Registration and data fusion Problem, Methods, Examples

Medical images Pre-op/intra-op/post-op 2D/2.5D/3D/3D+t Anatomical/functional Based on different physical phenomena: X-rays: CT, radiographs, etc. Magnetic fields: MRI, fMRI, MEG, etc. Ultrasounds Radioactivity: SPECT, PET, etc. Light propagation: endoscopy, microscopy, etc.

☐ Each modality brings its own type of

information

Definitions □ Image fusion = image registration = image matching □ Let consider two reference systems R_A and R_B in which common information are represented: one is looking for T_A^B that allows mapping information from one referential to the other one □ Data may come from: the patient (2D, 3D, 3D+t), another patient (atlas), a population of patients

Problem □ Calibration/registration/tracking □ The registration problem ■ R_A and R_B: two reference systems associated to two « modalities » A and B ■ F_A and F_B: corresponding informations represented in R_A and R_B ■ T_AB: a transformation relating R_A and R_B ■ s: a similarity fonction between two types of information (or d a distance fonction) > We are looking for the value of T_AB that maximizes the similarity between T_AB (F_A) and F_B T_AB = arg max s (T_AB(F_A), F_B)

Direct anatomical registration

□Using segmented data (feature-based methods)

□Using « raw » data (intensity-based methods)

Which method?

- ☐ How complex is the transform to be encoded?
- Which types of information have to be registered?
- What similarity function is to chosen?
- How is the optimization performed?

Encoding the transform

- ☐ Rigid: 3 rotations+3 translations
- □ Rigid + scaling: 6+1 (isotropic) or 6+3 (non isotropic)
- ☐ Affine: 12 (rigid + 3scaling + 3shear)
- Non rigid complex (rigid + deformation

field U)

Figure 1: Example of different types of transformations of a square: (a) identity transformation, (b) rigid transformation, (c) affine transformation, and (d) non-rigid transformation.

Affine transform

- □ Preserves straight lines and parallelism
- \square X'= $T_{shear}*T_{scale}*T_{rigid}.X$

$$T_{shear} = \begin{bmatrix} 1 & s_{yx} & s_{zx} & 0 \\ -s_{yx} & 1 & s_{zy} & 0 \\ -s_{zx} & -s_{zy} & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$T_{scale} = \begin{bmatrix} 1 & s_{yx} & s_{zx} & 0 \\ -s_{yx} & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$T_{scale} = \begin{bmatrix} s_x & 0 & 0 & 0 \\ 0 & s_y & 0 & 0 \\ 0 & 0 & s_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

 In general, real anatomical deformations are more complex

More complex transforms

- □ Polynomials encoding U
- Decomposition using wavelets or trigonometric functions
- Splines functions (B-splines or thin-plate splines)

Splines encoding a 2D deformation mapping a square to a circle

- □ Statistical deformations
- Dense deformation fields

Deformation based on physical models

- ☐ Elastic deformation: pionneer paper [Bajcsy89] – elastic registration of brain (PhD Broit1981)
 - $\mu \nabla^2 U(x, y, z) + (\lambda + \mu) \nabla (\nabla U(x, y, z)) + f(x, y, z) = 0$
- □ Fluid
- ☐ Finite elements: i.e. [Alterovitz06] registration of segmented prostate on MRI
 - 2D MEF prostate model split into two zones
 - Identification of model parameters, applied forces and transform

Which information type $(F_A \text{ and } F_B)$?

- ☐ Gray levels
- □ Points
- ☐ Lines
 - Retroprojection lines (2D/3D)
 - Crest lines
 - Specific anatomical structures (e.g. blood vessels)
- Surfaces
- Potentially requires preprocessing or segmentation

[G.Subsol]

Which similarity function?

- □ The case of point matching
- ☐ The case of surface registration
- ☐ The case of image-based registration
 - Mono-modal
 - Multi-modal

Paired points 3D/3D rigid

- □ Procrustes problem
- 2 sets of N paired points {a_i} and {b_i} (articificial features or anatomical landmarks) given in R_A and R_B
- □ Looking for T_A^B minimizing FRE (least-square minimization)

$$FRE = \sum_{i=1}^{N} \left\| T_A^{B}(a_i) - b_i \right\|$$

In 3D, N≥3

Arun method (direct)

- □ Looking for R and t such as : $b_i = R*a_i + t$
- Let define a_i '= a_i a_i average et b_i ' = b_i b_i average
- K=A^tB (correlation matrix relating a_i and b_i) = UDV^t (SVD), U and V orthonormals, V diagonal
- \square R = V \triangle U^t where \triangle = diag(1,1, det(VU^t))
- □ t = b_iaverage R*a_iaverage

Point matching example

- □ Example: ESAOTE Virtual Navigator[™]
- Rigid registration of (3 to 10) external markers or internal anatomical landmarks

Pros/cons

- Advantages
 - Fast
 - Simple
- Drawbacks
 - Identification of anatomical fiducials is highly operator-dependant
 - Precision directly related to point definition accuracy
- Often used as an initialization method for more complex registration

Surface registration

- N points {a_i} and a surface B (defined by points, triangles, implicit surfaces, or etc.) obtained through image segmentation or directly using a suitable sensor
- Looking for T_A^B which minimizes (least squares) $d(T_A^B)$

$$I(T_A{}^B) = \frac{1}{N} \sum_{i=1}^{N} |T_A{}^B(a_i) - b_i|^2 \quad \text{where } b_i \text{ is a}_i' \text{s closest} \\ \text{point on B}$$

- Existing methods:
 - « Head and hat »
 - Methods using pre-computed distance maps
 - « Hybrid » ICP method

« Head and hat » [Pelizzari]

- A stack of segmented contours (head)
- ☐ A set of points to register (hat)
- d(a_i, B) = d(a_i, b_i) where b_i is a_i's closest point of B on a line connecting a_i to the contour center of gravity
- □ Optimization using Powell algorithm
- Improvements in distance computation (precision, speed)
- Development of distance maps (« around » B)

Distance maps

☐ Uniform maps (champfer distance [Borgefors84])

[Coulon]

☐ Hierarchical maps (octree-spline [Lavallée92])

Iterative Closest Point (ICP) [McKay92]

- □ In between paired point matching and surface matching
- Algorithm:
 - 1) For each point $a_{i}\text{, }$ compute the closest point b_{i} on B
 - Determine T_A^B using paired point matching of a_i and b_i
 - 3) Apply T_{Δ}^{B} to a_{i} points
 - 4) While not finished go back to 1)
- Implemented for different surface representations (points, triangles, splines, implicit surfaces, etc.)
- Possible improvement by a local search of closest points using the previous iteration

Surface registration example: MRIenhanced brachytherapy

- Prostate apex and base segmentation for dose planning is difficult on TRUS images
- ☐ Supposed bias: under-estimate of prostate volume
- □ Question: under-dosage ?
- □ Solution: « Bring » the MR data in the OR through surface elastic registration to augment TRUS images

Surface registration Pre-operative MRI Elastic registration (motion and deformations) Intra-operative TRUS Enhanced TRUS image Dosimetric plan onto MRI IUrology Dept (Pr Descotes) – Radiotherapy Dept (Pr Bolla) in Grenoble University Hospital – TIMC]

Multi-modal

- ☐ The relation between the images is unknown (fonctional, statistical relationship)
- Other measures:
 - Correlation ratio [Roche98] or PIU* [Woods93] its exists s fonctional relating grey levels in A

$$CR(B \middle| A) = 1 - \frac{1}{N\sigma^2} \sum_i N_i \sigma^2 \qquad PIU_B = \sum_a \frac{n_a}{N} \frac{\sigma_B(a)}{\mu_B(a)}$$

Measures based in information theory (entropy

*partitioned intensity uniformity

Information theory

- Amount of information in a message:
 - [Hartley1928] H=nlog(s) for n symbols of s possible values - all symbols have equal probabilities
 - [Shannon1948]: introduces the concept of entropy (where p_i is the probability of event e_i)

$$\sum p_i \log(1/p_i) = -\sum p_i \log(p_i)$$

□ Characterizes the amount of information carried by an event (a message for instance) or the event uncertainty

Example

- □ Vocabulary of a 1-year old baby:
 - Dad' (p=0.2), Mom' (0.35), Cat (0.2), oh (0.25)
 - Entropy = 1.96
- □ A few months later:
 - Dad' (0.05), Mom' (0.05), train (0.02), cat (0.02), car (0.02), tv (0.02), no! (0.8)
 - Entropy = 1.25
 - Less uncertainty on the next word to be pronounced (most likely « no! »)

Measures based on HJ

☐ Joint entropy [Collignon, Studholme]

$$H(A,B) = -\sum_{a,b} p(a,b) \log p(a,b)$$

- □ Registration through H minimization
- Mutual Information (to be maximized)

MI(A,B) = H(A) + H(B) - H(A,B)

Normalized Mutual Information

$$NMI = \frac{H(A) + H(B)}{H(A, B)}$$

☐ Etc.

Example 3 (cont'ed) □ Comparison with standard ICP on the segmented data □ rms(TRE)=3.6mm (NMI: 24.8mm) □ Intermediate solution in between « feature-based » and « intensity-based »

Registration issues Optimization pbs (local methods > local minima) Evaluation of results General evaluation of an approach « On-line » evaluation during an application

Registration issues: evaluation

- Simulation with synthetic data and/or with known transforms
- □ Comparison to a « gold standard »
 - Ex: surface registration compared to fiducial registration $TRE(a)=|T(a)-T_g(a)|$
- □ Evaluation for specific relevant clinical targets (Target Registration Error: TRE = |T_A^B(a_i)-b_i|)

$$rms = \sqrt{\sum_{i=1}^{N} \frac{\left|T_{A}^{B}(a_{i}) - b_{i}\right|^{2}}{N}}$$

- Consistency analysis
 - 3 non correlated registrations A-B, B-C et C-A (often wrong > under-estimate of the error)

Conclusion

- ☐ A very large amount of research work in and out of the medical field
- ☐ Theoretical background and well-known classes of methods
- □ Open issues
 - Elastic registration
 - Evaluation
 - Real-time
 - Etc.