Notes de cours "Introduction au langage C"

Philippe WAILLE (UFR IMA, université Joseph Fourier)

Septembre 2012

Table des matiéres

1 Types de base

2 Taille des types et écriture des constantes numériques

3 Représentation des caractéres

4 Déclaration de variable

5 Constantes symboliques et énumération

6 Gestion des booléens

7 Expression conditionnelle

8 Les opérateurs de calcul usuels

9 Instructions élémentaires : affectation, si, tant que, répéter
10 Blocs d’instructions et d’expressions

11 L’affectation C est une expression!

12 Piéges : instruction vide et affectation au lieu de comparaison
13 Formes abrégées d’affectation

14 Traduction de parcourant et instruction for

15 Boucles infinies, break et continue

16 Définition d’une fonction ou d’une procédure

17 Directive préprocesseur #include

18 Modules a& compilation séparée, interfaces

19 Etapes de compilation, bibliothéques, makefile

19.1 Etapes de compilationo Lo
19.2 Edition de liens et bibliotheques 0L
19.3 Make et Makefile

20 Adresses : opérateurs & et *

21 Type "adresse de", constantes adresses, pointeurs

21.1 Version ADA
21.2 Version C

22 Gestion de paramétres résultat

22.1 version ADA s
22.2 version C . . .

10

10

10

11

12

13
13
13
14

15

16
17
17

23 Allocation dynamique de mémoire

23.1 Version ADA tnew
23.2 Version C : malloc/calloc oL

24 Tableaux a une dimension

24.1 Exemple en ADA
24.2 Tableauxen C.

25 Chaines de caractéres
26 Arithmétique sur les pointeurs
27 Application simultanée de * et ++ ou --

28 Structures (enregistrements)

28.1 Exemple ADA
28.2 Exemple C.

29 Structures pour listes chainées

30 Extern : déclaration limitée a la définition du type
31 Attribut static

32 Attribut const

33 Constructeur selon : switch/case

34 Compléments sur les tableaux et les pointeurs

34.1 Tableaux a n dimensions
34.2 Pointeurs de pointeurs et de fonctions L.
34.3 Exemple de tableau de pointeurs

35 Entrées/sorties formattées : printf, scanf

36 Unions

36.1 Record variant en ADA
36.2 Structure et union en Co,

37 Opérateurs entiers bit a bit
38 Paramétres de main : argc, argv, envp

39 Mots réservés du lannage C

19
19
19

19
19
19

21

21

22

23
23
23

25

26

27

28

28

29
29
30
31

32

33
33
33

34

35

36

1 Types de base

‘ Nom ‘ Norme C ‘ Nom abrégé ‘ Remarque
Entiers relatifs
int
short int short
long int long
long long int c99 long long
signed char c99 char pour calcul entier

Entiers naturelss
unsigned int

unsigned short int unsigned short
unsigned long int unsigned long
unsigned long long int c99 unsigned long long
unsigned char c99 char pour calcul entier

Nombres a virgule flottante

float
double precision +-+
long double precision ++ ++ (rare)

Types entiers pour représenter les caractéres
char ASCII, iso_latinl, utf8
whar t c99 utf32

Booléens
_ Bool ou bool c99
typedef int bool | # ¢99 stockage dans int

Chaines de caractéres

char ” N N
wehar_t] [| et "\O en fin
Autres types
void Absence de type
T* Adpresse /pointeur de type T

TABLE 1 — Principaux types C

L’attribut ¢99 indique les types récement introduits dans la derniére norme de C.

Typedef permet de définir de nouveaux types a partir de types C de base, notamment pour
déclarer des structures de données complexes.

float £ (int x) {

return (float) x * 1.25;

}
typedef float func_int_to_float (int); /* nommer ce type de fonction */
fun_int_to_float *pt_func = fsomme; /* un pointeur dessus */

2 Taille des types et écriture des constantes numériques

Préfixes de base de numération entiére :

— aucun (décimal) : 64 = 644

— 0 (octal) : 0102 = 6659 (1*8%8+2)

— 0x (hexadécimal) : 02102 = 25819 1 %16 % 16 + 2)

Tailles classiques sur une machine 64 bits
Type ou Taille en

attribut bits (t) octets (sizeof)
char 8 1
wchar t 32 4
short 16 2
int 32 4
long 32 4
long long 64 8
float 32 4
double 64 8
long double 128 16
T* 64 8

3 Représentation des caractéres

Stockage des caractéres : par son numéro de code dans un entier > taille codage. Les carac-
téres sont habituellement codés dans le type char en codage ASCII ou iso _xxxx. Le type wchar _t
est utlisé avec le codage UTF32. Le type char sert aussi en cas de représentation en codage utfs.

Char et wchar t sont assimilables a des types entiers. Le type char est souvent équivalent a
signed char, parfois & unsigned char.

Un caractére entre quotes (’) est la constante entiére (de type int) correspondant a son code.

caractére ASCII | hexa | octal | notation C | commentaire

b \x62 | \076 | ’b’ peut aussi s’écrire 0x62, 076 ou 98
’ \x27 | \047 |\’
" \X22 \042 /\IH
\ \x5c | \0134 | "\’

"line feed" \x0a | \012 |"\n’ (passage a la ligne)

"carriage return" | \x0d | \015 | "\r’ (retour en début de ligne)
tabulation horiz. | \x09 | \011 | ’\t’

"backspace" \x08 | \010 | "\b’ (retour en arriére d’un caractére),
"form feed" \x0c | \014 | "\f’ (saut de page)

"nul" \x0 | \00 "0’ sans effet (fin de chaine)

4 Déclaration de variable

Le type d’une variable permet de déterminer le nombre d’octets occupés par son contenu et la
maniére de les interpréter. Une déclaration ordinaire de variable définit le type, réserve de
la mémoire pour stocker la variable, et spécifie éventuellement son contenu initial au démar-
rage du programme.

long longl, long2; /* valeur initiale implicite : 0 */

long 1 = 0x1234567L; /* avec valeur initiale au lancement de 1’exécution */
unsigned short s;

double pi = 3.14;

char c;

char bl = ’b’, b2 = 0x62, b3 = 076, bd = 98; /* valeurs initiales : ’b’ */

5 Constantes symboliques et énumération

Avant le compilateur proprement dit, le fichier & compiler est passé au préprocesseur qui gére
les directives #xxx. La directive #define permet de déclarer des constantes symboliques : elle
déclenche une substitution de texte avant la phase de compilation.

#define CTEl1l 3.0
#define CTE2 (4.1+9.3) /* aprés passage préprocesseur */

= (y + CTE1) * (CTE2 +1); X
CTE2; z

»d
|

(y + 3.0) * ((4.1+9.3) +1);
(4.149.3);

N
I

Le mot-clé enum permet de typer un sous-ensemble fini de valeurs entiéres nommeées. La suite
de noms de valeurs est associée a la suite croissante des entiers naturels (I'utilisation de = permet
de forcer une association précise).

typedef enum bool {FALSE=0, TRUE=1}; // redondant en C99

// Ce code

enum couleur {NOIR, ROUGE, VERT, JAUNE,
BLANC = 7, BLEU, ORANGE=13};

enum couleur ma_couleur;

// équivaut a
#define NOIR

#define ROUGE
#define VERT

#define JAUNE
#define BLANC
#define BLEU

#define ORANGE 13
int ma_couleur;

0 ~Nd+d<c N O

// les 2 méthodes permettent d’écrire
ma_couleur = VERT;

6 Gestion des booléens

Le type _Bool (C99)

Le type _Bool est ajouté par la norme C99. Complétant la famille des types entiers, il se limite
au sous-ensemble de valeurs 0,1. Lors d'une affectation d’un autre type d’entier & un _Bool, la
régle de conversion (interprétation des entiers comme booléens) est implicitement appliquée :

— Entier 0 — booléen 0 (interprétée comme faux)

— Entier # 0 — booléen 1 (interprétée comme vrai)

Opérateur booléens

Les opérateurs booléens ! (négation) , && (ET), || (OU)

et de comparaison : x < y, X <=y,X > y,X >=Y,

x ==y (égalité), x != y (non égalité)
— acceptent tout type d’opérande entier (aussi bien int que _Bool)
— retournent une valeur entiére booléenne 0 ou 1.

Utilisation de int en ’absence de _Bool (avant norme C99)

Le fonctionnement des opérateurs booléens est identique, mais en ’absence du type _Bool, on
utilise le type int pour déclarer les variables a valeurs booléennes.

Définition de bool, true et false

Il souvent pratique de définir ainsi les constantes symboliques true et false :

#define true 1 // définitions contenues dans stdbool.h de C99
#define false O

Il est commode de nommer bool les booléens comme dans d’autres langages :

#include <stdbool.h> // C99 : contient typedef _Bool bool;

// ou bien

#include "mybool.h" // avant C99 : contient typedef int bool;
bool b;

int e = b;

// Piége du forceur (bool) !
// Effet de b = (bool) e : affecte 1 ou 5 & b selon typedef utilisé
// Ecrire a la place b = (e !'= 0)

7 Expression conditionnelle

Syntaxe : expression_ condition? expression_ alors : expression_ sinon

L’expression expression_ condition est évaluée. Selon sa valeur I'expression conditionnelle re-
tourne la valeur de expression_alors ou celle de expression_ sinon.

troismax = 3 *((x <y) 7y : x);

/* code équivalent */
if (x < y)

max =y,
else
max = X,
troismax = 3 * max;

8 Les opérateurs de calcul usuels

Opération ADA C || Commentaires
addition + +
soustraction -
multiplication *
div : quotient / /|| entiére ou flottante selon type opérandes
div : reste rem,mod | %
puissance K — appel de fonction log/exp
valeur absolue abs — appel de fonction
non logique not ! 1 booléen par entier, ne pas confondre avec le not bit a bit (~)
ou logique or else || || Attention : double barre
et logique and then | && || Attention : double &
ouex logique XOT — ((fa && b) || (a && b))
inférieur strict < < || retourne entier 1 pour vrai
inférieur < = <=
supérieur strict > >
supérieur > = >=
égalité = == || Attention : double égal
inégalité /= =
float x,y;
x=5.0/2.0; /* x = 2.5 %/
y = (float) ((int) 5.0 / (int) 2.0); /¥y = 2.0 %/

9 Instructions élémentaires : affectation, si, tant que, répéter

variable = expression ; /* Pas de deux points avant = */
while (condition) instruction ; /* Pas de; aprés la condition */
do instruction while (condition) ;

if (condition) instruction alors else instruction sinon

if (condition) instruction alors /* Pas de then ni de endif */

N’importe quelle expression est utilisable comme condition et il n’y a ni then ni elsif ni endif
et pas de deux points avant le égal dans la syntaxe C.

L’exécution du corps de do et while est répétée si la condition est vraie (condition de conti-
nuation). Dans la boucle do, le corps est exécuté au moins une fois.

x = y est une comparaison en ADA et une affectation en C = Piége!

/* pgcd en C */ -- pgcd en ADA

while (x != y) while x /= y loop
if (x == y) if (x =1y
printf ("termine\n"); Put_Line("termine"); New_Line;
else if (x > y) elsif (x > y) then
X=X -7Y; X 1= X - V;
else else
y=y - % y =y - X
end if;
end loop;

/* lire et ignorer les A */
do

c = getc (fichier);
while (c == ’A’);

A quel if correspond le else ? = par convention le if le plus proche : if (x > y).

10 Blocs d’instructions et d’expressions

Une instruction composée est obtenue en regroupant un ensemble d’instructions dans un bloc
délimité par des accolades (au lieu de begin ...end en ADA ou PASCAL).

Le début du bloc peut contenir des définitions de variables locales au bloc d’instructions (de
préférence uniquement dans la déclaration des fonctions). Le bloc peut étre vide.

Utilisations typiques :

— corps d’une boucle do ou while
— branche alors ou sinon d’un if

— corps d’une définition de fonction

Une expression composée est une liste d’expressions séparées par des virgules. La valeur retour-
née par cette expression est celle de la derniére expression (la plus a droite). Utilisation : boucles
for a plusieurs variables de boucles.

/* instruction composée */

if (a_permuter) { /* expression composée */
int tampon; y = (z=3),(x=4), 3+3;
tampon = X;
X =7y; /* et code équivalent */
y = tampon; z=3;

} else { x=4;
x = 0; y=6;

}

11 L’affectation C est une expression !

L’affectation a un statut trés spécial dans le langage C.

L’affectation var = expression droite est considérée comme une expression dont la valeur
est celle de expression_ droite, et qui a pour effet de bord de copier cette valeur dans var.

/* Copier jusqu’a fin du fichier (EOF) */ /* Code do while equivalent */

/* Exemple classique d’utilisation */ do {
c = getc (entree);
while ((c = getc (entree)) != EOF) if (c != EOF) putc (c,sortie);
putc (c, sortie); } while (¢ '= EOF);

/* Eviter ce genre de code */ z = 5;
x = (y=1(z=5) 2) + 3; y =z % 2;

x =y + 3;

X =y;
if ((x=y) != 3) x++; if (x '= 3) x++;

12 Piéges : instruction vide et affectation au lieu de compa-
raison

Une expression suivie d’un point-virgule en constitue une instruction. Un bloc d’instructions
vide constitue une instruction (vide). Un point-virgule seul en constitue une aussi = Piége!.

Autre piége classique : écrire une affectation (simple égal) au lieu d’une comparaison
(double égal) dans une condition. Cette erreur classique ne génére pas d’erreur de syntaxe a la
compilation.

En I'absence de type booléen, la syntaxe du langage C permet d’utiliser n’importe quelle ex-
pression entiére comme condition® or 'affectation en C est une expression 2, donc son utilisation
comme condition est légale.

while (x < y); { /x ; -> corps vide ! */ while (x < y){ /* equivalent */
X++; }
y--; X++;

} y--;

do
yH+; do {

while (x = y); /*x = -> affectation ! */ yt+s x =y

1 1= .
/* au lieu de comparaison */ }while (x t=0);

13 Formes abrégées d’affectation

Formes abrégées d’affectation : /* exemples */ /* equivalent */
— 4=, -= *= /= %= (arithmétique) x -= 3; x =x + 3
— «, » (décalages a gauche et a droite) X <<= 2; X = x << 2;
— &=, |=, "= (opérations bit & bit) x |= 4; x = x | 4;

Opérateurs d’incrémentation ("plusplus") et de décrémentation ("moinsmoins")"
Placés a droite : retournent l’ancienne valeur.
Placés a gauche : retournent la nouvelle valeur.

1. interprétée comme faux si et seulement si sa valeur est zéro : voir section 6
2. Retournant la valeur de son membre droit

X+t x = x +1; /* séquence de code équivalente */
X-=; x =x - 1;

y = X--; y =Xx; x=1x - 1;

y = --%; x=x-1;, 3y =x;

14 Traduction de parcourant et instruction for
for (initialisation ; condition; mise & jour) corps

Exemple : parcourir en ascendant I'intervalle [3 ... N-1]

j = 3; /* initialisation */ /* init cond maj */
while (j < N) { /* condition */ for (j = 3; j <N; j+t) {

j =3+ 1i; /*x Corps */ j =3+ 1i; /* Corps */

s =8 +1; s =8+ 1;

j++; /* Mise & jour */ }
}

i=0; /* init */

/* <- init = -> <-cond-> <- maj Ry p = tete;

hil i < * d *
for (i=0, p = tete; i < max; i++, p = p -> next) { while (i < max) { /* cond */
somme += p -> valeur;

somme += -> valeur; . .
P ? i++; /* maj x/

} P = p -> next;
X

15 Boucles infinies, break et continue

while (++x < N) {
if (stop()) break;
s = chercher(x);
if (s==NULL) continue;
fi1(s); f2(s);

while ((++x < N) && !stop()) {
s = chercher(x);
if (s !'= NULL) {
f1(s); f2(s);
}
}

Une boucle (for, do, while) dont la condition est une constante non nulle ne termine pas.
Dans le corps d’une boucle 'exécution de 'instruction

— break fait sortir de la boucle.

— continue supprime ’exécution du reste du corps et passe au tour de boucle suivant

16 Définition d’une fonction ou d’une procédure

Définition d’une fonction = définition du prototype + définition du corps

Prototype (ou signature) = déclaration du type de la fonction.

— Type de résultat retourné. Si void : déclaration d’une procédure.

— Nom de la fonction ou procédure

— Type et nom (le nom peut étre omis si le prototype n’est pas accompagné du corps) de
chacun des paramétres formels ou void (rien dans ancienne norme K&R) si la fonction n’a
pas de paramétre

10

Définition du corps :

— Alloue statiquement et initialise la mémoire pour stocker les instructions composant le corps
de la fonction.

— Enumeére les variables locales de la procédure — allocation dynamique de mémoire pendant
I'exécution (gérée par le compilateur).

Les paramétres sont passés par valeur (comme les paramétres in en ADA). L’instruction return
exp termine 'exécution de la fonction et retourne la valeur exp a 'appelante.

char /* définition compléte : */
lire_chiffre (void) /* prototype + */
{ /* corps de la fonction */
char 1lu;
do {

lu = getchar ();
} while ((lu !'= EOF) && (lu >= ’0’) && (lu <= ’9’));

return lu;
}
void
ecrire_y (unsigned long y); /* prototype procédure seul */
double
mon_sinus (double x); /* prototype fonction seul */
void void long
au_revoir (void) ecrire_a (int a) fois_deux (long x)
{ { {
printf ("au revoir\n"); printf ("a = %d\n",a); return x+x;
} } }
unsigned long unsigned long
facto (unsigned int n) facto (unsigned int n)
{ {
unsigned long result; /* variante sans variable locale */
if (n '= 0) if (n '= 0) return n * facto (n-1);
result = n * facto (n-1); return 1;
else }

result = 1;
return result;

+

17 Directive préprocesseur #include

La directive #include indique au processeur d’inclure le contenu d’un fichier de prototypes
(fichier de type header : xxx.h) référencé a partir du répertoire courant ou d’un répertoire standard
du systéme (/usr/include).

#include <stdio.h> /* répertoire public : /usr/include/stdio.h */
/* fonctions de bilbiothéques standard (libc) */

#include "monfichier.h" /* répertoire courant : ./monfichier.h */
/* fonctions de 1’utilisateur */

11

18 Modules a compilation séparée, interfaces

Un module définit des variables et des procédures ou fonctions. Elle peuvent étre privées (in-
accessibles ou inconnues des autres modules) ou partagées : définies (exportées) par un module
(avec allocation de mémoire de stockage) et accédées ou appelées (importées) dans un ou plusieurs
autre modules. En C, la notion de module correspond a celle de fichier.

Version C Version ADA

/* fichier user_io.h */ /* fichier user_io.ads */

void package User_io is

Write_Int (int value); procedure Write_Int (Value:in Integer);

end User_Io;

/* fichier user_io.c */ /* fichier user_io.adb */
#include <stdio.h> with Ada.Text_Io;

with Ada.Integer_Text_Io;

void package body User_Io is
Write_Int (int value) procedure Write_Int (Value:in Integer)
{ begin
printf ("Voici :"); Ada.Text_Io.Put("Voici :");
printf ("%u",value); Ada.Integer_Text_Io.Put(Value);
printf ("\n"); Ada.Text_Io.New_Line;
} end Write_Int;

end User_Io;

/* fichier calcul.h */ /* fichier calcul.ads */
package Calcul is
extern int coeff; coeff : Integer;
void Calcul (int val); procedure Calcul (Val: in Integer);
end Calcul;
/* fichier calcul.c */ /* fichier calcul.adb */
#include "user_io.h" with User_io;
int coeff;
void package body Calcul is
Calcul (int val) procedure Calcul (Val: in Integer) is
{ begin
Write_Int(val * coeff); User_io.Write_Int(Val * coeff);
} end Calcul;
end Calcul;
/* fichier main.c */ /* fichier principal.adb */
#include '"calcul.h" with Calcul;
void
main (void) procedure Principal is
{ begin
coeff=4; Calcul.coeff := 4;
Calcul (5); Calcul.Calcul (5);
} end Principal;

12

Les variables a I'extérieur des corps de fonctions sont exportables (par défaut?®) ou privées
(déclarées avec l'attribut static).

L’interface (fichier m.h) d’un module m, incluse dans tous les modules qui utilisent les variables
et fontions exportées par le module m (fichir m.c), permet de spécifier les types des variables et les
prototypes des fonctions exportées par le module m. Elle regroupe des déclarations de contantes
et de types, mais aucune déclaration avec réservation de mémoire (extern : voir section 30).

Chacun des modules peut étre compilé séparémént des autres, mais si un fichier .h est modifié,
tous les modules qui 'incluent doivent étre recompilés.

19 Etapes de compilation, bibliothéques, makefile

19.1 Etapes de compilation

La commande de compilation cc ou gcc enchaine automatiquement les différentes étapes de
traduction pour générer un fichier binaire exécutable a partir des fichiers passés en paramétre. Par
convention, la nature du contenu d’un fichier et la prochaine étape de traduction a appliquer sont
déduits du suffixe du nom du fichier (tableau 19.1).

Suffixe Type de contenu Traitement & appliquer ‘ Résultat ‘ gce
f.h source C a insérer dans f.i ou f.s (lors de ccp de f.c ou {.S)
f.S source asm avec #Xxx , f.s
f.c source C_ avec #ixxx | D oProcessett (cpp) fi £
fi source C sans #xxx | compilateur f.s -8
f.s source asm sans #xxx | assembleur (as) f.o -¢

bibliothéques statiques (ar) | libnom.a

fyyy.o | objet binaire relogeable | bibliothéques partagées (1d) | libnom.so

édition de liens (1d) binaire exécutable

TABLE 2 — Suffixes des fichiers et étapes de compilation (posix)

La colonne gce indique 'option de gce a utiliser pour stopper la compilation aprés une étape
donnée (les fichiers résultat des étapes intermédiaires ne sont pas conservés). A titre d’exemple
gce -c user _io.c permet de stopper la compilation aprés la génération du fichier binaire relo-
geable user io.o.

Le préprocesseur traite principalement les inclusions et substitutions de texte associées aux
directive #include et #define. Le compilateur interne compile séparément chaque fichier source
en fichier binaire relogeable .0 ou en fichier source en langage d’assemblage .s.

19.2 Edition de liens et bibliothéques

L’édition de liens fusionne en un unique fichier binaire exécutable I'ensemble des fichiers objets
compilés séparément : ceux de 'utilisateur, divers fichiers de code standard * (crtzzz.0) et la biblio-
théque C livrés avec le compilateur, et d’autres bibliothéques éventuelles. Elle permet d’associer
a chaque variable ou fonction importée dans un module son adresse (définie dans la table des

3. L’inverse aurait été plus prudent, comme dans le langage d’assemblage (directive .global pour exporter)
4. exécuté lors du démarrage ou de la terminaison, dont initialisations diverses de variables utilisées par certaines
fonctions de bibliothéques (exemple : malloc)

13

. préprocesseur—+compilation/assemblage . .
user _io.o < user io.h+user io.c

préprocesseur—+compilation/assemblage .
calcul.o < user io.h-+calcul.c

. préprocesseur—+compilation/assemblage .
main.o < calcul.h+main.c

édition de liens (options —static —lc) calcul.o+main.o+user io.o+crtzzz.o+libc.a

calcul < . . .
A calcul.o+main.o+user io.o+crtzzz.0+libc.so

édition de liens (option —lc)

TABLE 3 — Principales étapes de compilation du programme calcul (section 18)

symboles du fichier objet relogeable du module exportateur).

Une bibliothéque contient un ensemble de fonctions ou procédures précompilées, offrant divers
services utiles (exemple : entrées/sorties print et scanf), qui sont liées aux fichier(s) de type objet
binaire relogeable de I'utilisateur. Les suffixes .a et .s0®° des bibliothéques signifient archive (pour
I’édition de liens statique) et shared object (pour I’édition de liens dynamique).

L’édition de liens statique (option -static) fabrique un fichier exécutable complet, au prix
d’une duplication du code des fonctions de bibliothéques dans tous les fichiers binaire exécu-
tables qui les utilisent.

L’édition de liens de liens dynamique crée un fichier exécutable incomplet. Elle consiste a
retarder la liaison avec les fonctions de bibliothéques jusqu’au début de chaque exécution pour
éviter la duplication du code des bibliothéques tant sur le disque que en mémoire centrale (dans
un systéme multiprogrammé).

L’option -lnom.suffize spécifie le nom d’une bibliothéque (fichier libnom.a ou libnom.so) a
utiliser lors de I'édition de liens. L’option -Lrépertoire spécifie un répertoire ol trouver cette
bibliothéque 6.

19.3 Make et Makefile

La commande unix make permet d’appliquer un ensemble de régles de (re)compilation décrites
dans un fichier Makefile.

La commande make cible crée le fichier cible ou le met a jour s’il est devenu obsoléte. Pour
cela, make va récusivement mettre a jour chacun des fichiers utilisés pour la génération de cible
(user_io.o, calcul.o et main.o pour make calcul), puis regénérer cible si la date de derniére modi-
fication d’un de ces derniers n’est pas antérieure a celle de cible.

Si la régle associée a une cible & mettre & jour est absente ou incompléte, make essaiera d’uti-

liser un ensemble variables et de régles génériques par défaut. Voici un exemple de régle générique
implicite : f.o dépend de f.c et on le crée avec la commande §{CC} §{CFLAGS} ¢ f.c.

Il est également possible de définir des régles de compilation génériques explicites. La derniére
régle & droite indique par exemple que tout fichier nom.o dépend des fichiers suivants : nom.c

5. sous unix/posix, .dll pour dynamically linked library sous windows
6. I'éditeur de liens dynamique utilise la variable d’environnement LD LIBRARY PATH pour rechercher
les bibliothéques partagées.

14

nom.h et global.h. Avec les régles implicites et la définition des variables CC et CCFLAGS, il

est souvent possible d’omettre la commande de génération d’une cible.
Exemple de fichier Makefile
OBJECTS = user_io.o calcul.o main.o

calcul:

| cible:

v

calcul.o:

#
#

Commande pour generer la cible

recompiler user_io.o si user_io.c
ou user_io.h
est modifié

user_10.c user_io.h

gcc -Wall -c user_io.c

#
#

user_io0.0:

N’utiliser que des TABULATION(s)
N’utilisez AUCUN caractére EPSACE !

entre les : et la liste de dépendance

v

~

< ici >

main.o:

< ici >

#

20 Adresses : opérateurs & et *

en debut de ligne

${0OBJECTS}
gce -o calcul ${OBJECTS}

| dépendances

calcul.c user_io.h
gcc -Wall -c calcul.c

ainsi que
main.c calcul.h
gcc -Wall -c main.c

Un Makefile plus générique

CC = gcc

CFLAGS = -Wall

OBJECTS = user_io.o calcul.o main.o

calcul: ${0BJECTS}
gcc -o calcul ${OBJECTS}
user_io.o: user_io.c user_io.h
calcul.o: calcul.c user_io.h
main.o: main.c calcul.h
AS | Nom de 'assembleur
CC | Nom du compilateur C
ASFLAGS | Options a passer a AS
CFLAGS | Options a passer a CC
$@ | Nom du fichier cible
$ | Liste de dépendances
$< | Premier fichier de $~

Une régle générique explicite

%.0:

%.c %.h global.h
gce -c¢ -Wall $<

ou (si CC et CFLAGS définis)

%.0:

%.c %.h global.h

La déclaration de la variable x spécifie que x est un contenant, & savoir sizeof(x) cases mémoire
consécutives, numérotées, de un octet (= unité adressable) chacune.

Le numéro d’octet en mémoire est I’adresse. Une adresse est un entier naturel.

L’opérateur &, appliqué & un contenant mémoire, en retourne I'adresse.
&x donne 'adresse de stockage (du premier octet) de x.

Opérateur * : adresse_octet = contenant mémoire (*adr signifie Mem]|adr])

Les deux opérateurs se neutralisent : *&x est égal a x, &*a est égal a a.

#include

long a
char b
long c
char d

<stdio.h>

0x12345678;
,X’;
Oxaabbccdd;
7a7;

/* adresse multiple de sizeof (long) */

char *pt = &b; /* pointeur intialisé & 1’adresse de b */

void

main () {
printf ("adresse_de_a
printf ("adresse_de_b
printf ("adresse_de_c
printf ("adresse_de_d

:0x%1x
:0x%1x
:0x%1x
:0x%1x
printf ("adresse_de_pt :0x%lx contenu de pt

contenu de
contenu de
contenu de
contenu de

o0 o P

: 0x%1lx\n", (unsigned long) &a,a);
: 0x%1c\n", (unsigned long) &b,Db);
: 0x%1c\n", (unsigned long) &c,c);
: 0x%1x\n", (unsigned long) &d,d);
: 0x%1x\n", (unsigned long) &pt,pt)

}
nom du contenant | octets | adresse du contenant | contenu
a 4 0x080496¢0 0x12345678
b 1 0x080496¢4 0x78 (code ASCII 'x7)
¢ 4 0x080496¢8 Oxaabbcedd
d 1 0x080496¢c 0x61 (code ASCII ’a’)
pt 4 0x080496d0 0x080496¢c4

L’affectation b = d peut aussi s’écrire *&b = *&d et signifie :

, prend pour nouveau contenu 8 bits

contenant variable b

prend pour nouveau contenu 8 bits

Mem|adresse _de b] <
octet Mem[0x80496¢4]

) prend pour nouveau contenu

contenu de la variable d
Mem|adresse de d|
octet Mem[0x80496¢c|

[’affectation a = c peut aussi s’écrire *&a = *&c et signifie :

contenant de la variable a
Memladr de_a

octet Mem[0x80496¢0]
octet Mem[0x80496¢1]
octet Mem[0x80496¢2]
octet Mem[0x80496¢3]

prend pour nouveau contenu 32 bits

prend pour nouveau contenu 32 bits

prend pour nouveau contenu

prend pour nouveau contenu

prend pour nouveau contenu

prend pour nouveau contenu

contenu de la variable ¢
contenu de Mem[adr _de c]
octet Mem[0x80496¢8]
octet Mem[0x80496¢9]
octet Mem|[0x80496¢a|
octet Mem[0x80496¢h|

21 Type "adresse de'", constantes adresses, pointeurs

Pourquoi utiliser un type spécial et pas un entier naturel ordinaire pour les adresses ?
— pour indiquer combien d’octets transférer lors de ’accés via un pointeur ?
— pour spécifier comment interpréter le contenu de ces octets (flottant, entier) 7

— piur vérifier la cohérence de type :

distinction entre adresse et contenu et entre natures de

contenu (ne pas affecter une adresse d’entier & un pointeur de float).

Il y a autant de types "adresses de" que de types d’objets dont on peut prendre I'adresse,

comment les noter?

— access / access all type pointé en ADA.

— type_pointé * en C : Iapplication de opérateur * a une expression de ce type rend un objet

du type type pointé’

7. Les concepteurs du C auraient pu choisir la notation & type pointé, qui a été retenue en C++ pour les

16

b

21.1 Version ADA

type ACCESS_INT is access all Integer;

Entierl : aliased Integer 1= 123;
Entier2 : Integer;

Mon_pointeur : ACCESS_INT;

begin
Mon_pointeur := Entierl’Access; -- Entier2’Access serait illegal;
Entier2 := Mon_pointeur.all + 2; -- Entier2 := Entierl + 2.
Mon_pointeur.all = 13; -- Entierl := 13;

end mon_programme;

Protection spécifique ADA : seules les variables déclarées aliased sont accessibles via un poin-
teur. Un pointeur contenant la constante null ne repére rien.

21.2 Version C

Un pointeur ne repérant rien contient la constante NULL?®. Le type void * est utilisé pour
stocker des adresses d’objets de n’importe quel type. Il doit étre converti en T * pour accéder a
un objet de type T.

typedef char * pointeur_de_char;

long entierl = 123;

long entier2;

char b = ’x’;

long *mon_pointeur; /* initialisé & NULL */

mon_pointeur = & entierl;
entier2 = xmon_pointeur+2; /* entier2 = entierl+2 (entier2=x&entierl+2) x/
mon_pointeur = 13; / entierl 13 */

mon_pointeur = &entier2;

(*mon_pointeur)++; /* entier2 ++ */

char c;

pointeur_de_char pcar = &b; /* repére b dés chargement du programme */
c = *pcar; /¥ ¢ =b (c = *&b)x/

void *pointe_tout; /* n’importe quelle sorte d’adresse */

pointe_tout = &entier2;
entierl = x (long *) pointe_tout; /* entierl = entier2 */

/* mais cette affectation est illégale : entierl = xpointe_tout */
pointe_tout = &b;
* (char *) pointe_tout = ’y’; /¥ b=y’ %/

références aux objets. La notation .all suggére que ADA traite un scalaire comme une structure a un seul champ
(dépourvu de nom).
8. la constante NULL est généralement définie comme (void *) 0.

17

Ne confondez pas taille d’'un pointeur (taille d’une adresse) et taille d’objet repéré :
— sizeof(char) # sizeof(char *)

— sizeof(long) # sizeof(char)

— sizeof(char *) = sizeof(long *) = sizeof(void *)

Rappel : la déclaration d’un pointeur réserve de la place pour stocker I’adresse contenue dans
le pointeur, mais pas pour le contenu pointé. N’'oubliez pas d’initialiser le pointeur avec ’adresse
d’une variable déclarée statiquement ou avec une adresse de bloc retournée par malloc ou calloc.

22 Gestion de paramétres résultat

22.1 version ADA

procedure maxi (a : in Integer ; max : in out Integer) is
begin

if (a > max) Then max := a; endif;

end maxi;

-- calcul de max (a,b,c)
maximum := a;

maxi (b,maximum) ;

maxi (c,maximum) ;

22.2 version C

En C, tous les paramétres sont passés par valeur (équivalent du type in). Si 'appelante passe
une expression, ’expression est évaluée et la procédure recoit le résultat de I’évaluation. Si 'ap-
pelante passe une variable, la valeur de ’expression est une copie de la valeur de la variable : la
procédure peut modifier cette copie, mais pas la variable de I’appelante.

Il est cependant possible de passer la valeur d’un pointeur, ce qui revient a effectuer un passage
de paramétre par adresse. A partir de 'adresse d’une variable, il est possible de lire et de modifier
son contenu, ce qui constitue une maniére de réaliser I’équivalent des paramétres de type résultat
et valeur-résultat (out et in out de ADA). Notons qu’avec n paramétres de type pointeur, une
fonction C peut retourner n-+1 résultats.

long tab[10];

void

maxi (int a, int *max)
{

if (a > *max) *max = a;

/* appel */
maximum = a:
maxi (b, &maximum);
maxi (c, &maximum) ;

18

23 Allocation dynamique de mémoire

23.1 Version ADA : new

type TAB is array(0..7) of Integer;

type POINTEUR is access Integer;
type POINTEUR_TAB is access TAB;

X: Integer;
Ptr : POINTEUR;
Ptrtab POINTEUR_TAB;

Ptr := new Integer; -- new appelle 1’allocateur dynamique de mémoire
Ptrtab := new TAB;

Ptr.all = 3;
Ptrtab(3) = 6;

23.2 Version C : malloc/calloc

En langage C, 'allocateur dynamique de mémoire correspond aux fonctions de bibliothéque
malloc et calloc qui réservent de la mémoire et retournent une adresse de type void *.

#include <malloc.h>
int x, *ptr, *ptrtab;

ptr = (int *) malloc(sizeof(int));
ptrab = (int *) calloc (sizeof(int),8); /* allouer tableau de 8 ints */
if ((ptr == NULL) || (ptrtab == NULL)) {

/* traiter 1’erreur */

}
xptr = 3;
ptrtab[3] = 6;
free (ptr); free (ptrtab); /* liberer la mémoire */

24 Tableaux a une dimension

24.1 Exemple en ADA

Tableau_3_a_7 : array (Integer range 3 ..7) of Integer;
begin

Tableau_3_a_7 (5) := 120;
Tableau_3_a_7 (2) := 2; -- erreur détectée : hors intervalle
Tableau_3_a_7 (8) := 0; -- erreur détectée : hors intervalle

end

24.2 Tableaux en C

Il n’existe pas de vrai type tableau en C : il est juste possible de réserver unnbloc de mémoire
pour stocker pour N éléments contigus (éventuellement avec initialisation), avec les particularités
suivantes :

19

— Pas de choix de l'intervalle des indices : toujours [0 ... N-1].

— Possibilité d’initialisation partielle (valeurs manquantes implicitement initialisées a 0). Pos-
sibilité de déduire la taille du tableau du nombre de valeurs initiales.

— Le nom du tableau est la constante adresse de son premier élément : T équivalent a &(T[0]).

— Pas de vérification de validité de I'indice a ’exécution : ni 'intervalle des indices ni le
nombre d’éléments ne sont stockés en mémoire et vérifiés pendant I'exécution.

— Pour passer un tableau a une procédure, il faut généralement passer deux paramétres : le
tableau (autrement dit 'adresse de son premier élément) et sa taille. La taille peut éven-
tuellement étre omise lorsque la convention suivante est utilisée : un (n + 1)®™m¢ élément,
constante 0 (pour tableau d’entiers) ou NULL (pour un tableau de pointeurs), est utilisé
comme marqueur de fin de tableau.

#define MAX_TAB 10
#define NB_PUIS2 5
int indice;

unsigned long somme;

int victime = 3; /* tabentier[-1] 7 */

int tabentier [MAX_TAB];

int premiers [] = {1,2,3,5,7,11}; /* dimension déduite : 6 *x/
unsigned long puis2[NB_PUIS2] = {1,2,4}; /* initialisation partielle */
char voyelles[6] = {’a’,’e’,’i’,%0%,’u’,’y’}; /* voyelles[0] : ’a’ x/

char 1lettre_o = ’0’; /* voyelles[6] 7 */

void

main (void)

{

tabentier [3] = 3;
puis2[3] = 8;
puis2[4] = 16;

indice = -1;

/* Utilisation d’indice hors bornes */
tabentier [indice] = 0; /* effet probable : victime = 0 */
voyelles [6] = ’n’; /* lettre_o = ’n’ */

somme = O;
for (indice = 0; indice < NB_PUIS2; indice ++)
somme += puis2[indice];

Regle de calcul d’adresse : I'élément tabentier[i] est stocké a l'adresse de début du tableau
(tabentier, synonyme de & (tabentier[0])), auquel est ajouté 'indice (i) implicitement multiplié
par la taille d’'un élément (sizeof(int)).

Noter la présence de opérateur & appliqué a un élément de tableau (p = &tableau|0]),

et son absence devant le nom de tableau qui est déja un pointeur sur son premier élément
(p = tableau).

20

25 Chaines de caractéres

En C, les chaines de caractéres sont représentées sous la forme de tableaux de type char. La
taille d'un tableau C n’étant pas stockée en mémoire, la chaine est délimitée par un marqueur
de fin de chaine : un zéro qui est le code ASCII du caractére non affichable appelé NUL?. Cette
marque de fin de chaine peut étre notée 0 ou *\ 0’.

En revanche, le langage C offre une facilité syntaxique d’écriture pour les constantes chaines
de caracteres.

#include <stdio.h>

/* Plusieurs maniéres de déclarer des tableaux contenant la chaine "ok" */
const char ok1[3] {’07,°k?,°’\0’};

const char ok2 [] = {’0’,’k?,0};

const char ok3 [] "ok";

const char halala [] = "ha_la_la";

unsigned long Nombre_de_a (const char *chaine) { /* ou (char chaine[]) */
unsigned long total ;
const char *p;

total = O;
for (p=chaine; #*p != 0; p++)
if (xp == ’a’) total ++;
return total;
}
void
main () {

printf ("nombre de a : %lu\n",Nombre_de_a(okl));
printf ("nombre de a : %lu\n",Nombre_de_a(halala));
printf ("nombre de a : %lu\n",Nombre_de_a('"constante_chaine"));

/* Le dernier printf est equivalent a ce genre de code */
{
const char nom_fabrique_par_compilateur [] = "constante_chaine";
printf ("nombre de a : %lu\n",Nombre_de_a(nom_fabrique_par_compilateur));

26 Arithmétique sur les pointeurs

Soit un pointeur p contenant une adresse d’élément de tableau : p = &t]i]. Aprés ajout d’un
entier j au pointeur p, p contient 'adresse d’élément de tableau &t[i+j]. C’est pourquoi 'entier
j ajouté a un pointeur est implicitement multiplié par la taille du type d’objet pointé (on
ajoute j * sizeof(type pointé)).

9. ne pas confondre le caractére de nom NUL, représenté par le code ASCII 0 codé sur un octet, avec la constante
adresse NULL, habituellement définie comme 'adresse 0 codée sur 4 octets (8 octets sur un processeur 64 bits) .

21

[’opérateur [] n’est qu'une notation : & t[i] s’écrit aussi t+i et t[i] s’écrit aussi *(t+1i).

On peut aussi comparer deux pointeurs s’ils repérent des éléments d’un méme tableau. La
différence entre deux pointeurs ou deux constantes de type adresse est implicitement divisée par
la taille du type d’objet pointé pour retourner la différence entre les indices des éléments repérés.

#tdefine MAX_TABLEAU 6
int indice;

long somme, produit;
long *p:

long tableau [MAX_TABLEAU] = {0,10,20,30,40,50};
long *ptrl = & tableaul[l]; /* Ces 2 pointeurs repérent tous les deux */

long *ptr2 = tableau + 1; /* 1’élément tableaul[1l] */
void
main (void)
{
xptrl = 2; / tableau [1] = 2; x/
ptrl = ptrl + 4; /* repére maintenant tableau [5] */
xptrl = 0; / tableau [56] = 0O */
somme = 0;

for (p = tableau; p < tableau + MAX_TABLEAU; p++)
somme += *p;
/* syntaxe equivalente */
for (p = &tableaul0]; p < &tableau[MAX_TABLEAU]; p++)
somme += *p;

ptr2 = &(tableaul[0]);
printf ("%d_%d\n", ptrl - ptr2,
(char *) ptrl - (char *)ptr2); /* affiche 5_20 %/

27 Application simultanée de * et ++ ou --

Les expressions *p++, *p--, ¥*++p et *--p (attention a ne pas en abuser au détriment de la
lisibilité des programmes) désignent le contenu en mémoire a Padresse correspondant a la valeur

— initiale de p si 'opérateur +—+ ou -- suit (a droite de) la variable p

— modifiée de p si 'opérateur +-+ ou -- précéde (a gauche de) la variable p

variable = *pointeur--; /* signifie */ variable = *pointeur; pointeur --
variable = *++pointeur; pointeur ++; variable = *pointeur;

/* deux copies de chaines de caractéres */

do {c=*source; *dest=c; source++; dest++;} while (c != °\0’);
while ((*dest++ = *source++) != °\0’) {}
+

22

28 Structures (enregistrements)

La définition de variables enregistrement se fait généralement en deux étapes :
1. Déclaration du type d’enregistrement, précisant les noms et types des membres

2. Définition de variables de ce nouveau type, avec allocation de mémoire.

28.1 Exemple ADA

-- declaration d’un nouveau type structure
type POINT_XY is

record
X : Integer;
Y : Integer;

end record;

-- déclaration du type pointeur de ce genre de structure
type ACCESS_POINT_XY is access POINT_XY;

-- declaration de variables de ce type
Origine : aliased POINT_XY := (3,7);
Destination : POINT_XY;

Pointeur_point : ACCESS_POINT_XY;

Pointeur?2 : ACCESS_POINT_XY;
-- utilisation
begin
Origine.X := 4;
Destination := (7,8);
Origine := Destination;
Pointeur_Point := Origine’Access;
Pointeur_Point.Y := 6; -- acces via un pointeur
Pointeur_Point.X := 3; -- acces via un pointeur
Pointeur2 := new POINT_XY; -- allocation dynamique

Pointeur2.Y = 4;
end ma_procedure

28.2 Exemple C

/* Déclaration du type struct _point_xy */
struct _point_xy {

int x;

int y;

I

/* Nommage du type struct _point_xy */
typedef struct _point_xy point_xy;

/* Declaration du type pointeur de ce genre de structure */
/* on peut ecrire aussi typedef point_xy *pt_point_xy */

typedef struct _point_xy *pt_point_xy;

23

/* Définition des variables avec allocation statique de mémoire */
struct _point_xy origine = {3,7};
point_xy destination;

/* Deux pointeurs de structure _point_xy */
point_xy *pointeur_point;
pt_point_xy pointeur2;

/* Déclarations combinées */

/* Déclarer le type struct _point_rt et le nommer point_rt */
typedef struct _point_rt {

float : r;
float : t;
} point_rt;

/* Déclarer une variable sans donner de nom au type de struct */
struct {

char *nom;

char *prenom;

} banal = {"Pierre","Martin"};

/* Attention au contraintes d’alignement : sizeof (struct _mal_aligne) = 8 */

struct _mal_aligne {

long 1; /* sizeof(long) = 4 */
char c; /* sizeof(char) = 1 %/
} ml,m2; /* 3 octets entre ml.c et m2.1 pour respecter alignement */

struct _point_xy creer_point_xy (int x, int y)
{

struct _point_xy resultat;

resultat.x = x;

resultat.y = y;

return resultat;

}

void

main (void)

{
origine.x = 4; /* Affecte x de origine
destination = (struct _point_xy) {7,8}; /* Affecte x et y 4 7 et 8
origine = destination; /* Copie x et y de dest
pointeur_point = &origine;
(¥pointeur_point) .y = 6; /* acces via le pointeur p
pointeur_point -> x = 3; /* p -> x abrégé pour (*p).x */

pointeur2 = malloc(sizeof(struct _point_xy)); /* alloc dynamique
if (pointeur2 == NULL) { /* traiter 1’échec */ }
pointeur2 -> y = 4;

24

29 Structures pour listes chainées

Les listes chainées sont construites avec des structures dont (au moins un) un membre est un
pointeur de structure de méme type.

Version C Version ADA
/* fichier liste.h */ type Point;
typedef struct _point type Point is
{ record
int x; X : Integer;
int y; Y : Integer;
struct _point *suivant; Suivant : Chainage;
} point; end record;
typedef point *chainage; type Chainage is access Point;

/* fichier liste.c */

point doublets[10]; Doublets: array (0..9) of Point;
chainage tete; Tete : Chainage;
chainage queue; Queue : Chainage;

Variante : on peut déclarer une liste préinitialisée lors du chargement du programme.

/***/

/* Une liste allouée et initialisée statiquement dans un tableau */
Jx x/
/* tete -->|010|-1-->|2[4|-1-->[113|-1-->[4]0] | */
F £ e T T e x/
/* 1 0 2 | 3 */
/* QUeUE ——--—— - */

/***/

#include <stdio.h>
#include "liste.h"

/***/

/X x/
/* 2,4 - | ----- */
/* | elements [0] |<-- | */
J* e I */
/* tete ——---—mm - 0,0 ————- [--- | %/
/* | elements[1] I | *x/
/X e | */
/* l+,3 - l-——— | */
/* | elements[2] |<-1-- =/
[* e | */
/* queue ---------------—----- > 4,0, /177771 | */
/* | elements [3] |<-- */
£ T T x/

/***/

25

struct _point_xy elements[4] = {
{2,4,elements+2},
{0,0,elements},
{1,3,elements+37},

{4,0,NULL}

};

chainage tete = elements+1;
chainage queue = elements+3;

void
main (void)
{
struct _point_xy *pt;
for (pt = tete; pt != NULL; pt = pt -> suivant)
printf ("Element & %8lx : %d, %d, suivant : %8lx\n",
(unsigned long) pt, pt -> x, pt ->y,
(unsigned long) pt -> suivant);

30 Extern : déclaration limitée & la définition du type

Par défaut, les déclarations de variables et de fonctions ' remplissent un double réle :

— Définir le type de la variable ou le prototype de la fonction

— Allouer statiquement et initialiser de la mémoire pour stocker le contenu (d’une variable) ou
le corps (autrement dit les instructions) d’une fonction.

L’attribut extern spécifie que la déclaration n’est qu’une spécification de type sans allocation
d’espace de stockage. On 'utilise principalement :
— Dans les fichiers d’en-téte (.h) pour définir le type des variables partagées entre modules
compilés séparément.
— Dans les définitions d’objets qui se référencent mutuellement.

[’attribut extern est optionel pour la définition du prototype des fonctions (dans les fichiers
d’en-téte) : un prototype de fonction sans corps est implicitement interprété comme une simple
spécification du prototype de la fonction.

/* fichier main.h */ /* fichier calcul.h */
struct profession { extern void calcul (void);
const char *nom; extern unsigned long total;
struct outil *instrument;
};

struct outil {
const char *nom;
struct profession *metier;

};

10. en incluant les procédures considérées comme des fonctions C retournant void

26

/* fichier main.c */
#include <stdio.h>
#include "main.h"
#include "calcul.h"

extern struct profession routier;
struct outil camion = {"camion",&routier};

struct profession routier

{"chauffeur",&camion};

void

main ()

{
total=0;
calcul ();

31 Attribut static

/* fichier calcul.c */
#include "main.h"
#include "calcul.h"

unsigned long total;
void

calcul (void)

{

total++;

La visibilité de la variable ou de la fonction et la classe de stockage dépendent de 'emplacement
de la déclaration et de la présence ou non de 'attribut static.

La mémoire de stockage des variables dites statiques est allouée (dans data/bss) statiquement
pour la durée de I'exécution du programme. Celle des variables dites dynamiques est allouée dans
la pile le temps d’exécuter un appel de fonction ™' (allocation dans le prologue et libération dans
I'épilogue de la fonction). Dynamiques par défaut, les variables locales des fonctions perdent leur

valeur entre deux appels.

Emplacement de Méthode de stockage/ Attribut Visibilité
déclaration valeur entre 2 appels static limitée a
. .) bsent — tous fich
Hors d’une fonction — statique/conservée a ’sen oS TIeaers
présent — fichier local
. . tati ¢ ésent .
Intérieur d’une fonction SLa 1qu'e/ CONSETVEe — presen fonction locale
dynamique/perdue < absent

Deux choix des concepteurs du langage C sont criticables :

— L’attribut static agit sur deux aspects différents (classe de stockage et visibilité) selon
I’emplacement de la déclaration.

— Une variable déclarée a 'extérieur d’une fonction est partagée/exportée par défaut.

/* fichier fl.c */
static int x=3;

/¥ x et calcul de f1 %/
static void calcul(void)

{ x++; }

unsigned long compteur ()

{

/* distincts */

/* fichier f2.c */
static int x=5;

/* de x et calcul de f2 */
static void calcul(void)

{ x=0; }

11. ou un bloc d’instructions : on peut déclarer des variables locales & une fonction ou & un bloc d’instructions

27

static nombre_d_appels = 0; /* initialisée au chargement du programme */
nombre_d_appels ++;
printf ("J’ai été appelée %u fois\n",nombre_d_appels);

+

32 Attribut const

L’attribut de stockage const spécifie que le contenu de la variable déclarée ne doit pas étre
modifiée (le compilateur essaiera alors de la stocker dans une section protégée contre les accés en
écriture 12). On peut généralement obtenir le méme résultat avec #define, sauf :

1. si on souhaite manipuler 'adresse de la constante ainsi définie (ou fabriquer un tableau de
constantes).

2. pour interdire la modification du contenu repéré par une adresse ou un pointeur.

A gauche de *, const indique que contenu repéré par I’adresse qui suit ne doit pas étre modifié.
A droite de *, const indique que I'adresse contenue dans le pointeur ne doit pas étre modifiée.

/* equivalent #define, commentaires */
const double RAC2 = 1.414; /* #define RAC2 ((double) 1.414) x*/
const double CONS [2] = {3.14, 2.718%};
double VAR [2];

double *ptd = VAR; /* ptd++ legal, *ptd = ... legal */

/* ptd = CONS interdit */
const double *ptcd = CONS; /* ptcd++ legal, *ptcd = ... interdit */
int * const INTMSK = 0x3ff4008; /* #define INTMSK ((int *) 0x3ff4008) */

/* INTMSK++ interdit, *INTMSK legal */

const double * const cptcd = & RAC2; /* cptcd ++ interdit et
kcptcd = ... interdit */

/* Cette procédure ne doit pas modifier les chaines de caractéres x/
/* dont elle recoit 1’adresse (*chl = ... interdit) */
int compare_chaine (const char *chl, const char *ch2);

33 Constructeur selon : switch/case

La principale spécificité du contructeur switch de C est de nécessiter une instruction break
a la fin de chaque cas. Piége : en 'absence de break, I'exécution continue avec le code du cas
suivant.

-- version ADA

case Meteo is
when SOLEIL => Put ("Mettre creme solaire);
when PLUIE => Put ("Ouvrir parapluie);
when NEIGE => Put ("Sortir la pelle);
when VENT => Put ("Rentrer le linge);

12. par exemple text ou rodata dans le monde POSIX

28

when others => Put ("Ou avez-vous pris la meteo 7);
end case;

/* Version C */

switch (meteo) {
case SOLEIL: printf ("Mettre creme solaire); break;
case PLUIE : printf ("Ouvrir parapluie") ;break;
case NEIGE : printf ("Sortir la pelle") ;break;
case VENT : printf ("Rentrer le linge") ;break;
default : printf ("Ou avez-vous pris la meteo 7.);

/* En oubliant le break & la fin de chaque branche */
for (x=0; x < 10; x++)

{

switch (x)
case 0 : y = 0; /* execute ensuite y = 1 du cas 1 */
case 1 y = 1; break
case 2 : y = 2; /* execute ensuite y = 4 du cas 4 */
case 4 : y = 3; break;

default: y = 6;
}
printf ("y = %d ",y); /* x==0 ou x==1 --> y=1 */
} /* x==2 ou x==4 --> y=3 */

34 Compléments sur les tableaux et les pointeurs

34.1 Tableaux a n dimensions

Un tableau a n dimensions peut étre considéré comme un tableau a une dimension dont chaque
élément est lui-méme un tableau a n-1 dimensions. Les éléments d’un tableau étant stockés cote
a cote en mémoire, on peut parcourir un tableau a n dimensions avec un pointeur et une boucle.

typedef int tab4 [4]; /* le type tableau de 4 entiers */
tab4 u [3] = { {0,1,2,3}, {100,101,102,103}, {200,201,202,203} };

/* declaration du méme type de tableau sans utiliser de typedef */
int t [3][4] = { {0,1,2,3}, {100,101,102,103}, {200,201,202,203} };

/* ul[i]l] est un tableau de 4 entiers */
/* (u[i]) [j] est le j_iéme élément de ce tableau */
/* on peut 1’écrire tout simplement uli] [j] */
/* Ordre de rangement en mémoire : */
/* ul0][0], ul01[1], ulol[2], ul0][3], ul1l[0], wl1]l[1], ..., ul2]1[3] */
/* t[0][0], t[0ol1[1], tlol[2], t[0][3], tl11[0], t[11[1], ..., t[2]1[3] */
void

main (void)

{

int 1i,j,*ptr;

29

for (1 = 0; 1 < 3; i++)
for (j = 0; j < 4; j++)
printf ("t[%kd][xd] = %d,ul%d] [kd] = %d\n", i,j,t[i10j],1i,j,ulil(jl);
for (ptr = &t[0][0]; ptr <= &t[2][3]; ptr++)
printf ("%d ",*ptr);
printf ("\n");

/* affiche a l’execution */

t[o]l[0] = O, ul0][0] =0
t[ol[1] =1, ul0][1] = 1
t[0][2] = 2, ul0][2] = 2
t[0][3] = 3, ul0]1[3] =3

t[11[0] = 100, wul1]1[0] = 100
t[11[1] = 101, wu[1]1[1] = 101
t[11[2] = 102, wul11[2] = 102
t[11[3] = 103, w[1]1[3] = 103
t[21[0] = 200, w[2][0] = 200
t[21[1]1 = 201, w[2]1[1] = 201
t[21[2] = 202, wul[2]1[2] = 202
t[2]1[3] = 203, wul[2]1[3] = 203
0123 100 101 102 103 200 201 202 203

34.2 Pointeurs de pointeurs et de fonctions

Toute entité C stockée en mémoire peut étre repérée par un pointeur : on peut donc définir des
pointeurs de fonctions et des pointeurs de pointeurs. Un pointeur de pointeur permet de passer a
une fonction I'adresse d’un pointeur a modifier (en ADA, ceci devrait logiquement correspondre
a un paramétre out ou in out de type access).

#include <stdio.h>
#include <malloc.h>

int x,y;

/* déclaration de 2 pointeurs d’entier avec contenu initiaux */
int *px=&x, *py =&y;

/* pointeur qui sera affecté dans la procédure mon_alloc */

int *tableau_dynamique;

/* un pointeur de pointeur d’entier */

int **pp;

void
mon_alloc (unsigned long taille, void **adresse)
{
void * res;
res = malloc((size_t) taille);
if (res == NULL) { /* gérer 1l’erreur */}
¥adresse = res;

void

30

main(void)

{
Pp = &px;
**pp = 3; /* *x(*%&px) --> *px --> *&x -->x = 3 */
pp = &y; / px pointe maintenant sur y */

mon_alloc (1000,&tableau_dynamique) ;
tableau_dynamique[10]=4;

34.3 Exemple de tableau de pointeurs

#include <stdio.h>

char msg_bonjour [] = "bonjour !";

int autrechose;

char msg_merci [] = "merci !'";

int encoreunautre;

char msg_au_revoir [] = "au revoir !";

/* un tableau de 4 pointeurs repérant des chaines de caractéres */
/* les chaines ne sont pas contigiies en mémoire */
char * messages [] = {msg_bonjour,msg_merci,msg_au_revoir,NULL};

void
afficher (char *msg[]) /* ou (char **msg) */
{
char **m, *chaine;
for (m=msg; *m != NULL; m++)
{
chaine = *m; printf ("%s\n",chaine);

}

void data (char *m) { printf ("data)s\n" ,m); }
void collec (char *m) { printf ("collec¥)s\n",m); }
void initia (char *m) { printf ("initialisals\n",m); }

/* type pointeur de procedure & un paramétre pointeur de char */
typedef void (*procedure_char) (char *);

procedure_char commandes [3] = {data,collec,initia};

/* argc : nombre d’é&léments de argv */
/* argv : les mots de la ligne de commande */
/* envp : les définitions de variables d’environnement */
/* Exemple : "SHELL=/bin/tcsh" */
/* Pas de envc : envp termine par NULL */
int

main(int argc, char *argv[], char *envp[])

31

int i;
for (i = 0; i< argc; it++)
printf ("argv[%d] = %s\n",i,argv[il);
afficher (envp);
afficher (messages);
for (1 = 0; i< 3; i++)
(*(commandes[i])) ("tion");
return O;

/* execution */
mandelbrot> ./mon_programme truc bidule

argv[0] = ./mon_programme
argv[1] = truc
argv[2] = bidule

SHELL=/bin/tcsh
USER=waillep

LUSTRE_INSTALL=/usr/local/lustre
bonjour !

merci !

au revoir !

datation

collection

initiation

35 Entrées/sorties formattées : printf, scanf

printf ("texte affiché tel que % format texte" expression) ;
scanf ("% format" &variable) ;

Documentation : man 3 printf ou man 3 scanf. Printf retourne le nombre de caractéres
affichés. Scanf retourne le nombre d’éléments lus. A noter : pour lire une chaine (format %s) avec
scanf, on passe le tableau non précédé de & (le nom du tableau est déja un pointeur).

int var;

char 1uf[100];

if (scanf ("%d",&var) !'= 1)
{/* gestion d’erreur */ }

else

{

Quelques formats usuels
Format | Nature
%d | Entier relatif en décimal
%3d | Idem, affiche 3 chiffres
%u | Entier naturel en décimal
%lu | Idem pour un entier long printf ("var = Yd\n", var);

%x | Entier en hexdécimal /% utiliser valour de (var) /
%c | Caractére (ASCCI dans un char) }

%f | Nombre a virgule flottante if (scanf ("s",lu) == 1)
%s | Chaine de caractéres (char®)

printf ("Lu : -->%s<-\n",1lu);

32

36 Unions

Lorsque les membres d’une structure ne sont jamais utilisés simultanément, on peut "super-
poser" les membres, c’est-a-dire tous les stocker a la méme adresse : en C, remplacer struct par
union.

36.1 Record variant en ADA
type COORDONNEES is (XY,RT);

type POINT (nature : COORDONNEES := NONE) is
record
case nature is
when XY => X : Integer; Y : Integer;
when RT => R : FLOAT; T : FLOAT;
end case;
end record;

Origine : POINT;
Destination : POINT;

begin
Origine := (XY,3,4);
Destination := (RT,3.0,0.7);
end programme

36.2 Structure et union en C

enum coordonnees {XY=1, RT=3} ;

struct rectangulaire {int x; int y;};
struct polaire {float r; float t;};

union xy_rt {struct rectangulaire xy; struct polaire rt;};

struct point {
enum coordonnees nature;
union xy_rt valeur;

};

struct point origine;
struct point destination;

void
calcul (void)
{
origine.nature = XY;
origine.valeur.xy = (struct rectangulaire) {3,4};
destination.nature = RT;
destination.valeur.rt = (struct polaire) {3.0, 0.7};

33

void
afficher (struct point *s)

{
if (s->nature == XY) { printf ("x = %d y=lkd\n",
s->valeur.xy.x, s->.valeur.xy.y);}
if (s->nature == RT) { printf ("r = %f t=%f\n",
s->valeur.rt.r, s->valeur.rt.t);J}
}

Remarque : on pourrait réaliser beaucoup moins proprement ces affectations avec des conver-
sions de type pointeur, en exploitant le fait que tous les membres de I'union sont stockés a la
méme adresse.

/* Comment réaliser ceci avec les conversions de type de pointeurs ? */
/* destination.valeur.rt = (struct polaire) {2.0,1.57}; %/
/* origine.valeur.xy (struct rectangulaire) {-1,-2}; */

* (struct polaire *) &destination.valeur = (struct polaire) {2.0,1.57};
* (struct rectangulaire *) &origine.valeur = (struct rectangulaire) {-1,-2};

37 Opérateurs entiers bit a bit

On considére ici chaque entier comme une collection de bits ou de booléens correspondant a
sa représentation en base deux.

La représentation du décalage a gauche de b bits de x (dec_ b _bits gauche = x « b) est
telle que b bits 0 sont ajoutés a droite (poids faibles) et b bits supprimés a gauche (poids forts)
de la représentation en binaire de x.

Le décalage de b bits a droite (dec_ b _bits droite = x » n) de x supprime a l'inverse b
bits a droite et ajoute b bits a gauche.
On utilise un décalage logique pour un entier x naturel (unsigned) : il ajoute b fois un bit a 0
en poids fort. On utlise un décalage arithmétique pour un entier x relatif : il ajoute b fois le
bit de signe (bit de poids fort) de x en poids fort.

En C on note respectivement ~ , & ,| et ~ les opérateurs Non (un seul opérande, calcule le
complément a un), Et, Ou et Ou Exclusif. Tous opérent colonne par colonne : chaque bit d’un
entier est interprété comme la représentation d’un booléen.

/**/

/* Non Et Ou Ou exclusif */
/* 0011 1100 0011 1100 0011 1100 0011 1100 */
/* & 1100 1001 | 1100 1001 ~ 1100 1001 */
Y T T e e */
/* 1100 0011 0000 1000 1111 1101 1111 0101 */

/**/

0x3c;
0xc9;

unsigned char x
unsigned char y

34

unsigned char and, or, xor, not;

not = 7x; /* not = 0xc3 */
and = x &y ; /* and = 0x08 */
or =x |y /* or = 0xfd */
Xor = x 7 y; /* xor = 0xfb5 */

Attention : ne confondez pas les opérateurs bit a bit = | & et | avec les opérateurs booléeens !,
&& et || utilisés pour exprimer les conditions : ces derniers interprétent chaque valeur entiére
comme un seul booléen.

38 Paramétres de main : argc, argv, envp

Les paramétres de la procédure main sont deux tableaux de pointeurs de chaines de caractéres
nommés argv et envp. Le contenu de argv correspond aux arguments de la ligne de commande
utilisée pour lancer I'exécution. Envp contient des définitions de variables d’environnement sous
la forme "nom de variable—définition".

La taille de argv est définie par le paramétre argc et le dernier élément de envp est suivi d’'un
pointeur NULL.

/* fichier listarg.c */
#include <stdio.h>

int main (int argc, char *argv[], char*envp[])

{
int 1i;
printf ("Ligne de commande : ");
for (i = 0; i <argc; i++)
printf ("%s ",argv[il);
printf ("\n\nEnvironnement : \n");
i=20;
while (envp[i] != NULL)
printf ("%s\n");
printf ("\n");
return O;
}

mandelbrot> ./listarg -g 123 456
Ligne de commande : ./listarg -g 123 456

Environnement

USER=waillep /* quelques définitions parmi */
ﬁdéT=mandelbrot /* toutes les variables d’environnement */
ﬁéME=/u/w/waillep /* affichées */

mandelbrot>

35

39 Mots réservés du lannage C

Vous ne pouvez utiliser les mot réservés du langage comme noms de variable ou de fonction.
En voici la liste :

auto break case char const
continue default do double else
enum extern float for goto

if inline int long register
restrict return short signed sizeof
static struct switch typedef union
unsigned void volatile while

_Bool _Complex Imaginary

36

