
Notes de cours "Introduction au langage C"

Philippe WAILLE (UFR IMA, université Joseph Fourier)

Septembre 2012

Table des matières

1 Types de base 3

2 Taille des types et écriture des constantes numériques 4

3 Représentation des caractères 4

4 Déclaration de variable 5

5 Constantes symboliques et énumération 5

6 Gestion des booléens 6

7 Expression conditionnelle 6

8 Les opérateurs de calcul usuels 7

9 Instructions élémentaires : a�ectation, si, tant que, répéter 7

10 Blocs d'instructions et d'expressions 8

11 L'a�ectation C est une expression ! 8

12 Pièges : instruction vide et a�ectation au lieu de comparaison 9

13 Formes abrégées d'a�ectation 9

14 Traduction de parcourant et instruction for 10

15 Boucles in�nies, break et continue 10

16 Dé�nition d'une fonction ou d'une procédure 10

17 Directive préprocesseur #include 11

18 Modules à compilation séparée, interfaces 12

19 Etapes de compilation, bibliothèques, make�le 13
19.1 Etapes de compilation . 13
19.2 Edition de liens et bibliothèques . 13
19.3 Make et Make�le . 14

20 Adresses : opérateurs & et * 15

21 Type "adresse de", constantes adresses, pointeurs 16
21.1 Version ADA . 17
21.2 Version C . 17

22 Gestion de paramètres résultat 18
22.1 version ADA . 18
22.2 version C . 18

1

23 Allocation dynamique de mémoire 19
23.1 Version ADA : new . 19
23.2 Version C : malloc/calloc . 19

24 Tableaux à une dimension 19
24.1 Exemple en ADA . 19
24.2 Tableaux en C . 19

25 Chaînes de caractères 21

26 Arithmétique sur les pointeurs 21

27 Application simultanée de * et ++ ou -- 22

28 Structures (enregistrements) 23
28.1 Exemple ADA . 23
28.2 Exemple C . 23

29 Structures pour listes chaînées 25

30 Extern : déclaration limitée à la dé�nition du type 26

31 Attribut static 27

32 Attribut const 28

33 Constructeur selon : switch/case 28

34 Compléments sur les tableaux et les pointeurs 29
34.1 Tableaux à n dimensions . 29
34.2 Pointeurs de pointeurs et de fonctions . 30
34.3 Exemple de tableau de pointeurs . 31

35 Entrées/sorties formattées : printf, scanf 32

36 Unions 33
36.1 Record variant en ADA . 33
36.2 Structure et union en C . 33

37 Opérateurs entiers bit à bit 34

38 Paramètres de main : argc, argv, envp 35

39 Mots réservés du lannage C 36

2

0

1 Types de base

Nom Norme C Nom abrégé Remarque

Entiers relatifs
int

short int short
long int long

long long int c99 long long
signed char c99 char pour calcul entier

Entiers naturelss
unsigned int

unsigned short int unsigned short
unsigned long int unsigned long

unsigned long long int c99 unsigned long long
unsigned char c99 char pour calcul entier

Nombres à virgule �ottante
�oat

double precision ++
long double precision ++ ++ (rare)

Types entiers pour représenter les caractères
char ASCII, iso_latin1, utf8

whar_t c99 utf32

Booléens
_Bool ou bool c99

typedef int bool 6= c99 stockage dans int

Chaînes de caractères
char []

[] et '\0' en �n
wchar_t []

Autres types
void Absence de type
T * Adresse/pointeur de type T

Table 1 � Principaux types C

L'attribut c99 indique les types récement introduits dans la dernière norme de C.

Typedef permet de dé�nir de nouveaux types à partir de types C de base, notamment pour
déclarer des structures de données complexes.

float f (int x) {

3

return (float) x * 1.25;

}

typedef float func_int_to_float (int); /* nommer ce type de fonction */

fun_int_to_float *pt_func = fsomme; /* un pointeur dessus */

2 Taille des types et écriture des constantes numériques

Pré�xes de base de numération entière :
� aucun (décimal) : 64 = 6410

� 0 (octal) : 0102 = 6610 (1 ∗ 8 ∗ 8 + 2)
� 0x (hexadécimal) : 0x102 = 25810 1 ∗ 16 ∗ 16 + 2)

Tailles classiques sur une machine 64 bits
Type ou Taille en
attribut bits (t) octets (sizeof)
char 8 1
wchar_t 32 4
short 16 2
int 32 4
long 32 4
long long 64 8
�oat 32 4
double 64 8
long double 128 16
T * 64 8

3 Représentation des caractères

Stockage des caractères : par son numéro de code dans un entier ≥ taille_codage. Les carac-
tères sont habituellement codés dans le type char en codage ASCII ou iso _xxxx. Le type wchar_t
est utlisé avec le codage UTF32. Le type char sert aussi en cas de représentation en codage utf8.

Char et wchar_t sont assimilables à des types entiers. Le type char est souvent équivalent à
signed char, parfois à unsigned char.

Un caractère entre quotes (') est la constante entière (de type int) correspondant à son code.

caractère ASCII hexa octal notation C commentaire
b \x62 \076 'b' peut aussi s'écrire 0x62, 076 ou 98
' \x27 \047 '\'
" \x22 \042 ′\"'
\ \x5c \0134 '\\'
"line feed" \x0a \012 ′\n' (passage à la ligne)
"carriage return" \x0d \015 ′\r' (retour en début de ligne)
tabulation horiz. \x09 \011 '\t'
"backspace" \x08 \010 '\b' (retour en arrière d'un caractère),
"form feed" \x0c \014 '\f' (saut de page)
"nul" \x0 \00 ′\0' sans e�et (�n de chaîne)

4

4 Déclaration de variable

Le type d'une variable permet de déterminer le nombre d'octets occupés par son contenu et la
manière de les interpréter. Une déclaration ordinaire de variable dé�nit le type, réserve de
la mémoire pour stocker la variable, et spéci�e éventuellement son contenu initial au démar-
rage du programme.

long long1, long2; /* valeur initiale implicite : 0 */

long l = 0x1234567L; /* avec valeur initiale au lancement de l'exécution */

unsigned short s;

double pi = 3.14;

char c;

char b1 = 'b', b2 = 0x62, b3 = 076, b4 = 98; /* valeurs initiales : 'b' */

5 Constantes symboliques et énumération

Avant le compilateur proprement dit, le �chier à compiler est passé au préprocesseur qui gère
les directives #xxx. La directive #de�ne permet de déclarer des constantes symboliques : elle
déclenche une substitution de texte avant la phase de compilation.

#define CTE1 3.0

#define CTE2 (4.1+9.3) /* après passage préprocesseur */

x = (y + CTE1) * (CTE2 +1); x = (y + 3.0) * ((4.1+9.3) +1);

z = CTE2; z = (4.1+9.3);

Le mot-clé enum permet de typer un sous-ensemble �ni de valeurs entières nommées. La suite
de noms de valeurs est associée à la suite croissante des entiers naturels (l'utilisation de = permet
de forcer une association précise).

typedef enum bool {FALSE=0, TRUE=1}; // redondant en C99

// Ce code

enum couleur {NOIR, ROUGE, VERT, JAUNE,

BLANC = 7, BLEU, ORANGE=13};

enum couleur ma_couleur;

// équivaut à

#define NOIR 0

#define ROUGE 1

#define VERT 2

#define JAUNE 4

#define BLANC 7

#define BLEU 8

#define ORANGE 13

int ma_couleur;

// les 2 méthodes permettent d'écrire

ma_couleur = VERT;

5

6 Gestion des booléens

Le type _Bool (C99)

Le type_Bool est ajouté par la norme C99. Complètant la famille des types entiers, il se limite
au sous-ensemble de valeurs 0,1. Lors d'une a�ectation d'un autre type d'entier à un _Bool, la
règle de conversion (interprétation des entiers comme booléens) est implicitement appliquée :

� Entier 0 → booléen 0 (interprétée comme faux)
� Entier 6= 0 → booléen 1 (interprétée comme vrai)

Opérateur booléens

Les opérateurs booléens ! (négation) , && (ET), || (OU)
et de comparaison : x < y, x <= y, x > y, x >= y,
x == y (égalité), x != y (non égalité)

� acceptent tout type d'opérande entier (aussi bien int que _Bool)
� retournent une valeur entière booléenne 0 ou 1.

Utilisation de int en l'absence de _Bool (avant norme C99)

Le fonctionnement des opérateurs booléens est identique, mais en l'absence du type _Bool, on
utilise le type int pour déclarer les variables à valeurs booléennes.

Dé�nition de bool, true et false

Il souvent pratique de dé�nir ainsi les constantes symboliques true et false :

#define true 1 // définitions contenues dans stdbool.h de C99

#define false 0

Il est commode de nommer bool les booléens comme dans d'autres langages :

#include <stdbool.h> // C99 : contient typedef _Bool bool;

// ou bien

#include "mybool.h" // avant C99 : contient typedef int bool;

bool b;

int e = 5;

// Piège du forceur (bool) !

// Effet de b = (bool) e : affecte 1 ou 5 à b selon typedef utilisé

// Ecrire à la place b = (e != 0)

7 Expression conditionnelle

Syntaxe : expression_condition ? expression_alors : expression_sinon

L'expression expression_condition est évaluée. Selon sa valeur l'expression conditionnelle re-
tourne la valeur de expression_alors ou celle de expression_sinon.

troismax = 3 *((x < y) ? y : x);

/* code équivalent */

if (x < y)

6

max = y;

else

max = x;

troismax = 3 * max;

8 Les opérateurs de calcul usuels

Opération ADA C Commentaires
addition + +

soustraction - -
multiplication * *
div : quotient / / entière ou �ottante selon type opérandes
div : reste rem,mod %
puissance ** → appel de fonction log/exp

valeur absolue abs → appel de fonction
non logique not ! 1 booléen par entier, ne pas confondre avec le not bit à bit (�)
ou logique or else || Attention : double barre
et logique and then && Attention : double &

ouex logique xor → ((!a && b) || (a && !b))
inférieur strict < < retourne entier 1 pour vrai

inférieur < = <=
supérieur strict > >

supérieur > = >=
égalité = == Attention : double égal
inégalité /= !=

float x,y;

x = 5.0 / 2.0; /* x = 2.5 */

y = (float) ((int) 5.0 / (int) 2.0); /* y = 2.0 */

9 Instructions élémentaires : a�ectation, si, tant que, répéter

variable = expression ; /* Pas de deux points avant = */
while (condition) instruction ; /* Pas de ; après la condition */
do instruction while (condition) ;
if (condition) instruction_alors else instruction_sinon
if (condition) instruction_alors /* Pas de then ni de endif */

N'importe quelle expression est utilisable comme condition et il n'y a ni then ni elsif ni endif
et pas de deux points avant le égal dans la syntaxe C.

L'exécution du corps de do et while est répétée si la condition est vraie (condition de conti-
nuation). Dans la boucle do, le corps est exécuté au moins une fois.

x = y est une comparaison en ADA et une a�ectation en C ⇒ Piège !

7

/* pgcd en C */

while (x != y)

if (x == y)

printf ("termine\n");

else if (x > y)

x = x - y;

else

y = y - x;

-- pgcd en ADA

while x /= y loop

if (x = y)

Put_Line("termine"); New_Line;

elsif (x > y) then

x := x - y;

else

y := y - x;

end if;

end loop;

/* lire et ignorer les A */

do

c = getc (fichier);

while (c == 'A');

A quel if correspond le else ? ⇒ par convention le if le plus proche : if (x > y).

10 Blocs d'instructions et d'expressions

Une instruction composée est obtenue en regroupant un ensemble d'instructions dans un bloc
délimité par des accolades (au lieu de begin . . . end en ADA ou PASCAL).

Le début du bloc peut contenir des dé�nitions de variables locales au bloc d'instructions (de
préférence uniquement dans la déclaration des fonctions). Le bloc peut être vide.

Utilisations typiques :
� corps d'une boucle do ou while
� branche alors ou sinon d'un if
� corps d'une dé�nition de fonction

Une expression composée est une liste d'expressions séparées par des virgules. La valeur retour-
née par cette expression est celle de la dernière expression (la plus à droite). Utilisation : boucles
for à plusieurs variables de boucles.

/* instruction composée */

if (a_permuter) {

int tampon;

tampon = x;

x = y;

y = tampon;

} else {

x = 0;

}

/* expression composée */

y = (z=3),(x=4), 3+3;

/* et code équivalent */

z=3;

x=4;

y=6;

11 L'a�ectation C est une expression !

L'a�ectation a un statut très spécial dans le langage C.

L'a�ectation var = expression_droite est considérée comme une expression dont la valeur
est celle de expression_droite, et qui a pour e�et de bord de copier cette valeur dans var.

8

/* Copier jusqu'a fin du fichier (EOF) */

/* Exemple classique d'utilisation */

while ((c = getc (entree)) != EOF)

putc (c, sortie);

/* Code do while equivalent */

do {

c = getc (entree);

if (c != EOF) putc (c,sortie);

} while (c != EOF);

/* Eviter ce genre de code */

x = (y = (z = 5) *2) + 3;

if ((x=y) != 3) x++;

z = 5;

y = z * 2;

x = y + 3;

x = y;

if (x != 3) x++;

12 Pièges : instruction vide et a�ectation au lieu de compa-

raison

Une expression suivie d'un point-virgule en constitue une instruction. Un bloc d'instructions
vide constitue une instruction (vide). Un point-virgule seul en constitue une aussi ⇒ Piège !.

Autre piège classique : écrire une a�ectation (simple égal) au lieu d'une comparaison
(double égal) dans une condition. Cette erreur classique ne génère pas d'erreur de syntaxe à la
compilation.

En l'absence de type booléen, la syntaxe du langage C permet d'utiliser n'importe quelle ex-
pression entière comme condition 1 or l'a�ectation en C est une expression 2, donc son utilisation
comme condition est légale.

while (x < y); { /* ; -> corps vide ! */

x++;

y--;

}

while (x < y){ /* equivalent */

}

x++;

y--;

do

y++;

while (x = y); /* = -> affectation ! */

/* au lieu de comparaison */

do {

y++; x = y;

} while (x != 0);

13 Formes abrégées d'a�ectation

Formes abrégées d'a�ectation :
� +=, -= *= /= %= (arithmétique)
� �, � (décalages à gauche et à droite)
� &=, |=, �= (opérations bit à bit)

/* exemples */

x -= 3;

x <<= 2;

x |= 4;

/* equivalent */

x = x + 3;

x = x << 2;

x = x | 4;

Opérateurs d'incrémentation ("plusplus") et de décrémentation ("moinsmoins")"
Placés à droite : retournent l'ancienne valeur.
Placés à gauche : retournent la nouvelle valeur.

1. interprétée comme faux si et seulement si sa valeur est zéro : voir section 6
2. Retournant la valeur de son membre droit

9

x++;

x--;

y = x--;

y = --x;

x = x + 1; /* séquence de code équivalente */

x = x - 1;

y = x; x = x - 1;

x = x - 1; y = x;

14 Traduction de parcourant et instruction for

for (initialisation ; condition ; mise_à_jour) corps

Exemple : parcourir en ascendant l'intervalle [3 ... N-1]

j = 3; /* initialisation */

while (j < N) { /* condition */

j = j + i; /* Corps */

s = s + 1;

j++; /* Mise à jour */

}

/* init cond maj */

for (j = 3; j < N; j++) {

j = j + i; /* Corps */

s = s + 1;

}

/* <- init -> <-cond-> <- maj -> */

for (i=0, p = tete; i < max; i++, p = p -> next) {

somme += p -> valeur;

}

i = 0; /* init */

p = tete;

while (i < max) { /* cond */

somme += p -> valeur;

i++; /* maj */

p = p -> next;

}

15 Boucles in�nies, break et continue

while (++x < N) {

if (stop()) break;

s = chercher(x);

if (s==NULL) continue;

f1(s); f2(s);

}

while ((++x < N) && !stop()) {

s = chercher(x);

if (s != NULL) {

f1(s); f2(s);

}

}

Une boucle (for, do, while) dont la condition est une constante non nulle ne termine pas.
Dans le corps d'une boucle l'exécution de l'instruction
� break fait sortir de la boucle.
� continue supprime l'exécution du reste du corps et passe au tour de boucle suivant

16 Dé�nition d'une fonction ou d'une procédure

Dé�nition d'une fonction = dé�nition du prototype + dé�nition du corps

Prototype (ou signature) = déclaration du type de la fonction.
� Type de résultat retourné. Si void : déclaration d'une procédure.
� Nom de la fonction ou procédure
� Type et nom (le nom peut être omis si le prototype n'est pas accompagné du corps) de
chacun des paramètres formels ou void (rien dans l'ancienne norme K&R) si la fonction n'a
pas de paramètre

10

Dé�nition du corps :
� Alloue statiquement et initialise la mémoire pour stocker les instructions composant le corps
de la fonction.

� Enumère les variables locales de la procédure → allocation dynamique de mémoire pendant
l'exécution (gérée par le compilateur).

Les paramètres sont passés par valeur (comme les paramètres in en ADA). L'instruction return
exp termine l'exécution de la fonction et retourne la valeur exp à l'appelante.

char /* définition complète : */

lire_chiffre (void) /* prototype + */

{ /* corps de la fonction */

char lu;

do {

lu = getchar ();

} while ((lu != EOF) && (lu >= '0') && (lu <= '9'));

return lu;

}

void

ecrire_y (unsigned long y); /* prototype procédure seul */

double

mon_sinus (double x); /* prototype fonction seul */

void

au_revoir (void)

{

printf ("au revoir\n");

}

void

ecrire_a (int a)

{

printf ("a = %d\n",a);

}

long

fois_deux (long x)

{

return x+x;

}

unsigned long

facto (unsigned int n)

{

unsigned long result;

if (n != 0)

result = n * facto (n-1);

else

result = 1;

return result;

}

unsigned long

facto (unsigned int n)

{

/* variante sans variable locale */

if (n != 0) return n * facto (n-1);

return 1;

}

17 Directive préprocesseur #include

La directive #include indique au processeur d'inclure le contenu d'un �chier de prototypes
(�chier de type header : xxx.h) référencé à partir du répertoire courant ou d'un répertoire standard
du système (/usr/include).

#include <stdio.h> /* répertoire public : /usr/include/stdio.h */

/* fonctions de bilbiothèques standard (libc) */

#include "monfichier.h" /* répertoire courant : ./monfichier.h */

/* fonctions de l'utilisateur */

11

18 Modules à compilation séparée, interfaces

Un module dé�nit des variables et des procédures ou fonctions. Elle peuvent être privées (in-
accessibles ou inconnues des autres modules) ou partagées : dé�nies (exportées) par un module
(avec allocation de mémoire de stockage) et accédées ou appelées (importées) dans un ou plusieurs
autre modules. En C, la notion de module correspond à celle de �chier.

Version C

/* fichier user_io.h */

void

Write_Int (int value);

/* fichier user_io.c */

#include <stdio.h>

void

Write_Int (int value)

{

printf ("Voici :");

printf ("%u",value);

printf ("\n");

}

/* fichier calcul.h */

extern int coeff;

void Calcul (int val);

/* fichier calcul.c */

#include "user_io.h"

int coeff;

void

Calcul (int val)

{

Write_Int(val * coeff);

}

/* fichier main.c */

#include "calcul.h"

void

main (void)

{

coeff=4;

Calcul (5);

}

Version ADA

/* fichier user_io.ads */

package User_io is

procedure Write_Int (Value:in Integer);

end User_Io;

/* fichier user_io.adb */

with Ada.Text_Io;

with Ada.Integer_Text_Io;

package body User_Io is

procedure Write_Int (Value:in Integer) is

begin

Ada.Text_Io.Put("Voici :");

Ada.Integer_Text_Io.Put(Value);

Ada.Text_Io.New_Line;

end Write_Int;

end User_Io;

/* fichier calcul.ads */

package Calcul is

coeff : Integer;

procedure Calcul (Val: in Integer);

end Calcul;

/* fichier calcul.adb */

with User_io;

package body Calcul is

procedure Calcul (Val: in Integer) is

begin

User_io.Write_Int(Val * coeff);

end Calcul;

end Calcul;

/* fichier principal.adb */

with Calcul;

procedure Principal is

begin

Calcul.coeff := 4;

Calcul.Calcul (5);

end Principal;

12

Les variables à l'extérieur des corps de fonctions sont exportables (par défaut 3) ou privées
(déclarées avec l'attribut static).

L'interface (�chierm.h) d'un modulem, incluse dans tous les modules qui utilisent les variables
et fontions exportées par le modulem (�chirm.c), permet de spéci�er les types des variables et les
prototypes des fonctions exportées par le module m. Elle regroupe des déclarations de contantes
et de types, mais aucune déclaration avec réservation de mémoire (extern : voir section 30).

Chacun des modules peut être compilé séparémént des autres, mais si un �chier .h est modi�é,
tous les modules qui l'incluent doivent être recompilés.

19 Etapes de compilation, bibliothèques, make�le

19.1 Etapes de compilation

La commande de compilation cc ou gcc enchaîne automatiquement les di�érentes étapes de
traduction pour générer un �chier binaire exécutable à partir des �chiers passés en paramètre. Par
convention, la nature du contenu d'un �chier et la prochaine étape de traduction à appliquer sont
déduits du su�xe du nom du �chier (tableau 19.1).

Su�xe Type de contenu Traitement à appliquer Résultat gcc
f.h source C à insérer dans f.i ou f.s (lors de ccp de f.c ou f.S)
f.S source asm avec #xxx

préprocesseur (cpp)
f.s

-E
f.c source C avec #xxx f.i
f.i source C sans #xxx compilateur f.s -s
f.s source asm sans #xxx assembleur (as) f.o -c

fyyy.o objet binaire relogeable
bibliothèques statiques (ar) libnom.a
bibliothèques partagées (ld) libnom.so
édition de liens (ld) binaire exécutable

Table 2 � Su�xes des �chiers et étapes de compilation (posix)

La colonne gcc indique l'option de gcc à utiliser pour stopper la compilation après une étape
donnée (les �chiers résultat des étapes intermédiaires ne sont pas conservés). A titre d'exemple
gcc -c user_io.c permet de stopper la compilation après la génération du �chier binaire relo-
geable user_io.o.

Le préprocesseur traite principalement les inclusions et substitutions de texte associées aux
directive #include et #de�ne. Le compilateur interne compile séparément chaque �chier source
en �chier binaire relogeable .o ou en �chier source en langage d'assemblage .s.

19.2 Edition de liens et bibliothèques

L'édition de liens fusionne en un unique �chier binaire exécutable l'ensemble des �chiers objets
compilés séparément : ceux de l'utilisateur, divers �chiers de code standard 4 (crtzzz.o) et la biblio-
thèque C livrés avec le compilateur, et d'autres bibliothèques éventuelles. Elle permet d'associer
à chaque variable ou fonction importée dans un module son adresse (dé�nie dans la table des

3. L'inverse aurait été plus prudent, comme dans le langage d'assemblage (directive .global pour exporter)
4. exécuté lors du démarrage ou de la terminaison, dont initialisations diverses de variables utilisées par certaines

fonctions de bibliothèques (exemple : malloc)

13

user_io.o
préprocesseur+compilation/assemblage←−−−−−−−−−−−−−−−−−−−−−− user_io.h+user_io.c

calcul.o
préprocesseur+compilation/assemblage←−−−−−−−−−−−−−−−−−−−−−− user_io.h+calcul.c

main.o
préprocesseur+compilation/assemblage←−−−−−−−−−−−−−−−−−−−−−− calcul.h+main.c

calcul
édition de liens (options −static −lc)←−−−−−−−−−−−−−−−−−−−−−

édition de liens (option −lc)

calcul.o+main.o+user_io.o+crtzzz.o+libc.a
calcul.o+main.o+user_io.o+crtzzz.o+libc.so

Table 3 � Principales étapes de compilation du programme calcul (section 18)

symboles du �chier objet relogeable du module exportateur).

Une bibliothèque contient un ensemble de fonctions ou procédures précompilées, o�rant divers
services utiles (exemple : entrées/sorties print et scanf), qui sont liées aux �chier(s) de type objet
binaire relogeable de l'utilisateur. Les su�xes .a et .so 5 des bibliothèques signi�ent archive (pour
l'édition de liens statique) et shared object (pour l'édition de liens dynamique).

L'édition de liens statique (option -static) fabrique un �chier exécutable complet, au prix
d'une duplication du code des fonctions de bibliothèques dans tous les �chiers binaire exécu-
tables qui les utilisent.

L'édition de liens de liens dynamique crée un �chier exécutable incomplet. Elle consiste à
retarder la liaison avec les fonctions de bibliothèques jusqu'au début de chaque exécution pour
éviter la duplication du code des bibliothèques tant sur le disque que en mémoire centrale (dans
un système multiprogrammé).

L'option -lnom.su�xe spéci�e le nom d'une bibliothèque (�chier libnom.a ou libnom.so) à
utiliser lors de l'édition de liens. L'option -Lrépertoire spéci�e un répertoire où trouver cette
bibliothèque 6.

19.3 Make et Make�le

La commande unixmake permet d'appliquer un ensemble de règles de (re)compilation décrites
dans un �chier Make�le.

La commande make cible crée le �chier cible ou le met à jour s'il est devenu obsolète. Pour
celà, make va récusivement mettre à jour chacun des �chiers utilisés pour la génération de cible
(user_io.o, calcul.o et main.o pour make calcul), puis regénérer cible si la date de dernière modi-
�cation d'un de ces derniers n'est pas antérieure à celle de cible.

Si la règle associée à une cible à mettre à jour est absente ou incomplète, make essaiera d'uti-
liser un ensemble variables et de règles génériques par défaut. Voici un exemple de règle générique
implicite : f.o dépend de f.c et on le crée avec la commande ${CC} ${CFLAGS} -c f.c.

Il est également possible de dé�nir des règles de compilation génériques explicites. La dernière
règle à droite indique par exemple que tout �chier nom.o dépend des �chiers suivants : nom.c

5. sous unix/posix, .dll pour dynamically linked library sous windows
6. l'éditeur de liens dynamique utilise la variable d'environnement LD_LIBRARY_PATH pour rechercher

les bibliothèques partagées.

14

nom.h et global.h. Avec les règles implicites et la dé�nition des variables CC et CCFLAGS, il
est souvent possible d'omettre la commande de génération d'une cible.

Exemple de fichier Makefile

OBJECTS = user_io.o calcul.o main.o

calcul: ${OBJECTS}

gcc -o calcul ${OBJECTS}

| cible: | dépendances

v v

calcul.o: calcul.c user_io.h

gcc -Wall -c calcul.c

^

|

Commande pour generer la cible

Un Makefile plus générique

CC = gcc

CFLAGS = -Wall

OBJECTS = user_io.o calcul.o main.o

calcul: ${OBJECTS}

gcc -o calcul ${OBJECTS}

user_io.o: user_io.c user_io.h

calcul.o: calcul.c user_io.h

main.o: main.c calcul.h
recompiler user_io.o si user_io.c

ou user_io.h

est modifié

user_io.o: user_io.c user_io.h

gcc -Wall -c user_io.c

N'utiliser que des TABULATION(s)

N'utilisez AUCUN caractère EPSACE !

entre les : et la liste de dépendance

< ici > ainsi que

main.o: main.c calcul.h

gcc -Wall -c main.c

< ici >

en debut de ligne

AS Nom de l'assembleur
CC Nom du compilateur C

ASFLAGS Options à passer à AS
CFLAGS Options à passer à CC

$@ Nom du �chier cible
$� Liste de dépendances
$< Premier �chier de $�

Une règle générique explicite

%.o: %.c %.h global.h

gcc -c -Wall $<

ou (si CC et CFLAGS définis)

%.o: %.c %.h global.h

20 Adresses : opérateurs & et *

La déclaration de la variable x spéci�e que x est un contenant, à savoir sizeof(x) cases mémoire
consécutives, numérotées, de un octet (= unité adressable) chacune.

Le numéro d'octet en mémoire est l'adresse. Une adresse est un entier naturel.

L'opérateur &, appliqué à un contenant mémoire, en retourne l'adresse.
&x donne l'adresse de stockage (du premier octet) de x.

Opérateur * : adresse_octet ⇒ contenant mémoire (*adr signi�e Mem[adr])

Les deux opérateurs se neutralisent : *&x est égal à x, &*a est égal à a.

#include <stdio.h>

long a = 0x12345678;

char b = 'x';

long c = 0xaabbccdd; /* adresse multiple de sizeof(long) */

char d = 'a';

15

char *pt = &b; /* pointeur intialisé à l'adresse de b */

void

main () {

printf ("adresse_de_a :0x%lx contenu de a : 0x%lx\n",(unsigned long) &a,a);

printf ("adresse_de_b :0x%lx contenu de b : 0x%1c\n",(unsigned long) &b,b);

printf ("adresse_de_c :0x%lx contenu de c : 0x%1c\n",(unsigned long) &c,c);

printf ("adresse_de_d :0x%lx contenu de d : 0x%lx\n",(unsigned long) &d,d);

printf ("adresse_de_pt :0x%lx contenu de pt : 0x%lx\n",(unsigned long) &pt,pt);

}

nom du contenant octets adresse du contenant contenu
a 4 0x080496c0 0x12345678
b 1 0x080496c4 0x78 (code ASCII 'x')
c 4 0x080496c8 0xaabbccdd
d 1 0x080496cc 0x61 (code ASCII 'a')
pt 4 0x080496d0 0x080496c4

L'a�ectation b = d peut aussi s'écrire *&b = *&d et signi�e :

contenant variable b
prend pour nouveau contenu 8 bits←−−−−−−−−−−−−−−−−−−−−− contenu de la variable d

Mem[adresse_de_b]
prend pour nouveau contenu 8 bits←−−−−−−−−−−−−−−−−−−−−− Mem[adresse_de_d]

octet Mem[0x80496c4]
prend pour nouveau contenu←−−−−−−−−−−−−−−−−− octet Mem[0x80496cc]

L'a�ectation a = c peut aussi s'écrire *&a = *&c et signi�e :

contenant de la variable a
prend pour nouveau contenu 32 bits←−−−−−−−−−−−−−−−−−−−−−− contenu de la variable c

Mem[adr_de_a]
prend pour nouveau contenu 32 bits←−−−−−−−−−−−−−−−−−−−−−− contenu de Mem[adr_de_c]

octet Mem[0x80496c0]
prend pour nouveau contenu←−−−−−−−−−−−−−−−−− octet Mem[0x80496c8]

octet Mem[0x80496c1]
prend pour nouveau contenu←−−−−−−−−−−−−−−−−− octet Mem[0x80496c9]

octet Mem[0x80496c2]
prend pour nouveau contenu←−−−−−−−−−−−−−−−−− octet Mem[0x80496ca]

octet Mem[0x80496c3]
prend pour nouveau contenu←−−−−−−−−−−−−−−−−− octet Mem[0x80496cb]

21 Type "adresse de", constantes adresses, pointeurs

Pourquoi utiliser un type spécial et pas un entier naturel ordinaire pour les adresses ?
� pour indiquer combien d'octets transférer lors de l'accès via un pointeur ?
� pour spéci�er comment interpréter le contenu de ces octets (�ottant, entier) ?
� piur véri�er la cohérence de type : distinction entre adresse et contenu et entre natures de
contenu (ne pas a�ecter une adresse d'entier à un pointeur de �oat).

Il y a autant de types "adresses de" que de types d'objets dont on peut prendre l'adresse,
comment les noter ?

� access / access all type_pointé en ADA.
� type_pointé * en C : l'application de l'opérateur * à une expression de ce type rend un objet
du type type_pointé 7

7. Les concepteurs du C auraient pu choisir la notation & type_pointé, qui a été retenue en C++ pour les

16

21.1 Version ADA

type ACCESS_INT is access all Integer;

Entier1 : aliased Integer := 123;

Entier2 : Integer;

Mon_pointeur : ACCESS_INT;

begin

Mon_pointeur := Entier1'Access; -- Entier2'Access serait illegal;

Entier2 := Mon_pointeur.all + 2; -- Entier2 := Entier1 + 2.

Mon_pointeur.all = 13; -- Entier1 := 13;

end mon_programme;

Protection spéci�que ADA : seules les variables déclarées aliased sont accessibles via un poin-
teur. Un pointeur contenant la constante null ne repère rien.

21.2 Version C

Un pointeur ne repérant rien contient la constante NULL 8. Le type void * est utilisé pour
stocker des adresses d'objets de n'importe quel type. Il doit être converti en T * pour accéder à
un objet de type T.

typedef char * pointeur_de_char;

long entier1 = 123;

long entier2;

char b = 'x';

long *mon_pointeur; /* initialisé à NULL */

mon_pointeur = & entier1;

entier2 = *mon_pointeur+2; /* entier2 = entier1+2 (entier2=*&entier1+2) */

mon_pointeur = 13; / entier1 = 13 */

mon_pointeur = &entier2;

(*mon_pointeur)++; /* entier2 ++ */

...

char c;

pointeur_de_char pcar = &b; /* repère b dès chargement du programme */

c = *pcar; /* c = b (c = *&b)*/

void *pointe_tout; /* n'importe quelle sorte d'adresse */

pointe_tout = &entier2;

entier1 = * (long *) pointe_tout; /* entier1 = entier2 */

/* mais cette affectation est illégale : entier1 = *pointe_tout */

pointe_tout = &b;

* (char *) pointe_tout = 'y'; /* b = 'y' */

références aux objets. La notation .all suggère que ADA traite un scalaire comme une structure à un seul champ
(dépourvu de nom).

8. la constante NULL est généralement dé�nie comme (void *) 0.

17

Ne confondez pas taille d'un pointeur (taille d'une adresse) et taille d'objet repéré :
� sizeof(char) 6= sizeof(char *)
� sizeof(long) 6= sizeof(char)
� sizeof(char *) = sizeof(long *) = sizeof(void *)

Rappel : la déclaration d'un pointeur réserve de la place pour stocker l'adresse contenue dans
le pointeur, mais pas pour le contenu pointé. N'oubliez pas d'initialiser le pointeur avec l'adresse
d'une variable déclarée statiquement ou avec une adresse de bloc retournée par malloc ou calloc.

22 Gestion de paramètres résultat

22.1 version ADA

procedure maxi (a : in Integer ; max : in out Integer) is

begin

if (a > max) Then max := a; endif;

end maxi;

-- calcul de max (a,b,c)

maximum := a;

maxi (b,maximum);

maxi (c,maximum);

22.2 version C

En C, tous les paramètres sont passés par valeur (équivalent du type in). Si l'appelante passe
une expression, l'expression est évaluée et la procédure reçoit le résultat de l'évaluation. Si l'ap-
pelante passe une variable, la valeur de l'expression est une copie de la valeur de la variable : la
procédure peut modi�er cette copie, mais pas la variable de l'appelante.

Il est cependant possible de passer la valeur d'un pointeur, ce qui revient à e�ectuer un passage
de paramètre par adresse. A partir de l'adresse d'une variable, il est possible de lire et de modi�er
son contenu, ce qui constitue une manière de réaliser l'équivalent des paramètres de type résultat
et valeur-résultat (out et in out de ADA). Notons qu'avec n paramètres de type pointeur, une
fonction C peut retourner n+1 résultats.

long tab[10];

void

maxi (int a, int *max)

{

if (a > *max) *max = a;

}

/* appel */

maximum = a:

maxi (b, &maximum);

maxi (c, &maximum);

18

23 Allocation dynamique de mémoire

23.1 Version ADA : new

type TAB is array(0..7) of Integer;

type POINTEUR is access Integer;

type POINTEUR_TAB is access TAB;

X: Integer;

Ptr : POINTEUR;

Ptrtab POINTEUR_TAB;

...

Ptr := new Integer; -- new appelle l'allocateur dynamique de mémoire

Ptrtab := new TAB;

Ptr.all = 3;

Ptrtab(3) = 6;

23.2 Version C : malloc/calloc

En langage C, l'allocateur dynamique de mémoire correspond aux fonctions de bibliothèque
malloc et calloc qui réservent de la mémoire et retournent une adresse de type void *.

#include <malloc.h>

int x, *ptr, *ptrtab;

...

ptr = (int *) malloc(sizeof(int));

ptrab = (int *) calloc (sizeof(int),8); /* allouer tableau de 8 ints */

if ((ptr == NULL) || (ptrtab == NULL)) {

/* traiter l'erreur */

}

*ptr = 3;

ptrtab[3] = 6;

free (ptr); free (ptrtab); /* liberer la mémoire */

24 Tableaux à une dimension

24.1 Exemple en ADA

Tableau_3_a_7 : array (Integer range 3 ..7) of Integer;

begin

Tableau_3_a_7 (5) := 120;

Tableau_3_a_7 (2) := 2; -- erreur détectée : hors intervalle

Tableau_3_a_7 (8) := 0; -- erreur détectée : hors intervalle

end

24.2 Tableaux en C

Il n'existe pas de vrai type tableau en C : il est juste possible de réserver unnbloc de mémoire
pour stocker pour N éléments contigus (éventuellement avec initialisation), avec les particularités
suivantes :

19

� Pas de choix de l'intervalle des indices : toujours [0 . . . N-1].
� Possibilité d'initialisation partielle (valeurs manquantes implicitement initialisées à 0). Pos-
sibilité de déduire la taille du tableau du nombre de valeurs initiales.

� Le nom du tableau est la constante adresse de son premier élément :T équivalent à &(T[0]).
� Pas de véri�cation de validité de l'indice à l'exécution : ni l'intervalle des indices ni le
nombre d'éléments ne sont stockés en mémoire et véri�és pendant l'exécution.

� Pour passer un tableau à une procédure, il faut généralement passer deux paramètres : le
tableau (autrement dit l'adresse de son premier élément) et sa taille. La taille peut éven-
tuellement être omise lorsque la convention suivante est utilisée : un (n + 1)ième élément,
constante 0 (pour tableau d'entiers) ou NULL (pour un tableau de pointeurs), est utilisé
comme marqueur de �n de tableau.

#define MAX_TAB 10

#define NB_PUIS2 5

int indice;

unsigned long somme;

int victime = 3; /* tabentier[-1] ? */

int tabentier [MAX_TAB];

int premiers [] = {1,2,3,5,7,11}; /* dimension déduite : 6 */

unsigned long puis2[NB_PUIS2] = {1,2,4}; /* initialisation partielle */

char voyelles[6] = {'a','e','i','o','u','y'}; /* voyelles[0] : 'a' */

char lettre_o = 'o'; /* voyelles[6] ? */

void

main (void)

{

tabentier [3] = 3;

puis2[3] = 8;

puis2[4] = 16;

indice = -1;

/* Utilisation d'indice hors bornes */

tabentier [indice] = 0; /* effet probable : victime = 0 */

voyelles [6] = 'n'; /* lettre_o = 'n' */

somme = 0;

for (indice = 0; indice < NB_PUIS2; indice ++)

somme += puis2[indice];

}

Règle de calcul d'adresse : l'élément tabentier[i] est stocké à l'adresse de début du tableau
(tabentier, synonyme de &(tabentier[0])), auquel est ajouté l'indice (i) implicitement multiplié
par la taille d'un élément (sizeof(int)).

Noter la présence de l'opérateur & appliqué à un élément de tableau (p = &tableau[0]),
et son absence devant le nom de tableau qui est déjà un pointeur sur son premier élément
(p = tableau).

20

25 Chaînes de caractères

En C, les chaînes de caractères sont représentées sous la forme de tableaux de type char. La
taille d'un tableau C n'étant pas stockée en mémoire, la chaîne est délimitée par un marqueur
de �n de chaîne : un zéro qui est le code ASCII du caractère non a�chable appelé NUL 9. Cette
marque de �n de chaîne peut être notée 0 ou '\ 0'.

En revanche, le langage C o�re une facilité syntaxique d'écriture pour les constantes chaînes
de caractères.

#include <stdio.h>

/* Plusieurs manières de déclarer des tableaux contenant la chaîne "ok" */

const char ok1[3] = {'o','k','\0'};

const char ok2 [] = {'o','k',0};

const char ok3 [] = "ok";

const char halala [] = "ha_la_la";

unsigned long Nombre_de_a (const char *chaine) { /* ou (char chaine[]) */

unsigned long total ;

const char *p;

total = 0;

for (p=chaine; *p != 0; p++)

if (*p == 'a') total ++;

return total;

}

void

main () {

printf ("nombre de a : %lu\n",Nombre_de_a(ok1));

printf ("nombre de a : %lu\n",Nombre_de_a(halala));

printf ("nombre de a : %lu\n",Nombre_de_a("constante_chaine"));

}

/* Le dernier printf est equivalent a ce genre de code */

{

const char nom_fabrique_par_compilateur [] = "constante_chaine";

printf ("nombre de a : %lu\n",Nombre_de_a(nom_fabrique_par_compilateur));

}

26 Arithmétique sur les pointeurs

Soit un pointeur p contenant une adresse d'élément de tableau : p = &t[i]. Après ajout d'un
entier j au pointeur p, p contient l'adresse d'élément de tableau &t[i+j]. C'est pourquoi l'entier
j ajouté à un pointeur est implicitement multiplié par la taille du type d'objet pointé (on
ajoute j * sizeof(type_pointé)).

9. ne pas confondre le caractère de nom NUL, représenté par le code ASCII 0 codé sur un octet, avec la constante
adresse NULL, habituellement dé�nie comme l'adresse 0 codée sur 4 octets (8 octets sur un processeur 64 bits) .

21

L'opérateur [] n'est qu'une notation : & t[i] s'écrit aussi t+i et t[i] s'écrit aussi *(t+i).

On peut aussi comparer deux pointeurs s'ils repèrent des éléments d'un même tableau. La
di�érence entre deux pointeurs ou deux constantes de type adresse est implicitement divisée par
la taille du type d'objet pointé pour retourner la di�érence entre les indices des éléments repérés.

#define MAX_TABLEAU 6

int indice;

long somme, produit;

long *p:

long tableau [MAX_TABLEAU] = {0,10,20,30,40,50};

long *ptr1 = & tableau[1]; /* Ces 2 pointeurs repèrent tous les deux */

long *ptr2 = tableau + 1; /* l'élément tableau[1] */

void

main (void)

{

ptr1 = 2; / tableau [1] = 2; */

ptr1 = ptr1 + 4; /* repère maintenant tableau [5] */

ptr1 = 0; / tableau [5] = 0 */

somme = 0;

for (p = tableau; p < tableau + MAX_TABLEAU; p++)

somme += *p;

/* syntaxe equivalente */

for (p = &tableau[0]; p < &tableau[MAX_TABLEAU]; p++)

somme += *p;

ptr2 = &(tableau[0]);

printf ("%d_%d\n", ptr1 - ptr2,

(char *) ptr1 - (char *)ptr2); /* affiche 5_20 */

}

27 Application simultanée de * et ++ ou --

Les expressions *p++, *p--, *++p et *--p (attention à ne pas en abuser au détriment de la
lisibilité des programmes) désignent le contenu en mémoire à l'adresse correspondant à la valeur

� initiale de p si l'opérateur ++ ou -- suit (à droite de) la variable p
� modi�ée de p si l'opérateur ++ ou -- précède (à gauche de) la variable p

variable = *pointeur--; /* signifie */ variable = *pointeur; pointeur --

variable = *++pointeur; pointeur ++; variable = *pointeur;

/* deux copies de chaînes de caractères */

do {c=*source; *dest=c; source++; dest++;} while (c != '\0');

while ((*dest++ = *source++) != '\0') {}

}

22

28 Structures (enregistrements)

La dé�nition de variables enregistrement se fait généralement en deux étapes :

1. Déclaration du type d'enregistrement, précisant les noms et types des membres

2. Dé�nition de variables de ce nouveau type, avec allocation de mémoire.

28.1 Exemple ADA

-- declaration d'un nouveau type structure

type POINT_XY is

record

X : Integer;

Y : Integer;

end record;

-- déclaration du type pointeur de ce genre de structure

type ACCESS_POINT_XY is access POINT_XY;

-- declaration de variables de ce type

Origine : aliased POINT_XY := (3,7);

Destination : POINT_XY;

Pointeur_point : ACCESS_POINT_XY;

Pointeur2 : ACCESS_POINT_XY;

-- utilisation

begin

Origine.X := 4;

Destination := (7,8);

Origine := Destination;

Pointeur_Point := Origine'Access;

Pointeur_Point.Y := 6; -- acces via un pointeur

Pointeur_Point.X := 3; -- acces via un pointeur

Pointeur2 := new POINT_XY; -- allocation dynamique

Pointeur2.Y = 4;

end ma_procedure

28.2 Exemple C

/* Déclaration du type struct _point_xy */

struct _point_xy {

int x;

int y;

};

/* Nommage du type struct _point_xy */

typedef struct _point_xy point_xy;

/* Declaration du type pointeur de ce genre de structure */

/* on peut ecrire aussi typedef point_xy *pt_point_xy */

typedef struct _point_xy *pt_point_xy;

23

/* Définition des variables avec allocation statique de mémoire */

struct _point_xy origine = {3,7};

point_xy destination;

/* Deux pointeurs de structure _point_xy */

point_xy *pointeur_point;

pt_point_xy pointeur2;

/* Déclarations combinées */

/* Déclarer le type struct _point_rt et le nommer point_rt */

typedef struct _point_rt {

float : r;

float : t;

} point_rt;

/* Déclarer une variable sans donner de nom au type de struct */

struct {

char *nom;

char *prenom;

} banal = {"Pierre","Martin"};

/* Attention au contraintes d'alignement : sizeof(struct _mal_aligne) = 8 */

struct _mal_aligne {

long l; /* sizeof(long) = 4 */

char c; /* sizeof(char) = 1 */

} m1,m2; /* 3 octets entre m1.c et m2.l pour respecter alignement */

struct _point_xy creer_point_xy (int x, int y)

{

struct _point_xy resultat;

resultat.x = x;

resultat.y = y;

return resultat;

}

void

main (void)

{

origine.x = 4; /* Affecte x de origine */

destination = (struct _point_xy) {7,8}; /* Affecte x et y à 7 et 8 */

origine = destination; /* Copie x et y de dest */

pointeur_point = &origine;

(*pointeur_point).y = 6; /* acces via le pointeur p */

pointeur_point -> x = 3; /* p -> x abrégé pour (*p).x */

pointeur2 = malloc(sizeof(struct _point_xy)); /* alloc dynamique */

if (pointeur2 == NULL) { /* traiter l'échec */ }

pointeur2 -> y = 4;

}

24

29 Structures pour listes chaînées

Les listes chaînées sont construites avec des structures dont (au moins un) un membre est un
pointeur de structure de même type.

Version C

/* fichier liste.h */

typedef struct _point

{

int x;

int y;

struct _point *suivant;

} point;

typedef point *chainage;

/* fichier liste.c */

point doublets[10];

chainage tete;

chainage queue;

Version ADA

type Point;

type Point is

record

X : Integer;

Y : Integer;

Suivant : Chainage;

end record;

type Chainage is access Point;

Doublets: array (0..9) of Point;

Tete : Chainage;

Queue : Chainage;

Variante : on peut déclarer une liste préinitialisée lors du chargement du programme.

/***/

/* Une liste allouée et initialisée statiquement dans un tableau */

/* ______ _______ ______ ______ */

/* tete -->|0|0|-|-->|2|4|-|-->|1|3|-|-->|4|0| | */

/* ------- ------- ------- ^ ------ */

/* 1 0 2 | 3 */

/* queue ------------------------------- */

/***/

#include <stdio.h>

#include "liste.h"

/***/

/* -------------------------------- */

/* | 2 , 4, -----|----- */

/* | elements[0] |<-- | */

/* -------------------------------- | | */

/* tete --------------------->| 0 , 0 -----|--- | */

/* | elements[1] | | */

/* -------------------------------- | */

/* | 1 , 3 -----|--- | */

/* | elements[2] |<-|-- */

/* -------------------------------- | */

/* queue --------------------->| 4 , 0, ////// | | */

/* | elements[3] |<-- */

/* -------------------------------- */

/***/

25

struct _point_xy elements[4] = {

{2,4,elements+2},

{0,0,elements},

{1,3,elements+3},

{4,0,NULL}

};

chainage tete = elements+1;

chainage queue = elements+3;

void

main (void)

{

struct _point_xy *pt;

for (pt = tete; pt != NULL; pt = pt -> suivant)

printf ("Element à %8lx : %d, %d, suivant : %8lx\n",

(unsigned long) pt, pt -> x, pt ->y,

(unsigned long) pt -> suivant);

}

30 Extern : déclaration limitée à la dé�nition du type

Par défaut, les déclarations de variables et de fonctions 10 remplissent un double rôle :
� Dé�nir le type de la variable ou le prototype de la fonction
� Allouer statiquement et initialiser de la mémoire pour stocker le contenu (d'une variable) ou
le corps (autrement dit les instructions) d'une fonction.

L'attribut extern spéci�e que la déclaration n'est qu'une spéci�cation de type sans allocation
d'espace de stockage. On l'utilise principalement :

� Dans les �chiers d'en-tête (.h) pour dé�nir le type des variables partagées entre modules
compilés séparément.

� Dans les dé�nitions d'objets qui se référencent mutuellement.

L'attribut extern est optionel pour la dé�nition du prototype des fonctions (dans les �chiers
d'en-tête) : un prototype de fonction sans corps est implicitement interprété comme une simple
spéci�cation du prototype de la fonction.

/* fichier main.h */

struct profession {

const char *nom;

struct outil *instrument;

};

/* fichier calcul.h */

extern void calcul (void);

extern unsigned long total;

struct outil {

const char *nom;

struct profession *metier;

};

10. en incluant les procédures considérées comme des fonctions C retournant void

26

/* fichier main.c */

#include <stdio.h>

#include "main.h"

#include "calcul.h"

extern struct profession routier;

struct outil camion = {"camion",&routier};

struct profession routier =

{"chauffeur",&camion};

void

main ()

{

total=0;

calcul ();

}

/* fichier calcul.c */

#include "main.h"

#include "calcul.h"

unsigned long total;

void

calcul (void)

{

total++;

}

31 Attribut static

La visibilité de la variable ou de la fonction et la classe de stockage dépendent de l'emplacement
de la déclaration et de la présence ou non de l'attribut static.

La mémoire de stockage des variables dites statiques est allouée (dans data/bss) statiquement
pour la durée de l'exécution du programme. Celle des variables dites dynamiques est allouée dans
la pile le temps d'exécuter un appel de fonction 11 (allocation dans le prologue et libération dans
l'épilogue de la fonction). Dynamiques par défaut, les variables locales des fonctions perdent leur
valeur entre deux appels.

Emplacement de Méthode de stockage/ Attribut Visibilité
déclaration valeur entre 2 appels static limitée à

Hors d'une fonction → statique/conservée
absent → tous �chers
présent → �chier local

Intérieur d'une fonction
statique/conservée ← présent

fonction locale
dynamique/perdue ← absent

Deux choix des concepteurs du langage C sont criticables :
� L'attribut static agit sur deux aspects di�érents (classe de stockage et visibilité) selon
l'emplacement de la déclaration.

� Une variable déclarée à l'extérieur d'une fonction est partagée/exportée par défaut.

/* fichier f1.c */

static int x=3;

/* x et calcul de f1 */

static void calcul(void)

{ x++; }

/* distincts */

/* fichier f2.c */

static int x=5;

/* de x et calcul de f2 */

static void calcul(void)

{ x=0; }

unsigned long compteur ()

{

11. ou un bloc d'instructions : on peut déclarer des variables locales à une fonction ou à un bloc d'instructions

27

static nombre_d_appels = 0; /* initialisée au chargement du programme */

nombre_d_appels ++;

printf ("J'ai été appelée %u fois\n",nombre_d_appels);

}

32 Attribut const

L'attribut de stockage const spéci�e que le contenu de la variable déclarée ne doit pas être
modi�ée (le compilateur essaiera alors de la stocker dans une section protégée contre les accès en
écriture 12). On peut généralement obtenir le même résultat avec #de�ne, sauf :

1. si on souhaite manipuler l'adresse de la constante ainsi dé�nie (ou fabriquer un tableau de
constantes).

2. pour interdire la modi�cation du contenu repéré par une adresse ou un pointeur.

A gauche de *, const indique que contenu repéré par l'adresse qui suit ne doit pas être modi�é.
A droite de *, const indique que l'adresse contenue dans le pointeur ne doit pas être modi�ée.

/* equivalent #define, commentaires */

const double RAC2 = 1.414; /* #define RAC2 ((double) 1.414) */

const double CONS [2] = {3.14, 2.718};

double VAR [2];

double *ptd = VAR; /* ptd++ legal, *ptd = ... legal */

/* ptd = CONS interdit */

const double *ptcd = CONS; /* ptcd++ legal, *ptcd = ... interdit */

int * const INTMSK = 0x3ff4008; /* #define INTMSK ((int *) 0x3ff4008) */

/* INTMSK++ interdit, *INTMSK legal */

const double * const cptcd = & RAC2; /* cptcd ++ interdit et

*cptcd = ... interdit */

/* Cette procédure ne doit pas modifier les chaînes de caractères */

/* dont elle recoit l'adresse (*ch1 = ... interdit) */

int compare_chaine (const char *ch1, const char *ch2);

33 Constructeur selon : switch/case

La principale spéci�cité du contructeur switch de C est de nécessiter une instruction break
à la �n de chaque cas. Piège : en l'absence de break, l'exécution continue avec le code du cas
suivant.

-- version ADA

case Meteo is

when SOLEIL => Put ("Mettre creme solaire);

when PLUIE => Put ("Ouvrir parapluie);

when NEIGE => Put ("Sortir la pelle);

when VENT => Put ("Rentrer le linge);

12. par exemple text ou rodata dans le monde POSIX

28

when others => Put ("Ou avez-vous pris la meteo ?);

end case;

/* Version C */

switch (meteo) {

case SOLEIL: printf ("Mettre creme solaire); break;

case PLUIE : printf ("Ouvrir parapluie");break;

case NEIGE : printf ("Sortir la pelle");break;

case VENT : printf ("Rentrer le linge");break;

default : printf ("Ou avez-vous pris la meteo ?.);

}

/* En oubliant le break à la fin de chaque branche */

for (x=0; x < 10; x++)

{

switch (x) {

case 0 : y = 0; /* execute ensuite y = 1 du cas 1 */

case 1 : y = 1; break

case 2 : y = 2; /* execute ensuite y = 4 du cas 4 */

case 4 : y = 3; break;

default: y = 6;

}

printf ("y = %d ",y); /* x==0 ou x==1 --> y=1 */

} /* x==2 ou x==4 --> y=3 */

34 Compléments sur les tableaux et les pointeurs

34.1 Tableaux à n dimensions

Un tableau à n dimensions peut être considéré comme un tableau a une dimension dont chaque
élément est lui-même un tableau à n-1 dimensions. Les éléments d'un tableau étant stockés côte
à côte en mémoire, on peut parcourir un tableau à n dimensions avec un pointeur et une boucle.

typedef int tab4 [4]; /* le type tableau de 4 entiers */

tab4 u [3] = { {0,1,2,3}, {100,101,102,103}, {200,201,202,203} };

/* declaration du même type de tableau sans utiliser de typedef */

int t [3][4] = { {0,1,2,3}, {100,101,102,103}, {200,201,202,203} };

/* u[i] est un tableau de 4 entiers */

/* (u[i])[j] est le j_ième élément de ce tableau */

/* on peut l'écrire tout simplement u[i][j] */

/* Ordre de rangement en mémoire : */

/* u[0][0], u[0][1], u[0][2], u[0][3], u[1][0], u[1][1], ..., u[2][3] */

/* t[0][0], t[0][1], t[0][2], t[0][3], t[1][0], t[1][1], ..., t[2][3] */

void

main (void)

{

int i,j,*ptr;

29

for (i = 0; i < 3; i++)

for (j = 0; j < 4; j++)

printf ("t[%d][%d] = %d,u[%d][%d] = %d\n", i,j,t[i][j],i,j,u[i][j]);

for (ptr = &t[0][0]; ptr <= &t[2][3]; ptr++)

printf ("%d ",*ptr);

printf ("\n");

/* affiche a l'execution */

t[0][0] = 0, u[0][0] = 0

t[0][1] = 1, u[0][1] = 1

t[0][2] = 2, u[0][2] = 2

t[0][3] = 3, u[0][3] = 3

t[1][0] = 100, u[1][0] = 100

t[1][1] = 101, u[1][1] = 101

t[1][2] = 102, u[1][2] = 102

t[1][3] = 103, u[1][3] = 103

t[2][0] = 200, u[2][0] = 200

t[2][1] = 201, u[2][1] = 201

t[2][2] = 202, u[2][2] = 202

t[2][3] = 203, u[2][3] = 203

0 1 2 3 100 101 102 103 200 201 202 203

}

34.2 Pointeurs de pointeurs et de fonctions

Toute entité C stockée en mémoire peut être repérée par un pointeur : on peut donc dé�nir des
pointeurs de fonctions et des pointeurs de pointeurs. Un pointeur de pointeur permet de passer à
une fonction l'adresse d'un pointeur à modi�er (en ADA, ceci devrait logiquement correspondre
à un paramètre out ou in out de type access).

#include <stdio.h>

#include <malloc.h>

int x,y;

/* déclaration de 2 pointeurs d'entier avec contenu initiaux */

int *px=&x, *py =&y;

/* pointeur qui sera affecté dans la procédure mon_alloc */

int *tableau_dynamique;

/* un pointeur de pointeur d'entier */

int **pp;

void

mon_alloc (unsigned long taille, void **adresse)

{

void * res;

res = malloc((size_t) taille);

if (res == NULL) { /* gérer l'erreur */}

*adresse = res;

}

void

30

main(void)

{

pp = &px;

**pp = 3; /* *(*&px) --> *px --> *&x --> x = 3 */

pp = &y; / px pointe maintenant sur y */

mon_alloc (1000,&tableau_dynamique);

tableau_dynamique[10]=4;

}

34.3 Exemple de tableau de pointeurs

#include <stdio.h>

char msg_bonjour [] = "bonjour !";

int autrechose;

char msg_merci [] = "merci !";

int encoreunautre;

char msg_au_revoir [] = "au revoir !";

/* un tableau de 4 pointeurs repérant des chaînes de caractères */

/* les chaînes ne sont pas contigües en mémoire */

char * messages [] = {msg_bonjour,msg_merci,msg_au_revoir,NULL};

void

afficher (char *msg[]) /* ou (char **msg) */

{

char **m, *chaine;

for (m=msg; *m != NULL; m++)

{

chaine = *m; printf ("%s\n",chaine);

}

}

void data (char *m) { printf ("data%s\n" ,m); }

void collec (char *m) { printf ("collec%s\n",m); }

void initia (char *m) { printf ("initialisa%s\n",m); }

/* type pointeur de procedure à un paramètre pointeur de char */

typedef void (*procedure_char) (char *);

procedure_char commandes [3] = {data,collec,initia};

/* argc : nombre d'éléments de argv */

/* argv : les mots de la ligne de commande */

/* envp : les définitions de variables d'environnement */

/* Exemple : "SHELL=/bin/tcsh" */

/* Pas de envc : envp termine par NULL */

int

main(int argc, char *argv[], char *envp[])

31

{

int i;

for (i = 0; i< argc; i++)

printf ("argv[%d] = %s\n",i,argv[i]);

afficher (envp);

afficher (messages);

for (i = 0; i< 3; i++)

(*(commandes[i])) ("tion");

return 0;

}

/* execution */

mandelbrot> ./mon_programme truc bidule

argv[0] = ./mon_programme

argv[1] = truc

argv[2] = bidule

SHELL=/bin/tcsh

USER=waillep

...

LUSTRE_INSTALL=/usr/local/lustre

bonjour !

merci !

au revoir !

datation

collection

initiation

35 Entrées/sorties formattées : printf, scanf

printf ("texte a�ché tel que %format texte",expression) ;

scanf ("%format",&variable) ;

Documentation : man 3 printf ou man 3 scanf. Printf retourne le nombre de caractères
a�chés. Scanf retourne le nombre d'éléments lus. A noter : pour lire une chaîne (format %s) avec
scanf, on passe le tableau non précédé de & (le nom du tableau est déjà un pointeur).

Quelques formats usuels
Format Nature

%d Entier relatif en décimal
%3d Idem, a�che 3 chi�res
%u Entier naturel en décimal
%lu Idem pour un entier long
%x Entier en hexdécimal
%c Caractère (ASCCI dans un char)
%f Nombre à virgule �ottante
%s Chaîne de caractères (char*)

int var;

char lu[100];

if (scanf ("%d",&var) != 1)

{/* gestion d'erreur */ }

else

{

printf ("var = %d\n", var);

/* utiliser_valeur_de (var) */

}

if (scanf ("%s",lu) == 1)

printf ("Lu : -->%s<-\n",lu);

32

36 Unions

Lorsque les membres d'une structure ne sont jamais utilisés simultanément, on peut "super-
poser" les membres, c'est-à-dire tous les stocker à la même adresse : en C, remplacer struct par
union.

36.1 Record variant en ADA

type COORDONNEES is (XY,RT);

type POINT (nature : COORDONNEES := NONE) is

record

case nature is

when XY => X : Integer; Y : Integer;

when RT => R : FLOAT; T : FLOAT;

end case;

end record;

Origine : POINT;

Destination : POINT;

begin

Origine := (XY,3,4);

Destination := (RT,3.0,0.7);

end programme

36.2 Structure et union en C

enum coordonnees {XY=1, RT=3} ;

struct rectangulaire {int x; int y;};

struct polaire {float r; float t;};

union xy_rt {struct rectangulaire xy; struct polaire rt;};

struct point {

enum coordonnees nature;

union xy_rt valeur;

};

struct point origine;

struct point destination;

void

calcul (void)

{

origine.nature = XY;

origine.valeur.xy = (struct rectangulaire) {3,4};

destination.nature = RT;

destination.valeur.rt = (struct polaire) {3.0, 0.7};

}

33

void

afficher (struct point *s)

{

if (s->nature == XY) { printf ("x = %d y=%d\n",

s->valeur.xy.x, s->.valeur.xy.y);}

if (s->nature == RT) { printf ("r = %f t=%f\n",

s->valeur.rt.r, s->valeur.rt.t);}

}

Remarque : on pourrait réaliser beaucoup moins proprement ces a�ectations avec des conver-
sions de type pointeur, en exploitant le fait que tous les membres de l'union sont stockés à la
même adresse.

/* Comment réaliser ceci avec les conversions de type de pointeurs ? */

/* destination.valeur.rt = (struct polaire) {2.0,1.57}; */

/* origine.valeur.xy = (struct rectangulaire) {-1,-2}; */

* (struct polaire *) &destination.valeur = (struct polaire) {2.0,1.57};

* (struct rectangulaire *) &origine.valeur = (struct rectangulaire) {-1,-2};

37 Opérateurs entiers bit à bit

On considère ici chaque entier comme une collection de bits ou de booléens correspondant à
sa représentation en base deux.

La représentation du décalage à gauche de b bits de x (dec_b_bits_gauche = x � b) est
telle que b bits 0 sont ajoutés à droite (poids faibles) et b bits supprimés à gauche (poids forts)
de la représentation en binaire de x.

Le décalage de b bits à droite (dec_b_bits_droite = x � n) de x supprime à l'inverse b
bits à droite et ajoute b bits à gauche.
On utilise un décalage logique pour un entier x naturel (unsigned) : il ajoute b fois un bit à 0
en poids fort. On utlise un décalage arithmétique pour un entier x relatif : il ajoute b fois le
bit de signe (bit de poids fort) de x en poids fort.

En C on note respectivement � , & ,| et � les opérateurs Non (un seul opérande, calcule le
complément à un), Et, Ou et Ou Exclusif. Tous opèrent colonne par colonne : chaque bit d'un
entier est interprété comme la représentation d'un booléen.

/**/

/* Non Et Ou Ou exclusif */

/* 0011 1100 0011 1100 0011 1100 0011 1100 */

/* ~ & 1100 1001 | 1100 1001 ^ 1100 1001 */

/* --------- --------- --------- --------- */

/* 1100 0011 0000 1000 1111 1101 1111 0101 */

/**/

unsigned char x = 0x3c;

unsigned char y = 0xc9;

34

unsigned char and, or, xor, not;

not = ~x; /* not = 0xc3 */

and = x & y ; /* and = 0x08 */

or = x | y ; /* or = 0xfd */

xor = x ^ y; /* xor = 0xf5 */

Attention : ne confondez pas les opérateurs bit à bit � ,& et | avec les opérateurs booléeens !,
&& et || utilisés pour exprimer les conditions : ces derniers interprètent chaque valeur entière
comme un seul booléen.

38 Paramètres de main : argc, argv, envp

Les paramètres de la procédure main sont deux tableaux de pointeurs de chaînes de caractères
nommés argv et envp. Le contenu de argv correspond aux arguments de la ligne de commande
utilisée pour lancer l'exécution. Envp contient des dé�nitions de variables d'environnement sous
la forme "nom_de_variable=dé�nition".

La taille de argv est dé�nie par le paramètre argc et le dernier élément de envp est suivi d'un
pointeur NULL.

/* fichier listarg.c */

#include <stdio.h>

int main (int argc, char *argv[], char*envp[])

{

int i;

printf ("Ligne de commande : ");

for (i = 0; i <argc; i++)

printf ("%s ",argv[i]);

printf ("\n\nEnvironnement : \n");

i = 0;

while (envp[i] != NULL)

printf ("%s\n");

printf ("\n");

return 0;

}

mandelbrot> ./listarg -g 123 456

Ligne de commande : ./listarg -g 123 456

Environnement :

USER=waillep /* quelques définitions parmi */

...

HOST=mandelbrot /* toutes les variables d'environnement */

...

HOME=/u/w/waillep /* affichées */

mandelbrot>

35

39 Mots réservés du lannage C

Vous ne pouvez utiliser les mot réservés du langage comme noms de variable ou de fonction.
En voici la liste :

auto break case char const
continue default do double else
enum extern �oat for goto
if inline int long register
restrict return short signed sizeof
static struct switch typedef union
unsigned void volatile while
_Bool _Complex _Imaginary

36

