.owl#Pizza"/>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="http://www.pizza.com/ontologies/pizza.owl#hasTopping"/>
<owl:someValuesFrom rdf:resource="http://www.pizza.com/ontologies/pizza.owl#CheeseTopping"/>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

RDF/XML

TurtleCheesyPizza

Using properties to describe classes

Necessary and sufficient conditions

Using properties to describe classes

hasTopping some
CheeseTopping

Necessary and sufficient conditions

Philippe Genoud Danielle Ziebelin - Université Grenoble Alpes 55

Convert the necessary conditions for CheesyPizza into necessary & sufficient conditions

Ensure that CheesyPizza is
selected in the class hierarchy
and then in the Edit menu
select Convert to defined
class

1

The Class Description View
should now look like this

2

PizzaCheesyPizza

if an individual is a member of the class Pizza and it
has at least one topping that is a member of the class
CheeseTopping then these conditions are sufficient
to determine that the individual must be a member of
the class CheesyPizza

Using properties to describe classes

Necessary and sufficient conditions

Philippe Genoud Danielle Ziebelin - Université Grenoble Alpes 56

http://www.pizza.com/ontologies/pizza.owl#CheesyPizza

:CheesyPizza rdf:type owl:Class ;
owl:equivalentClass [rdf:type owl:Class ;

owl:intersectionOf (
:Pizza
[rdf:type owl:Restriction ;
owl:onProperty :hasTopping ;
owl:someValuesFrom :CheeseTopping

]
)

] .

<!-- http://www.pizza.com/ontologies/pizza.owl#CheesyPizza -->

<owl:Class rdf:about="http://www.pizza.com/ontologies/pizza.owl#CheesyPizza">
<owl:equivalentClass>

<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">

<rdf:Description rdf:about="http://www.pizza.com/ontologies/pizza.owl#Pizza"/>
<owl:Restriction>

<owl:onProperty rdf:resource="http://www.pizza.com/ontologies/pizza.owl#hasTopping"/>
<owl:someValuesFrom

rdf:resource="http://www.pizza.com/ontologies/pizza.owl#CheeseTopping"/>
</owl:Restriction>

</owl:intersectionOf>
</owl:Class>

</owl:equivalentClass>
</owl:Class>

RDF/XML

TurtleCheesyPizza

Using properties to describe classes

Primitive and Defined Classes

Philippe Genoud Danielle Ziebelin - Université Grenoble Alpes 57

hasTopping some CheeseTopping

Pizza

Necessary Conditions

Necessary & Sufficient Conditions

If an individual is a member of CheesyPizza then it must satisfy
the conditions. If some individual satisfies the conditions then
the individual must be a member of CheesyPizza

If an individual is a member of CheesyPizza then it must satisfy
the conditions. However if some individual satisfies these
necessary conditions, we cannot say that it is a member of
CheesyPizza

hasTopping some CheeseTopping

Pizza

CheesyPizza

implies

impliesimplies

Primitive Class

Defined Class*

* Classes that have at least one set of necessary and sufficient conditions are known as defined classes —
they have a definition, and any individual that satisfies the definition will belong to the class.

CheesyPizza

Using properties to describe classes

Automated Classification of Defined Classes

Philippe Genoud Danielle Ziebelin - Université Grenoble Alpes 58

Use the reasoner to automatically compute the subclasses of CheesyPizza
(select Start reasoner or Synchronize reasoner in the Reasoner menu).

Asserted Class Hierarchy Inferred Class Hierarchy

Pizza

NamedPizza CheesyPizza

AmaricanaHotPizza SohoPizzaAmaricanaPizza MargheritaPizza

Any individual that is a Pizza and has at least one topping that is a
CheeseTopping is a member of the class CheesyPizza

All of the individuals that are described by the classes
MargheritaPizza, AmericanaPizza, AmericanHotPizza
and SohoPizza are Pizzas and they have at least one topping
that is a CheeseTopping

 MargheritaPizza, AmericanaPizza,
AmericanHotPizza and SohoPizza must

be subclasses of CheesyPizza

reasoner

Using properties to describe classes

Validate and ensure that
VegetarianPizza
description is correct

http://www.pizza.com/ontologies/pizza.owl#VegetarianPizza
:VegetarianPizza

rdf:type owl:Class ;
rdfs:subClassOf :Pizza ,

[rdf:type owl:Restriction ;
owl:onProperty :hasTopping ;
owl:allValuesFrom [rdf:type owl:Class ;

owl:unionOf (
:CheeseTopping
:VegetableTopping

)
]

] .

Creating a class with an universal restriction

Philippe Genoud Danielle Ziebelin - Université Grenoble Alpes 59

Create a class to describe a VegetarianPizza, a class whose members can only have
toppings that are CheeseTopping or VegetableTopping.

Create a subclass of
Pizza, and name it
VegetarianPizza

1

Click on the Add SubClass of button
on the VegetarianPizza class
Description View.

2

Type hasTopping only (CheeseToping or
VegetableTopping) in the Class expression
editor tab of the dialog.
(CTRL+Space for code completion)

3

4

Universal (∀ quantifier)restriction

Using properties to describe classes

Interpretation of universal restrictions

Philippe Genoud Danielle Ziebelin - Université Grenoble Alpes 60

http://www.pizza.com/ontologies/pizza.owl#VegetarianPizza
:VegetarianPizza

rdf:type owl:Class ;
rdfs:subClassOf :Pizza ,

[rdf:type owl:Restriction ;
owl:onProperty :hasTopping ;
owl:allValuesFrom [rdf:type owl:Class ;

owl:unionOf (
:CheeseTopping
:VegetableTopping

)
]

] .

If something is a member of the class VegetarianPizza it is
necessary for it to be a kind of Pizza and it is necessary for it to
only (∀ universal quantifier) have toppings that are kinds of
CheeseTopping or kinds of VegetableTopping.

:VegetarianPizza
rdf:type owl:Class ;
rdfs:subClassOf :Pizza ,

[rdf:type owl:Restriction ;
owl:onProperty :hasTopping ;
owl:allValuesFrom [rdf:type owl:Class ;

owl:intersectionOf (
:CheeseTopping
:VegetableTopping

)
]

] .
If something is a member of the class VegetarianPizza it is
necessary for it to be a kind of Pizza and it is necessary for it to
only (∀ universal quantifier) have toppings that are kinds of
CheeseTopping and kinds of VegetableTopping.

Inconsistent because CheeseTopping and
VegetableTopping are disjoint classes

and

Using properties to describe classes

Interpretation of universal restrictions

Philippe Genoud Danielle Ziebelin - Université Grenoble Alpes 61

Pizza

VegetableTopping

CheeseTopping

PizzaTopping
VegetarianPizza

All hasTopping relationships that individuals which are members
of the class VegetarianPizza participate in must be to individuals that are
either members of the class CheeseTopping or VegetableTopping

The class VegetarianPizza
also contains individuals that
are Pizzas and do not
participate in any
hasTopping relationships

est-ce vrai si on a fait une defined class ? Pizza sans topping classée dans Vegy ?

Automated Classification and Open World Reasoning

Classification of NamedPizzas

Philippe Genoud Danielle Ziebelin - Université Grenoble Alpes 62

Pizza

NamedPizzaCheesyPizza

AmaricanaHotPizza SohoPizzaAmaricanaPizza MargheritaPizza

VegetarianPizza

Equivalent To Equivalent To

Subclass Of Subclass Of Subclass Of Subclass Of

Use the reasoner to classify the ontology (Start Reasoner or Synchronize Reasoner button
in the Reasoner drop down menu)

We don't get this
inferences. Why ?

MargheritaPizza and SohoPizza have something missing from their definition that means
they cannot be classified as subclasses of VegetarianPizza

Open World Assumption (OWA)

• Open World Assumption : we cannot assume something
doesn’t exist until it is explicitly stated that it does not exist
– In other words, because something hasn’t been stated to be true, it

cannot be assumed to be false — it is assumed that ‘the knowledge
just hasn’t been added to the knowledge base’.

Philippe Genoud Danielle Ziebelin - Université Grenoble Alpes 63

MargheritaPizzaVegetarianPizza

Equivalent To Subclass Of
OWA  until we explicitly say that a MargheritaPizza
only has these kinds of toppings, it is assumed (by the
reasoner) that a MargheritaPizza could have other
toppings

a closure axiom must be added on the hasTopping property

Automated Classification and Open World Reasoning

• Closure axiom on a property : a universal restriction (only) that acts along
the property to say that it can only be filled by the specified fillers.

restriction filler : the union of the fillers that occur in the existential restrictions for
the property

Automated Classification and Open World Reasoning

Adding a closure axiom to MargheritaPizza

Philippe Genoud Danielle Ziebelin - Université Grenoble Alpes 64

Select
MargheritaPizza

1

Click on the Add SubClass of button on
the MargheritaPizza class
Description View.

2

Type hasTopping only (MozarellaTopping or
TomatoTopping) in the Class expression editor
tab of the dialog. (CTRL+Space for code completion)

3

Execute the Reasoner to verify that
MargheritaPizza is correctly classified

4

Automated Classification and Open World Reasoning

Adding a closure axiom to other NamedPizzas

Philippe Genoud Danielle Ziebelin - Université Grenoble Alpes 65

Select
SohoPizza 1

In the class description view,
select one of the restrictions

2

Type hasTopping only (MozarellaTopping or
TomatoTopping) in the Class expression editor
tab of the dialog. (CTRL+Space for code completion)

Do the same for AmericanaPizza and AmericanaHotPizza4

Add a closure axiom on the hasTopping property for SohoPizza .

Right click the restriction and
select Create closure axiom.3

Execute the reasoner5

verify that
NamedPizzas are
correctly classified

6

Value Partitions

Value Partition

• we want to express the spiciness that can be one of the three
values : Mild, Medium and Hot

use a value partition

• Value Partition:
– restrict the range of possible values to an exhaustive list

– not part of OWL

– a design pattern : a solution that has been developed by experts and
is now recognized as a proven solution for solving common modelling
problems

Philippe Genoud Danielle Ziebelin - Université Grenoble Alpes 66

Value Partitions

Creating a Value Partition in OWL

1. Create a class to represent the ValuePartition.
SpicinessValuePartition to represent a ‘spiciness’ ValuePartition

2. Create subclasses of the ValuePartition to represent the possible options
for the ValuePartition.

Mild, Medium and Hot classes as subclasses SpicinessValuePartition.

3. Make the subclasses of the ValuePartition class disjoint.

4. Provide a covering axiom to make the list of value types exhaustive

5. Create an object property for the ValuePartition.

hasSpiciness property

6. Make the property functional.

7. Set the range of the property as the ValuePartition class.

set the range of hasSpiciness property to SpicinessValuePartition.

Philippe Genoud Danielle Ziebelin - Université Grenoble Alpes 67

Covering Axioms
• A covering axiom consists of two parts:

– the class that is being ‘covered’,

– and the classes that form the covering

• in OWL  define the union of the classes forming the covering as a
superclass of the covered class

Philippe Genoud Danielle Ziebelin - Université Grenoble Alpes 68

Value Partitions

SpicinessValuePartition Medium

Mild

Hot

SpicinessValuePartition Medium

Mild

Hot

without covering axiom with covering axiom
Mild, Medium and Hot are subclasses of SpicinessValuePartition

and Mild U Medium U Hot is a superclass of SpicinessValuePartition

Value Partitions

Creating SpicinessValuePartition

Philippe Genoud Danielle Ziebelin - Université Grenoble Alpes 69

Create ValuePartition a sub
class of Thing and

SpicinessValuePartition a
sub class of ValuePartition. 1

2Create Hot, Medium, and Mild
three subclasses of

SpicinessValuePartition. Make the classes Hot, Medium, and Mild disjoint from each
other(select the class Hot, and select ‘Make all primitive
siblings disjoint’ from the ‘Edit’ menu.

3

Click on the Add Equivalent To
button on the
SpicinessValuePartition class
Description View.

4

Add a covering axiom : type Hot or Medium
or Mild in the dialog box.

5

6
In the ‘Object Property Tab’ create a
new Object Property called hasSpiciness.

Set the range of this property to
SpicinessValuePartition.

Make this new property functional

Value Partitions

Adding Spiciness to Pizza Toppings

Philippe Genoud Danielle Ziebelin - Université Grenoble Alpes 70

Select
JalapenoPepperTopping. 1

Click on the Add
Subclass Of button 2

Create an existential restriction
hasSpiciness some Hot in
the 'Object restriction
creator' dialog

3

Ensure that
JalapenoPepperTopping
description looks like this

4

Repeat this for each of the bottom level
PizzaToppings (those that have no subclasses) to
state it's spiciness (one of Hot, Medium or Mild)

5
Optional

Philippe Genoud Danielle Ziebelin - Université Grenoble Alpes 71

Value Partitions

Creating SpicyPizza as subclass of Pizza

Create SpiccyPizza as subclass of Pizza with the following
description.

An anonymous class which contains the individuals that are members of the
class PizzaTopping and also members of the class of individuals that are
related to the members of class Hot via the hasSpiciness property
 the things that are PizzaToppings and have a spiciness that is Hot.

Meaning of SpicyPizza description :

• all members of SpicyPizza are Pizzas and have at least one topping that has a Spiciness of Hot
• anything that is a Pizza and has at least one topping that has a spiciness of Hot is a SpicyPizza

Philippe Genoud Danielle Ziebelin - Université Grenoble Alpes 72

Value Partitions

Classifying the ontology

Run the reasoner1

Verify that AmericanHotPizza
has been classified as a subclass
of SpicyPizza

2

the reasoner has automatically
computed that any individual that is a
member of AmericanHotPizza is
also a member of SpicyPizza

Cardinality Restrictions

Cardinality Restrictions

• Cardinality Restrictions
– describe the class of individuals that have at least, at most or exactly a

specified number of relationships with other individuals or datatype
values.

– For a given property P,
• Minimum Cardinality Restriction  the minimum number of P relationships that an

individual must participate in.

• Maximum Cardinality Restriction  the maximum number of P relationships that

an individual can participate in.

• Cardinality Restriction specifies the exact number of P relationships that an
individual must participate in.

Philippe Genoud Danielle Ziebelin - Université Grenoble Alpes 73

Relationships are only counted as separate relationships if it can be
determined that the individuals that are the fillers for the
relationships are different to each other. pizza1

top1

top2

The individual pizza1 satisfies a minimum cardinality
restriction of 2 along the hasTopping property if the

individuals top1 and top2 are distinct individuals

Cardinality Restrictions

Creating and classifying a class with a cardinality restriction

Philippe Genoud Danielle Ziebelin - Université Grenoble Alpes 74

1. Create a subclass of Pizza called InterestingPizza.

2. Press the Add button on the ‘SubClass Of’ section of the class description view.

3. In the class expression editor type

1. hasTopping as a property to be restricted.

2. min to create a minimum cardinality restriction.

3. 3 to specify a minimum cardinality of three

4. Press ‘Enter’ to close the dialog and create the restriction.

5. Select the ‘Convert to defined class’ option in the ‘Edit’ menu.

class description after step 4

class description after step 5

What does this mean?

InterestingPizza : the set of individuals that
are members of the class Pizza and that have at
least three hasTopping relationships with other
(distinct) individuals.

6. Run the reasoner

class hierarchy after classification

Cardinality Restrictions

Qualified Cardinality Restrictions

• Qualified Cardinality Restrictions
– more specific than cardinality restrictions  they state the class of

objects within the restriction.

Philippe Genoud Danielle Ziebelin - Université Grenoble Alpes 75

define a FourCheesePizza class that describes the set of individuals
that are members of the class NamedPizza and that have exactly four
hasTopping relationships with (distinct) individuals of the
CheeseTopping class.

1. Create a subclass of NamedPizza called FourCheesePizza.

2. Press the Add button on the ‘SubClass Of’ section of the class description view.

3. In the class expression editor type

1. hasTopping as a property to be restricted.

2. exactly to create an exact cardinality restriction.

3. 4 to specify exact cardinality of four

4. CheeseTopping to specify the type of topping

4. Press ‘Enter’ to close the dialog and create the restriction.

5. Select the ‘Convert to defined class’ option in the ‘Edit’ menu.

class description after step 5

to perform these steps
it's also possible to use
the Object Restriction creator
tab in the dialog

DataType properties

DataType properties

• DataType Property : used to relate an individual to a concrete
data value that may be typed (XML Schema Datatype) or
untyped (rdf literal)

Philippe Genoud Danielle Ziebelin - Université Grenoble Alpes 76

example: use some numeric ranges to broadly classify particular pizzas as high or low calorie.
 a datatype property hasCalorificContentValue to state the calorie content of particular pizzas

Data Properties tab to manage
DataType Properties

Create a new DataType
Property in the Data

property hierarchy

1
Enter its name2

Make it functional
one pizza can only

ever have one
calorie value

3

Create a datatype restriction to state that all Pizzas have a calorific value

Select Pizza in
the class

hierarchy

1

In the Data restriction creator
tab enter the restriction
hasCalorificContent some
integer

add a SubClass of
description

3

2

DataType properties

using a DataType Property in a restriction

• A datatype property can also be used in a restriction to relate individuals
to members of a given datatype.

Philippe Genoud Danielle Ziebelin - Université Grenoble Alpes 77

4 ensure the Pizza description
is correct

Built in datatypes,
specified in the
XML schema
vocabulary and
include integers,
floats, strings,
booleans etc.

Create a HighCaloriePizza that has a calorific value higher than or equal to 400

add a SubClass of
description2

DataType properties

using a DataType Property in a restriction

• In addition to using the predefined set of datatypes it is possible to specialise
the use of a datatype by specifying restrictions on the possible values..

Philippe Genoud Danielle Ziebelin - Université Grenoble Alpes 78

1Create a subclass of
Pizza called

HighCaloriePizza

In the Class expression editor
tab enter the restriction
hasCalorificContentValue
some integer[>=400]

3

2

4
Convert the class to a defined
class

5
Create a LowCaloriePizza in the same way, but define it as being equivalent
to Pizza and (hasCalorificContentValue some integer[< 400])

XSD minInclusive
facet

DataType properties

Creating individuals with DataType properties

79Philippe Genoud Danielle Ziebelin - Université Grenoble Alpes

Create an instance of FourCheesePizza with 723 calories

Create several more example pizza individuals with different calorie
contents including an instance of MargheritaPizza with 263 calories

Add a member to
FourCheesePiza

1

2 3
Enter the individual name
example4CheesePiza

In the Individual tab add a data
property assertion to
example4CheesePiza 4

In the data property assertion
dialog select
hasCalorificContent property
and integer type and enter
723 value

5

Ensure that example4CheesePiza
description is correct6

7

DataType properties

Performing instance classification

Philippe Genoud Danielle Ziebelin - Université Grenoble Alpes 80

Classify pizza individuals based on their hasCalorificContentValue

Check that the Members section of
HighCaloriePizza contains your
instance of FourCheesePizza (and
perhaps other individuals which you
specified as having a calorie value equal to
or over 400)

Run a reasoner

2

3 Check the members of LowCalorie Pizza

1
There is a bug in Protégé 4.3. , inferred
Members do not appear immediately on
the class description view.

You might need to turn on inferences for
individuals. In the preferences select the
“Reasoner” tab. Look at the section
“Displayed Individual Inferences” and check
the various boxes an necessary.

You can also use the DL query tab. Type
“HighCaloriePizza” into the query editor
and make sure “Instances” is selected on
the right hand side.

hasValue Restrictions

hasValue Restrictions

• hasValue Restriction
– describes the set of individuals that have at least one relationship

along a specified property to a specific individual.

– example : to describe the country of origin of various pizza toppings

Philippe Genoud Danielle Ziebelin - Université Grenoble Alpes 81

Create Country a
subclass of Thing

1
Populate it with
individuals

2

Create an Object Property
hasCountryOfOrigin3

Ensure the description of
MozarellaTopping is correct

hasValue Restrictions

hasValue Restrictions

example : to describe the country of origin of various pizza toppings (continued)

Philippe Genoud Danielle Ziebelin - Université Grenoble Alpes 82

Add a restriction to
MozarellaTopping

1
2

Create a hasValue restriction to specify that MozzarellaTopping has Italy as its country of origin.

In the Class expression editor tab enter the restriction
hasCountryOfOrigin value Italy

3

individuals that are members of the class
MozzarellaTopping are also members of the class
CheeseTopping and are related to the individual Italy
via the hasCountryOfOrigin property

With current reasoners the
classification is not complete for
individuals. Use individuals in
class descriptions with care —
unexpected results may be
caused by the reasoner.

Enumerated classes

Enumerated Classes
• Enumerated class

– a class defined by precisely listing the individuals that are the members of it.

– Enumerated classes described in this way are anonymous classes
• they are the class of the individuals (and only the individuals) listed in the enumeration.

– we can attach these individuals to a named class by creating the enumeration as an
equivalent class.

– example
• Create an enumerated class four countries { America, England, France, Germany, Italy }

Philippe Genoud Danielle Ziebelin - Université Grenoble Alpes 83

click in the Add
Equivalent To button2

select
Country

1

In the Class expression editor tab enter the restriction
{ America, England, France, Germany, Italy }3

