## Medical Image Processing: Some Tools

## Celine.Fouard@imag.fr

 GMCAO Team
## (http://www-timc.imag.fr/gmcao)

## M2 MIA / GICAO (P+R)

2012/11/06Pixel to Pixel TransformationsSegmentationDiscrete TopologyMorphological Operators

## Negative of an image

- Transformation $T$ on an image such that each pixel is modified independently of its neighbors.
- Also called LUT (Look Up Table)

$$
\forall p_{i, j} \in I p_{i, j}^{\prime}=T\left(p_{i, j}\right)
$$

Negative of an image
For grey levels between $V_{\min }$ and $V_{\max }$

$$
p_{i, j}^{\prime}=T\left(p_{i, j}\right)=V_{\max }-p V_{\min }
$$

The transformation is linear so that:

$$
T\left(V_{\min }\right)=V_{\max } \text { et } T\left(V_{\max }\right)=V_{\min }
$$



- Transformation $T$ on an image such that each pixel is modified independently of its neighbors.
- Also called LUT (Look Up Table)

$$
\forall p_{i, j} \in I p_{i, j}^{\prime}=T\left(p_{i, j}\right)
$$

## Contrast Enhancement

- Range of grey level values between $V_{\min }$ and $V_{\max }$
- Effective dynamic range between $I_{\min }$ and $I_{\max }$

$$
p_{i, j}^{\prime}=T\left(p_{i, j}\right)=\left(p_{i, j}-I_{\min }\right) \frac{\left(V_{\max }-V_{\min }\right)}{\left(I_{\max }-I_{\min }\right)}
$$

Color map



Medical images $\longrightarrow$ organs
Ideally, parts of the image that are:

- connected
- with similar grey levels
- delimited by sharp contours


Contour based methds


Location of the contours on the image:

- where grey levels change brutally
- where the intensity profile makes a step
- i.e. the profile's first derivative is maximum
- i.e. the profile's second derivative is null

(2) left hepatic vein,

3 medial hepatic vein,
4. right hepatic vein,
lower vena cava,
6 oesophagus,
( $)$ abdominal aorta,
(8) lower right pulmonary lobe,
(9) lower left pulmonary lobe,
(0) spleen,
(1) spinal canal,
(2) costal arc.

```
Example of contour detection: maximum of the first
derivative
```

Example of contour detection: maximum of the first derivative


Original image


Sobel filter


Canny filter

Region Based Segmentation: Threshold


Separates the image into regions with one ore several thresholds on grey levels.

- $g(x, y)=1$ si $f(x, y) \geq T$
- $g(x, y)=0$ sinon


Segmentation Region Based Methods
Otsu Threshold: using the histograms
Otsu Threshold: using the histograms

Original Image


Segmented Image
Histogram


Medical Image Processing: Some Tools

Segmentation Region Based Methods
Parametric Classification



Medical Imagery (M2 MIA / GICAO (P+R)) Medical Image Processing: Some Tools

## Classification Methods

- Principle: to classify voxels according several labels
- Histogram: example of 1D classification
- Examples of classification algorithms: K-means, Expectation-Maximization


## Advantages

- Fast (possible real time)
- Works well when there are good contrasts in the image
- bones/soft tissues in scanner
- ..
- May be used interactively
- Often: First step of operations on images

Drawbacks

- No spatial correlation
- Several structures may have same grey levels
- Sensitive to noise



## Neighborhood

- 2D

Given a point $p(i, j)$ of 2D discrete plane
$N_{d}(p)=\left\{q(x, y) \in \mathbb{Z}^{2}|x-i|+|y-j| \leq d\right\}$

- 4-neighborhood $\left(N_{1}\right)$
- 8-neighborhood $\left(N_{2}\right)$
- 3D

Given a point $p(i, j, k)$ of the 3D discrete volume $N_{d}(p)=\left\{q(x, y, z) \in \mathbb{Z}^{3}|x-i|+|y-j|+|z-k| \leq d\right\}$

- 6-neighborhood ( $N_{1}$ )
- 18-neighborhood $\left(N_{2}\right)$
- 26-neighborhood $\left(N_{3}\right)$


A discrete path or curve from a point $p$ to a point $q$ is a sequence of pixels (voxels) $s_{1} s_{2} \ldots s_{n}$ such that:

- $s_{1}=p$
- $2=q$
- for all $i \in 1 \ldots n-1 s_{i}$ et $s_{i+1}$ are $k$-neighbours
We can define 4-paths, 8-paths in 2D, and 6-paths, 18 -paths, and 26-paths in 3D.


Let us give a set of pixels (voxels) $S$ of an image.
Two pixels (voxels) $p$ and $q$ of $S$ are said to be connected in $S$ if there exists a path between $p$ and $q$ containing only pixels (voxels) of $S /$

A set $S$ is said to be $k$-connected if and only if for all points $p$ and $q$ of $S, p$ and $q$ are $k$-connected.


- Jordan's Theorem

Any simple closed curve separates the space into 2 connected components defining the interior and the exterior of the curve.


- $1^{\text {st }}$ paradox of Rosenfeld There exist open lines which define an interior and an exterior.
- $2^{\text {nd }}$ paradox of Rosenfeld

There exist closed cured which do not define an interior and an exterior


- Use of 2 connexity/neighborhood
- 4-neighborhood for the background, 8 -neighborhood for the object
- closed curve
- 1 interior et 1 exterior
- 8-neighborhood pour the background

4-neighborhood for the object

- no close curve
- only one connected component


For each pixel/voxel of the image

- We consider the neighborhood of this pixel/voxel
- Replace the value of the central pixel/voxel by the minimum of the pixel/voxel values

http://cmm.ensmp.fr/ serra/cours/index.htm


For each pixel/voxel of the image

- We consider the neighborhood of this pixel/voxel
- Replace the value of the central pixel/voxel by the maximum of the pixel/voxel values


| Medical Imagery (M2 MIA / GICAO (P+R)) Medical Image Processing: Some Tools $\quad$ 2012/11/06 $\quad 30 / 33$ |
| :--- | :--- | :--- | :--- |

Morphological Operator: Opeining

Erosion followed by a dilation

original binary image

eroded image

image after opeining

Dilation followed by an erosion

original binary image

dilated image

image after closure

