
Programming Language Semantics and Compiler Design
(Sémantique des Langages de Programmation et Compilation)

Axiomatic Semantics - Hoare Logic

Frédéric Lang & Laurent Mounier
firstname.lastname@univ-grenoble-alpes.fr

Univ. Grenoble Alpes, Inria,
Laboratoire d’Informatique de Grenoble & Verimag

Master of Sciences in Informatics at Grenoble (MoSIG)
Master 1 info

Univ. Grenoble Alpes - UFR IM2AG
www.univ-grenoble-alpes.fr — im2ag.univ-grenoble-alpes.fr

Outline - Axiomatic Semantics - Hoare Logic

Introduction

Axiomatic Semantics for Partial Correctness

Axiomatic Semantics for Total Correctness

Summary

Outline - Axiomatic Semantics - Hoare Logic

Introduction
Partial Correctness and Total Correctness
Verifying Properties with NOS

Axiomatic Semantics for Partial Correctness

Axiomatic Semantics for Total Correctness

Summary

Outline - Axiomatic Semantics - Hoare Logic

Introduction
Partial Correctness and Total Correctness
Verifying Properties with NOS

Axiomatic Semantics for Partial Correctness

Axiomatic Semantics for Total Correctness

Summary

Univ. Grenoble Alpes, UFR IM2AG, MoSIG 1 PLCD - Master 1 info SLPC Axiomatic Semantics - Hoare Logic

Partial correctness and total correctness

Goal: specify an “ input / output ” relationship that the program must satisfy.

Example 1 (Program Fact)

y := 1;
while ¬(x = 1) do y := y ∗ x ; x := x − 1 od

I Partial Correctness:
If the initial value of x is n > 0 and if the program terminates then the
final value of y is n!

I Total Correctness:
If the initial value of x is n > 0 then the program terminates and the final
value of y is n!

Frédéric Lang & Laurent Mounier (firstname.lastname@univ-grenoble-alpes.fr) 1 53

Outline - Axiomatic Semantics - Hoare Logic

Introduction
Partial Correctness and Total Correctness
Verifying Properties with NOS

Axiomatic Semantics for Partial Correctness

Axiomatic Semantics for Total Correctness

Summary

Univ. Grenoble Alpes, UFR IM2AG, MoSIG 1 PLCD - Master 1 info SLPC Axiomatic Semantics - Hoare Logic

Verifying semantic properties - a motivating example

How can we prove the (partial) correctness of Fact using NOS?

Fact:
y := 1;
while ¬(x = 1) do y := y ∗ x ; x := x − 1 od

Formalization:
Let n be the initial value of x

n > 0 and σ0(x) = n and (Fact, σ0)→ σ′ implies σ′(y) = n!

Stage 0 Correctness of the initialization.

Stage 1 Correctness of the loop body.

Stage 2 Correctness of the loop.

Stage 3 Correctness of the program.

↪→ Study of the derivation tree.

Frédéric Lang & Laurent Mounier (firstname.lastname@univ-grenoble-alpes.fr) 2 53

Univ. Grenoble Alpes, UFR IM2AG, MoSIG 1 PLCD - Master 1 info SLPC Axiomatic Semantics - Hoare Logic

Verifying semantic properties - a motivating example (continued)

Correctness of Fact

Use of a loop invariant I (σ)
def
= σ(y) =

n!

σ(x)!

Stage 0 The initialization y := 1 satisfies for all σ, σ′:

if n > 0 and σ(x) = n and (y := 1, σ)→ σ′ then I (σ′) and σ′(x) > 0

Stage 1 The loop body satisfies for all σ, σ′:

if I (σ) and σ(x) > 0 and (y := y ∗ x ; x := x − 1, σ)→ σ′ then I (σ′)

Stage 2 The loop satisfies for all σ, σ′:

if I (σ) and σ(x) > 0 and (while ¬(x = 1) do . . . od, σ)→ σ′

then I (σ′) and σ′(x) = 1

Note that I (σ′) and σ′(x) = 1 implies σ′(y) = n!

Stage 3 Partial correctness of the program:

if n > 0 and σ(x) = n and (Fact, σ)→ σ′ then σ′(y) = n!

Frédéric Lang & Laurent Mounier (firstname.lastname@univ-grenoble-alpes.fr) 3 53

Univ. Grenoble Alpes, UFR IM2AG, MoSIG 1 PLCD - Master 1 info SLPC Axiomatic Semantics - Hoare Logic

Lessons learned from the motivating example

Proving semantic properties about programs could be done using OS.

But: This does not scale:

I tedious,

I long,

I not practical,

I too closely connected to the operational semantics (and how computation
is performed)

We want to focus on the essential properties we want to prove.

We will exhibit the essential properties of the language constructs.

Frédéric Lang & Laurent Mounier (firstname.lastname@univ-grenoble-alpes.fr) 4 53

Outline - Axiomatic Semantics - Hoare Logic

Introduction

Axiomatic Semantics for Partial Correctness
Hoare Triples
The Assertion Language
The inference system - Hoare Calculus
Properties of the Semantics: soundness and completeness
Building proofs automatically?
Partial correctness and procedures

Axiomatic Semantics for Total Correctness

Summary

Outline - Axiomatic Semantics - Hoare Logic

Introduction

Axiomatic Semantics for Partial Correctness
Hoare Triples
The Assertion Language
The inference system - Hoare Calculus
Properties of the Semantics: soundness and completeness
Building proofs automatically?
Partial correctness and procedures

Axiomatic Semantics for Total Correctness

Summary

Univ. Grenoble Alpes, UFR IM2AG, MoSIG 1 PLCD - Master 1 info SLPC Axiomatic Semantics - Hoare Logic

Hoare Triple

Idea: specify properties of programs as relations between properties of its
inputs and properties of its outputs via Hoare triples.

Definition 1 (Hoare Triple)

{P} S {Q}

I S a statement

I P an assertion, called precondition

I Q an assertion, called postcondition

Meaning:

if P holds in the initial state (before executing S)

and the execution of S on that state terminates,

then Q will hold in the state in which S terminates.

If we can prove this, we say that {P} S {Q} holds.

Remark It is not necessary that S terminates for {P} S {Q} to hold (we will
see examples). �

Frédéric Lang & Laurent Mounier (firstname.lastname@univ-grenoble-alpes.fr) 5 53

Univ. Grenoble Alpes, UFR IM2AG, MoSIG 1 PLCD - Master 1 info SLPC Axiomatic Semantics - Hoare Logic

Hoare Triple on a example

Example 2 (Hoare triple for Fact)

{x = n ∧ n > 0}
y := 1;
while ¬(x = 1) do y := y ∗ x ; x := x − 1 od
{y = n!}

I Precondition: {x = n ∧ n > 0}
I Post-condition: {y = n!}.

Frédéric Lang & Laurent Mounier (firstname.lastname@univ-grenoble-alpes.fr) 6 53

Outline - Axiomatic Semantics - Hoare Logic

Introduction

Axiomatic Semantics for Partial Correctness
Hoare Triples
The Assertion Language
The inference system - Hoare Calculus
Properties of the Semantics: soundness and completeness
Building proofs automatically?
Partial correctness and procedures

Axiomatic Semantics for Total Correctness

Summary

Univ. Grenoble Alpes, UFR IM2AG, MoSIG 1 PLCD - Master 1 info SLPC Axiomatic Semantics - Hoare Logic

The assertion language

Allows to express pre and postconditions.

Example 3 (Program Fact)

{x = n ∧ n > 0}
y := 1;
while ¬(x = 1) do y := y ∗ x ; x := x − 1 od
{y = n!}

Remark Specifying an “input/output” relation, we could not replace {y = n!}
by {y = x!} �

n is a logical variable:

I does not appear in the program,

I used to “remember the initial values of program variables”.

Two kinds of variables:

I program variables (Var),

I logical variables.

Frédéric Lang & Laurent Mounier (firstname.lastname@univ-grenoble-alpes.fr) 7 53

Univ. Grenoble Alpes, UFR IM2AG, MoSIG 1 PLCD - Master 1 info SLPC Axiomatic Semantics - Hoare Logic

The assertion language: predicates

Intuition: a Boolean expression b defines a predicate B[b] : State 7→ {tt,ff}

Definition 2 (Predicate)

A predicate is a partial function from State to {tt,ff} denoted using the
syntactic category Bexp extended with logical variables.

Notation for predicates

For a predicate P:

I we write P(σ) ∈ {tt,ff} (instead of B[P](σ)) for the evaluation of P on σ;

I when P(σ) = tt, we say that P holds on σ.

Example 4 (Predicate)
I P1

def
= (x = n)

I P2
def
= (n > 0 ∧ x = n!)

I P3
def
= (x = n ∧ y = n!)

I σ1 = [x 7→ n]

I σ2 = [x 7→ n + 1]

I σ3 = [x 7→ 3, y 7→ 6]

I P1(σ1) = tt

I P2(σ2) = ff
P3(σ3) =

{
tt if n = 3
ff otherwise

Frédéric Lang & Laurent Mounier (firstname.lastname@univ-grenoble-alpes.fr) 8 53

Univ. Grenoble Alpes, UFR IM2AG, MoSIG 1 PLCD - Master 1 info SLPC Axiomatic Semantics - Hoare Logic

The assertion language: predicates (continued)

Reminder: The Boolean domain {tt,ff} is endowed with usual Boolean
operators, noted ∧, ∨, ¬, and =⇒ , and their usual semantics.

Notations (Boolean operators on predicates)

For all predicates P0,P1,P2 and all state σ ∈ State:
I P1 ∧ P2 denotes the function defined by (P1 ∧ P2)(σ)

def
= P1(σ) ∧ P2(σ),

I P1 ∨ P2 denotes the function defined by (P1 ∨ P2)(σ)
def
= P1(σ) ∨ P2(σ),

I ¬P0 denotes the function defined by (¬P0)(σ)
def
= ¬(P0(σ)),

I P1 =⇒ P2 denotes the function defined by

(P1 =⇒ P2)(σ)
def
= P1(σ) =⇒ P2(σ),

Example 5 (Predicate)

Recall that P1
def
= (x = n) and P2

def
= (x = n!):

(P1 ∧ P2)([x 7→ 2]) =

{
tt if n = 2
ff otherwise

If n is unknown and P1 ∧ P2 is assumed to hold, then it implies that n = 2.

Frédéric Lang & Laurent Mounier (firstname.lastname@univ-grenoble-alpes.fr) 9 53

Univ. Grenoble Alpes, UFR IM2AG, MoSIG 1 PLCD - Master 1 info SLPC Axiomatic Semantics - Hoare Logic

The assertion language: logical equivalence and syntactic substitution

Definition 3 (Logical equivalence)

Two predicates P1 and P2 are logically equivalent iff for all σ such that
vars(P1) ⊆ dom(σ) and vars(P2) ⊆ dom(σ), P1(σ) = P2(σ).

Remark If P1 and P2 are logically equivalent, then they may be freely
interchanged (e.g., predicate simplification). �

Definition 4 (Substitution)

For x ∈ Var and a ∈ Aexp, P[a/x] is a predicate obtained by replacing
(syntactically) each occurrence of x by a in P.

Example 6 (Substitution)

Recall that P1
def
= (x = n):

I P1[y + 2/x]
def
= (y + 2 = n)

Remark Logical equivalence is closed under substitution: If P1 and P2 are
logically equivalent, then for all x ∈ Var, a ∈ Aexp, P1[a/x] and P2[a/x] are
logically equivalent. �

Frédéric Lang & Laurent Mounier (firstname.lastname@univ-grenoble-alpes.fr) 10 53

Outline - Axiomatic Semantics - Hoare Logic

Introduction

Axiomatic Semantics for Partial Correctness
Hoare Triples
The Assertion Language
The inference system - Hoare Calculus
Properties of the Semantics: soundness and completeness
Building proofs automatically?
Partial correctness and procedures

Axiomatic Semantics for Total Correctness

Summary

Univ. Grenoble Alpes, UFR IM2AG, MoSIG 1 PLCD - Master 1 info SLPC Axiomatic Semantics - Hoare Logic

The inference system - Hoare Calculus

Recall logical derivation with rules:

Premisse1 . . . Premissen
Conclusion

I forward interpretation/reading: if we have proved Premisse1 and . . . and
Premissen, then we have proved Conclusion;

I backward interpretation/reading: to prove Conclusion, it suffices to prove
Premisse1 and . . . and Premissen.

Partial correctness assertions will be specified by an inference system (axioms
and rules) that will allow us to write inference trees.

Intuitively, an inference tree says how properties “propagate”.

(Similar to derivation trees in Natural Operational Semantics).

Formulas are Hoare triples, of the form {P} S {Q}:
I S ∈ Stm: a statement in language While.

I {P} and {Q} are predicates.

Frédéric Lang & Laurent Mounier (firstname.lastname@univ-grenoble-alpes.fr) 11 53

Univ. Grenoble Alpes, UFR IM2AG, MoSIG 1 PLCD - Master 1 info SLPC Axiomatic Semantics - Hoare Logic

The inference system: skip

Definition 5 (Axiom of skip)

{P} skip {P}

I skip does not change the state;

I if P holds before the execution of skip, then it holds afterwards as well.

Example 7 (Applications of the skip axiom)

I {x > 0} skip {x > 0}
I {true} skip {true}
I {false} skip {false}

Frédéric Lang & Laurent Mounier (firstname.lastname@univ-grenoble-alpes.fr) 12 53

Univ. Grenoble Alpes, UFR IM2AG, MoSIG 1 PLCD - Master 1 info SLPC Axiomatic Semantics - Hoare Logic

The inference system: assignment

Definition 6 (Axiom of assignment)

{P[a/x]} x := a {P}

I P[a/x] is P where every occurrence of x is replaced by a.

I For P to hold after the assignment of a to x , it suffices to show that P holds for
a before the assignment.

The rules are “schemes” that:

I need to be instantiated for a particular choice of P, and

I have an implicit universal quantification on x , a and P.

Example 8 (Applications of the assignment axiom)

I {y > 42} x := 20 {x > 0 ∧ y > x + 22}
using an implicit simplification
(x > 0 ∧ y > x + 22)[20/x] = (20 > 0 ∧ y > 20 + 22) = (y > 42)

I {z = 2 ∗ x ∗ y} x := x ∗ 2 {z = x ∗ y}

Frédéric Lang & Laurent Mounier (firstname.lastname@univ-grenoble-alpes.fr) 13 53

Univ. Grenoble Alpes, UFR IM2AG, MoSIG 1 PLCD - Master 1 info SLPC Axiomatic Semantics - Hoare Logic

The inference system: sequential composition

Definition 7 (Inference Rule for sequential composition)

{P} S1 {Q} {Q} S2 {R}
{P} S1; S2 {R}

I To show that {P} S {Q}, it suffices to find an intermediate predicate Q
such that {P} S1 {Q} and {Q} S2 {R}

I Q is the postcondition of S1 and the precondition of S2

Frédéric Lang & Laurent Mounier (firstname.lastname@univ-grenoble-alpes.fr) 14 53

Univ. Grenoble Alpes, UFR IM2AG, MoSIG 1 PLCD - Master 1 info SLPC Axiomatic Semantics - Hoare Logic

The inference system: sequential composition (continued)

{P} S1 {Q} {Q} S2 {R}
{P} S1;S2 {R}

Rule for sequential composition

Example 9 (Inference rule for sequential composition)

{
P︷ ︸︸ ︷

x > 0} skip {
Q︷ ︸︸ ︷

x > 0} {
Q︷ ︸︸ ︷

x > 0} skip {
R︷ ︸︸ ︷

x > 0}
{x > 0︸ ︷︷ ︸

P

} skip; skip {x > 0︸ ︷︷ ︸
R

}

{
P︷ ︸︸ ︷

z + 2 > 20 ∧ 20 > z}
y := 20

{z + 2 > y ∧ y > z︸ ︷︷ ︸
Q

}

{
Q︷ ︸︸ ︷

z + 2 > y ∧ y > z}
x := z + 2

{x > y ∧ y > z︸ ︷︷ ︸
R

}

{z + 2 > 20 ∧ 20 > z︸ ︷︷ ︸
P

} y := 20; x := z + 2 {x > y ∧ y > z︸ ︷︷ ︸
R

}

Frédéric Lang & Laurent Mounier (firstname.lastname@univ-grenoble-alpes.fr) 15 53

Univ. Grenoble Alpes, UFR IM2AG, MoSIG 1 PLCD - Master 1 info SLPC Axiomatic Semantics - Hoare Logic

The inference system: if-then-else

Definition 8 (Inference rule for if-then-else)

{b ∧ P} S1 {Q} {¬b ∧ P} S2 {Q}
{P} if b then S1 else S2 fi {Q}

To show that {P} S {Q}, it suffices to show that Q is a postcondition of each
branch (S1 and S2), taking as precondition P and the condition for the branch
to be executed (b and ¬b, respectively).

Remark “if b then S1 fi” can be handled as “if b then S1 else skip fi”. �

Frédéric Lang & Laurent Mounier (firstname.lastname@univ-grenoble-alpes.fr) 16 53

Univ. Grenoble Alpes, UFR IM2AG, MoSIG 1 PLCD - Master 1 info SLPC Axiomatic Semantics - Hoare Logic

The inference system: if-then-else

{b ∧ P} S1 {Q} {¬b ∧ P} S2 {Q}
{P} if b then S1 else S2 fi {Q}

Rule for the if-then-else

Example 10 (Inference rule for if-then-else)

{
b︷ ︸︸ ︷

x > 0∧
P︷ ︸︸ ︷

y > 0 ∧ x 6= 0}
skip

{x > 0 ∧ y > 0 ∧ x 6= 0︸ ︷︷ ︸
Q

}

{
¬b︷ ︸︸ ︷

x ≤ 0∧
P︷ ︸︸ ︷

y > 0 ∧ −x 6= 0}
x := −x

{x > 0 ∧ y > 0 ∧ x 6= 0︸ ︷︷ ︸
Q

}

{y > 0 ∧ x 6= 0︸ ︷︷ ︸
P

} if x > 0 then skip else x := −x fi {x > 0 ∧ y > 0 ∧ x 6= 0︸ ︷︷ ︸
Q

}

We use the following equivalence under the hood: x 6= 0⇐⇒ −x 6= 0

Frédéric Lang & Laurent Mounier (firstname.lastname@univ-grenoble-alpes.fr) 17 53

Univ. Grenoble Alpes, UFR IM2AG, MoSIG 1 PLCD - Master 1 info SLPC Axiomatic Semantics - Hoare Logic

The inference system: while loop

Definition 9 (Inference rule for while loop)

{b ∧ P} S {P}
{P} while b do S od {¬b ∧ P}

P is a loop invariant, which must hold before and after each execution of the
loop-body.

Example 11 (Inference rule for while loop)

{x > 0 ∧ I}
x := x − 1

{x ≥ 0 ∧ y + z = z ∗ (x0 − x) ∧ z = z0}

{x ≥ 0 ∧ y + z = z ∗ (x0 − x) ∧ z = z0}
y := y + z
{I}

{x > 0 ∧ I} x := x − 1; y := y + z {I}
{I} while x > 0 do x := x − 1; y := y + z od {x ≤ 0 ∧ I}

where I
def
= x ≥ 0 ∧ y = z ∗ (x0 − x) ∧ z = z0

Frédéric Lang & Laurent Mounier (firstname.lastname@univ-grenoble-alpes.fr) 18 53

Univ. Grenoble Alpes, UFR IM2AG, MoSIG 1 PLCD - Master 1 info SLPC Axiomatic Semantics - Hoare Logic

Inference system

We now have a rule for each statement of While.
Is it sufficient?

Exercise 1
Prove {x > 0} x := x + 1 {x > 0}.

This is not possible so far...
Using the axiom of assignment, we can only build either proof tree:

{x > 0} x := x + 1 {x > 1} or {x ≥ 0} x := x + 1 {x > 0}

Can we replace the postcondition x > 1 of the first Hoare triple or the
precondition x ≥ 0 of the second Hoare triple by x > 0?

Yes, because x > 1 =⇒ x > 0 and x > 0 =⇒ x ≥ 0.
This must be allowed by a rule: the rule of consequence.

Frédéric Lang & Laurent Mounier (firstname.lastname@univ-grenoble-alpes.fr) 19 53

Univ. Grenoble Alpes, UFR IM2AG, MoSIG 1 PLCD - Master 1 info SLPC Axiomatic Semantics - Hoare Logic

Stronger/weaker predicate

If P =⇒ Q, we say that:

I P is stronger than Q (i.e., P sets more constraints on the state than Q)

I Q is weaker than P.

Reminder: P =⇒ Q means “if P holds then Q holds”. If P does not hold,
then it sets no constraint on the state. It is equivalent to ¬P ∨ Q.

For all P, we have both:

I P =⇒ true
true is the weakest predicate, setting no constraint at all

I false =⇒ P
false is the strongest predicate, setting a constraint that cannot be fulfilled

Example 12

x > 0 is stronger than x ≥ 0, because if if x > 0 then necessarily x ≥ 0.
Neither of x > 0 and x < 3 is stronger or weaker than the other.

Frédéric Lang & Laurent Mounier (firstname.lastname@univ-grenoble-alpes.fr) 20 53

Univ. Grenoble Alpes, UFR IM2AG, MoSIG 1 PLCD - Master 1 info SLPC Axiomatic Semantics - Hoare Logic

The inference system: consequence

The following rule allows the precondition to be weakened and/or the
postcondition to be strengthened.

Definition 10 (Inference rule for consequence)

If P =⇒ P ′ and Q ′ =⇒ Q, then:

{P ′} S {Q ′}
{P} S {Q}

Example 13 (Inference rule for consequence)

{x ≥ 0} y := x + 1 {y > 0}
{x > 42} y := x + 1 {y 6= 0}

Frédéric Lang & Laurent Mounier (firstname.lastname@univ-grenoble-alpes.fr) 21 53

Univ. Grenoble Alpes, UFR IM2AG, MoSIG 1 PLCD - Master 1 info SLPC Axiomatic Semantics - Hoare Logic

Building proofs using Hoare logic

Remark

I In the NOS of While, the derivation tree built to achieve a given goal
(S , σ)→ σ′ is unique, because at each step at most one inference rule
applies, determined by the program syntax and the value of Boolean
conditions.

I Building proofs using Hoare logic is less deterministic, as there may exist
several proofs of the same Hoare triple. For instance, the rule of
consequence is not guided by the program syntax.

�

Example 14

Here are two proofs of the same Hoare triple {x > 0} x := x + 1 {x > 0}:

{x > 0} x := x + 1 {x > 1}
{x > 0} x := x + 1 {x > 0}

{x ≥ 0} x := x + 1 {x > 0}
{x > 0} x := x + 1 {x > 0}

Frédéric Lang & Laurent Mounier (firstname.lastname@univ-grenoble-alpes.fr) 22 53

Univ. Grenoble Alpes, UFR IM2AG, MoSIG 1 PLCD - Master 1 info SLPC Axiomatic Semantics - Hoare Logic

The complete inference system

Rule name rule

Skip {P} skip {P}

Assignment {P[a/x]} x := a {P}

Sequential

{P} S1 {Q} {Q} S2 {R}
{P} S1;S2 {R}

Conditional

{b ∧ P} S1 {Q} {¬b ∧ P} S2 {Q}
{P} if b then S1 else S2 fi {Q}

Iterative

{b ∧ P} S {P}
{P} while b do S od {¬b ∧ P}

Consequence If P ⇒ P ′ and Q ′ ⇒ Q, then:

{P ′} S {Q ′}
{P} S {Q}

Frédéric Lang & Laurent Mounier (firstname.lastname@univ-grenoble-alpes.fr) 23 53

Univ. Grenoble Alpes, UFR IM2AG, MoSIG 1 PLCD - Master 1 info SLPC Axiomatic Semantics - Hoare Logic

Comparison with Natural Operational Semantics

We have defined a set of rules and axioms.

Natural Operational Semantics Axiomatic Semantics

Axioms Axioms
Inference rules Inference rules

Derivation trees Inference trees
= =

description/proof of a computation proof of a property
expressed at the root expressed at the root

Leaves = Instance of axioms Leaves = instance of axioms
Internal nodes = instances of rules Internal nodes = instances of rules

Frédéric Lang & Laurent Mounier (firstname.lastname@univ-grenoble-alpes.fr) 24 53

Univ. Grenoble Alpes, UFR IM2AG, MoSIG 1 PLCD - Master 1 info SLPC Axiomatic Semantics - Hoare Logic

Proving properties using the inference system

An inference tree gives a proof of the property expressed at its root.

Notation
When inferring {P} S {Q} (with rules and axioms), we note:

`p {P} S {Q}

Remark Writing `p assertion says that we can deduce assertion with the
rules, axioms, and other assertions. �

Example 15 (Proving properties)

I `p {x = 0} x := x + 1; x := x + 1 {x = 2}
I `p {x > 0} y := 1 {x = x ∗ y}
I `p {true} while true do skip od {true}

Frédéric Lang & Laurent Mounier (firstname.lastname@univ-grenoble-alpes.fr) 25 53

Univ. Grenoble Alpes, UFR IM2AG, MoSIG 1 PLCD - Master 1 info SLPC Axiomatic Semantics - Hoare Logic

Exercises: a solution

Proof of `p {x = 0} x := x + 1; x := x + 1 {x = 2}

{x = 0} x := x + 1 {x = 1}
[ass]

{x = 1} x := x + 1 {x = 2}
[ass]

{x = 0} x := x + 1; x := x + 1 {x = 2}
[comp]

because (x = 1)[x + 1/x] = (x + 1 = 1) = (x = 0)
(x = 2)[x + 1/x] = (x + 1 = 2) = (x = 1)

Proof of `p {x > 0} y := 1 {x = x ∗ y}

{true} y := 1 {x = x ∗ y}
[ass]

{x > 0} y := 1 {x = x ∗ y}
[conseq]

because (x = x ∗ y)[1/y] = (x = x) = true
x > 0 =⇒ true

Frédéric Lang & Laurent Mounier (firstname.lastname@univ-grenoble-alpes.fr) 26 53

Univ. Grenoble Alpes, UFR IM2AG, MoSIG 1 PLCD - Master 1 info SLPC Axiomatic Semantics - Hoare Logic

Exercises: a solution

Proof of `p {true} while true do skip od {true}

{true} skip {true}
[skip]

{true} while true do skip od {false}
[while]

{true} while true do skip od {true}
[conseq]

because ¬true ∧ true = false
false =⇒ true

Remark If {P} S {Q} and S is started in a state satisfying P, we cannot
claim that S will terminate in a state satisfying Q �

Frédéric Lang & Laurent Mounier (firstname.lastname@univ-grenoble-alpes.fr) 27 53

Univ. Grenoble Alpes, UFR IM2AG, MoSIG 1 PLCD - Master 1 info SLPC Axiomatic Semantics - Hoare Logic

Example of the factorial program

y := 1; while ¬(x = 1) do y := y ∗ x ; x := x − 1 od

Let n be the initial value of x , S0
def
= y := 1, S1

def
= y := y ∗ x ; x := x − 1, and

the invariant I
def
= x > 0 ∧ y =

n!

x!
.

{x > 0 ∧ x! = n!} S0 {I}
(3)

{x > 0 ∧ x = n} S0 {I}
(2)

continued below

{I} while ¬(x = 1) do S1 od {y = n!}
{x > 0 ∧ x = n} S0; while ¬(x = 1) do S1 od {y = n!} (1)

Continued:

{I ∧ ¬(x = 1)} y := y ∗ x {I [x − 1/x]} (7) {I [x − 1/x]} x := x − 1 {I} (8)

{I ∧ ¬(x = 1)} S1 {I}
(6)

{I} while ¬(x = 1) do S1 od {x = 1 ∧ y = n!} (5)

{I} while ¬(x = 1) do S1 od {y = n!} (4)

Frédéric Lang & Laurent Mounier (firstname.lastname@univ-grenoble-alpes.fr) 28 53

Univ. Grenoble Alpes, UFR IM2AG, MoSIG 1 PLCD - Master 1 info SLPC Axiomatic Semantics - Hoare Logic

Example of the factorial program (continued)

Justifications of the previous inference tree:

(1) Sequential composition.

(2) Consequence: x > 0 ∧ x = n =⇒ x > 0 ∧ x! = n!.

(3) Assignment: I [1/y] is equivalent to x > 0 ∧ x! = n!.

(4) Consequence: x = 1 ∧ y = n! =⇒ y = n!.

(5) While loop: I ∧ ¬¬(x = 1) is equivalent to x = 1 ∧ y = n!.

(6) Sequential composition.

(7) Assignment: I [x − 1/x][y ∗ x/y] is equal to x − 1 > 0 ∧ y ∗ x =
n!

(x − 1)!
,

which is equivalent to I ∧ ¬(x = 1).

(8) Assignment.

Frédéric Lang & Laurent Mounier (firstname.lastname@univ-grenoble-alpes.fr) 29 53

Outline - Axiomatic Semantics - Hoare Logic

Introduction

Axiomatic Semantics for Partial Correctness
Hoare Triples
The Assertion Language
The inference system - Hoare Calculus
Properties of the Semantics: soundness and completeness
Building proofs automatically?
Partial correctness and procedures

Axiomatic Semantics for Total Correctness

Summary

Univ. Grenoble Alpes, UFR IM2AG, MoSIG 1 PLCD - Master 1 info SLPC Axiomatic Semantics - Hoare Logic

Properties of the semantics

Definition 11 (Semantic equivalence between programs)

S1 and S2 are provably equivalent according to the axiomatic semantics (for
partial correctness) if

I for all preconditions P,

I for all postconditions Q:

`p {P} S1 {Q} iff `p {P} S2 {Q}

Frédéric Lang & Laurent Mounier (firstname.lastname@univ-grenoble-alpes.fr) 30 53

Univ. Grenoble Alpes, UFR IM2AG, MoSIG 1 PLCD - Master 1 info SLPC Axiomatic Semantics - Hoare Logic

Soundness and completeness of Hoare logic for partial correctness

Definition 12 (Validity of a Hoare triple)
Triple {P} S {Q} is valid, noted

�p {P} S {Q}

iff for all states σ, σ′ ∈ State:

I if P(σ) holds and (S , σ)→ σ′

I then Q(σ′) holds.

We say that S is partially correct
wrt. P and Q.

Soundness (We can infer only valid triples)

If `p {P} S {Q} then �p {P} S {Q}

Completeness (We can infer all valid triples)

If �p {P} S {Q} then `p {P} S {Q}

Frédéric Lang & Laurent Mounier (firstname.lastname@univ-grenoble-alpes.fr) 31 53

Univ. Grenoble Alpes, UFR IM2AG, MoSIG 1 PLCD - Master 1 info SLPC Axiomatic Semantics - Hoare Logic

Soundness of Hoare logic

Let us consider some statement S ∈ Stm, some assertions P and Q, and
suppose `p {P} S {Q}. We shall prove �p {P} S {Q}
We conduct a proof by induction on the shape of the inference tree to get
`p {P} S {Q}, that is to infer {P} S {Q} with the inference system.

Let us consider some states σ, σ′ and suppose (S , σ)→ σ′ and P(σ).

[ass] Necessarily S is of the form x := a and P[a/x](σ) = tt.
[assnos] gives σ′ = σ[x 7→ A[a]σ].
P(σ′) = tt (from correctness of substitution – see the tutorial exercise).

[skip] Straightforward.

[comp] Necessarily S is of the form S1; S2, and P(σ) = tt.
Assume �p {P} S1 {R} and �p {R} S2 {Q} (I.H.).
[compnos] gives (∃σ′′ ∈ State) (S1, σ)→ σ′′ and (S2, σ

′′)→ σ′.
From (S1, σ)→ σ′′, �p {P} S1 {R}, and P(σ) = tt, we get R(σ′′) = tt.
From (S2, σ

′′)→ σ′, �p {R} S2 {Q}, and R(σ′′) = tt, we get Q(σ′) = tt.

[if] Necessarily S is of the form if b then S1 else S2 fi.
Assume �p {b ∧ P} S1 {Q} and �p {¬b ∧ P} S2 {Q} (I.H.).
I Case B[b]σ = tt. Then, following the semantics of ∧: (P ∧ b)(σ) = tt.

[ifnos] gives (S1, σ)→ σ′.
�p {b ∧ P} S1 {Q} gives Q(σ′) = tt.

I Case B[b]σ = ff. Similar.

Frédéric Lang & Laurent Mounier (firstname.lastname@univ-grenoble-alpes.fr) 32 53

Univ. Grenoble Alpes, UFR IM2AG, MoSIG 1 PLCD - Master 1 info SLPC Axiomatic Semantics - Hoare Logic

Soundness of Hoare logic

Proof by induction on the shape of the inference tree to infer {P} S {Q}

[while] Necessarily, S is of the form while b do S ′ od.
Assume � {b ∧ P} S ′ {P} (I. H.)
(We want to prove � {P} while b do S ′ od {¬b ∧ P})
I Case B[b]σ = tt, then (S ′, σ)→ σ′ and (while b do S ′ od, σ′)→ σ′′

(b ∧ P)(σ) = tt and � {b ∧ P} S ′ {P} gives P(σ′) = tt.
IH on (while b do S ′ od, σ′)→ σ′′ gives (¬b ∧ P)(σ′′) = tt.

I Case B[b]σ = ff, then σ′ = σ′′ and (¬b ∧ P)(σ′′) = tt.

[cons] Suppose � {P ′} S {Q ′}, P ⇒ P ′ and Q ′ ⇒ Q.
(Recall that we assume (S , σ)→ σ′ and P(σ) = tt).
From P(σ) = tt and P ⇒ P ′, we get P ′(σ).
From P ′(σ) = tt and �p {P ′} S {Q ′}, we get Q ′(σ′).
From Q ′(σ′) = tt and Q ′ ⇒ Q, we get Q(σ′).

Frédéric Lang & Laurent Mounier (firstname.lastname@univ-grenoble-alpes.fr) 33 53

Outline - Axiomatic Semantics - Hoare Logic

Introduction

Axiomatic Semantics for Partial Correctness
Hoare Triples
The Assertion Language
The inference system - Hoare Calculus
Properties of the Semantics: soundness and completeness
Building proofs automatically?
Partial correctness and procedures

Axiomatic Semantics for Total Correctness

Summary

Univ. Grenoble Alpes, UFR IM2AG, MoSIG 1 PLCD - Master 1 info SLPC Axiomatic Semantics - Hoare Logic

Building proofs using the weakest-precondition calculus

For a statement S without while loop, if �p {P} S {Q}, then a proof can be
built systematically using a calculus called the weakest-precondition calculus
(wp).

Given the postcondition Q and the loop-free statement S , this calculus
computes the weakest precondition wp(S ,Q) such that �p {wp(S ,Q)} S {Q}.
This precondition is called weakest precondition because �p {P} S {Q} holds if
and only if P ⇒ wp(S ,Q).

Definition 13 (Weakest precondition calculus for loop-free statements)

wp(skip,Q) = Q
wp(x := a,Q) = Q[a/x]

wp(if b then S1 else S2 fi,Q) = (b ⇒ wp(S1,Q)) ∧ (¬b ⇒ wp(S2,Q))
wp(S1; S2,Q) = wp(S1,wp(S2,Q))

We shall prove that `p {wp(S ,Q)} S {Q}, i.e., wp(S ,Q) is indeed a valid
precondition. This proof is constructive, in the sense that we can deduce from
it an algorithm that actually builds a proof tree. The proof that it is the
weakest precondition is out of the scope of this lecture.

Frédéric Lang & Laurent Mounier (firstname.lastname@univ-grenoble-alpes.fr) 34 53

Univ. Grenoble Alpes, UFR IM2AG, MoSIG 1 PLCD - Master 1 info SLPC Axiomatic Semantics - Hoare Logic

From wp to proof trees: skip and assignment

Let S be any loop-free statement. We show by induction on S that

(∀Q) `p {wp(S ,Q)} S {Q}

Skip
wp(skip,Q) = Q

The proof tree is a valid instance of the axiom of skip:

{Q} skip {Q}

Assignment
wp(x := a,Q) = Q[a/x]

The proof tree is a valid instance of the axiom of assignment:

{Q[a/x]} x := a {Q}

Frédéric Lang & Laurent Mounier (firstname.lastname@univ-grenoble-alpes.fr) 35 53

Univ. Grenoble Alpes, UFR IM2AG, MoSIG 1 PLCD - Master 1 info SLPC Axiomatic Semantics - Hoare Logic

From wp to proof trees: sequential composition

wp(S1; S2,Q) = wp(S1,wp(S2,Q))

Let R = wp(S2,Q) and P = wp(S1,R). The proof tree is an instance of the
inference rule for sequential composition:

{P} S1 {R} {R} S2 {Q}
{P} S1; S2 {Q}

The premises have valid proof trees from the induction hypothesis:
`p {wp(S1,R)︸ ︷︷ ︸

P

} S1 {R} and `p {wp(S2,Q)︸ ︷︷ ︸
R

} S2 {Q}.

Frédéric Lang & Laurent Mounier (firstname.lastname@univ-grenoble-alpes.fr) 36 53

Univ. Grenoble Alpes, UFR IM2AG, MoSIG 1 PLCD - Master 1 info SLPC Axiomatic Semantics - Hoare Logic

From wp to proof trees: if-then-else

wp(if b then S1 else S2 fi,Q) = (b ⇒ wp(S1,Q)) ∧ (¬b ⇒ wp(S2,Q))

Let P = (b ⇒ wp(S1,Q)) ∧ (¬b ⇒ wp(S2,Q)). The proof tree is an instance
of the inference rule for if-then-else:

{b ∧ P} S1 {Q} {¬b ∧ P} S1 {Q}
{P} if b then S1 else S2 fi {Q}

The premises have valid proof trees because:

I b ∧ P is equivalent to wp(S1,Q) and by induction hypothesis,
`p {wp(S1,Q)} S1 {Q}.

I ¬b ∧ P is equivalent to wp(S2,Q) and by induction hypothesis,
`p {wp(S2,Q)} S2 {Q}.

Frédéric Lang & Laurent Mounier (firstname.lastname@univ-grenoble-alpes.fr) 37 53

Univ. Grenoble Alpes, UFR IM2AG, MoSIG 1 PLCD - Master 1 info SLPC Axiomatic Semantics - Hoare Logic

Automatic proofs for loop-free programs

Theorem 1
If �p {P} S {Q} and S does not contain while loops, then a proof tree of
{P} S {Q} can be built automatically.

Proof.
We can build a proof tree for {wp(S ,Q)} S {Q} automatically, as described in
the above proof. Since Hoare logic is sound, this means that
�p {wp(S ,Q)} S {Q}.
Since �p {P} S {Q}, we have P ⇒ wp(S ,Q). Therefore a proof of {P} S {Q}
can be given using an instance of the rule of consequence:

{wp(S ,Q)} S {Q}
{P} S {Q}

Frédéric Lang & Laurent Mounier (firstname.lastname@univ-grenoble-alpes.fr) 38 53

Univ. Grenoble Alpes, UFR IM2AG, MoSIG 1 PLCD - Master 1 info SLPC Axiomatic Semantics - Hoare Logic

Building proofs for programs with loops

Weakest precondition is not computable in general for while loops.
Approximations can be computed if a correct invariant is provided by the user
together with each while loop of the program.

Finding an appropriate loop invariant I to prove a goal of the form
{P} while b do S od {Q} may be difficult as it must simultaneously satisfy:

I I must be strong enough to imply the postcondition: ¬b ∧ I ⇒ Q

I I must hold initially: P ⇒ I

I I must hold when completing any iteration, under the assumption that it
holds when starting the iteration: {b ∧ I} S {I}

Unfortunately, there is no general recipe to find an appropriate invariant.
Proofs for programs with while loops cannot be built automatically in general.

Frédéric Lang & Laurent Mounier (firstname.lastname@univ-grenoble-alpes.fr) 39 53

Univ. Grenoble Alpes, UFR IM2AG, MoSIG 1 PLCD - Master 1 info SLPC Axiomatic Semantics - Hoare Logic

Hints to find an appropriate invariant

Remind invariants from your courses on algorithmics...
If the program is correct, the invariant exists.

Hints:

I Observe how variables evolve after a few iterations.

I Find a predicate giving the value of those variables, for instance in
function of the number n of iterations.

I Find an expression defining n in terms of the program variables and use it
in the predicate defined in previous step.

I Try to derive a proof tree using the resulting predicate as invariant.
I If it fails, analyze what is wrong:

I The invariant may have to be strengthen (e.g., adding a sign condition) if
its conjunction with the halting condition does not imply the postcondition.

I The invariant may have to be weakened if it is not implied by the
precondition.

I If you cannot derive a proof, the precondition, postcondition, and/or
program may be incorrect! Find a counterexample.

Frédéric Lang & Laurent Mounier (firstname.lastname@univ-grenoble-alpes.fr) 40 53

Univ. Grenoble Alpes, UFR IM2AG, MoSIG 1 PLCD - Master 1 info SLPC Axiomatic Semantics - Hoare Logic

Example: finding the invariant

Goal:
{x = a ∧ a ≥ 0 ∧ y = 1} while x > 0 do y := 2 ∗ y ; x := x − 1 od {y = 2a}

iteration value of x value of y
0 x0 = a y0 = 1
1 x1 = x0 − 1 = a− 1 y1 = 2 ∗ y0 = 2 ∗ 1
2 x2 = x1 − 1 = a− 2 y2 = 2 ∗ y1 = 2 ∗ 2 ∗ 1
3 x3 = x2 − 1 = a− 3 y3 = 2 ∗ y2 = 2 ∗ 2 ∗ 2 ∗ 1

.

I After n iterations, x = a− n and y = 2n.

I From x = a− n, we get n = a− x . Therefore, y = 2a−x .

I Checking the precondition: x = a and y = 1 implies y = 2a−x as
2a−x = 2a−a = 20 = 1 = y .

I Checking the postcondition: x ≤ 0 (on halting) and y = 2a−x do not
imply the postcondition y = 2a. Must add constraint x ≥ 0.

We can now finish the proof using the invariant I ≡ y = 2a−x ∧ x ≥ 0:

{y = 2a−x ∧ x > 0} y := 2 ∗ y {y = 2a−x+1 ∧ x > 0}
{y = 2a−x ∧ x > 0} y := 2 ∗ y {y = 2a−x+1 ∧ x ≥ 0} {y = 2a−x+1 ∧ x > 0} x := x − 1 {I}

{I ∧ x > 0} y := 2 ∗ y ; x := x − 1 {I}
{x = a ∧ x ≥ 0 ∧ y = 1} while x > 0 do y := 2 ∗ y ; x := x − 1 od {y = 2a}

Frédéric Lang & Laurent Mounier (firstname.lastname@univ-grenoble-alpes.fr) 41 53

Outline - Axiomatic Semantics - Hoare Logic

Introduction

Axiomatic Semantics for Partial Correctness
Hoare Triples
The Assertion Language
The inference system - Hoare Calculus
Properties of the Semantics: soundness and completeness
Building proofs automatically?
Partial correctness and procedures

Axiomatic Semantics for Total Correctness

Summary

Univ. Grenoble Alpes, UFR IM2AG, MoSIG 1 PLCD - Master 1 info SLPC Axiomatic Semantics - Hoare Logic

Hoare logic for partial correctness with procedures

Using procedures from pProc:

I Of the form proc F (y1, . . . , ym, ?z1, . . . , ?zp) is var x1, . . . , xn in SF end

I SF may only use the local variables x1, . . . , xn, y1, . . . , ym, z1, . . . , zp

To simplify the presentation, we also assume here that:

I SF does not modify the input parameters y1, . . . , ym

I In a call of the form F (a1, . . . , am, ?w1, . . . , ?wp), a1, . . . , am do not
contain occurrences of w1, . . . ,wp

Example: F (x + 1, ?x) is not allowed, but F (x + 1, ?x ′); x := x ′ is

Proving programs with procedures requires to attach a contract to each
procedure F : its precondition PF and its postcondition QF satisfying:

I vars(PF) ∩ {x1, . . . , xn, z1, . . . , zp} = ∅
I vars(QF) ∩ {x1, . . . , xn} = ∅

Then, the goal {PF} SF {QF} must be proven for each procedure F .
This requires an inference rule for procedure call.

Frédéric Lang & Laurent Mounier (firstname.lastname@univ-grenoble-alpes.fr) 42 53

Univ. Grenoble Alpes, UFR IM2AG, MoSIG 1 PLCD - Master 1 info SLPC Axiomatic Semantics - Hoare Logic

Inference rule for procedure call

Definition 14 (Rule of procedure call)

I Def: proc F (y1, . . . , ym, ?z1, . . . , ?zp) is var x1, . . . , xn in SF end

I Contract: {PF} SF {QF}
I Call: F (a1, . . . , am, ?w1, . . . , ?wp)

Inference rule:

{R ∧ P ′F} F (a1, . . . , am, ?w1, . . . , ?wp) {R ∧ Q ′F}

where:

I P ′F = PF [a1/y1, . . . , am/ym]

I Q ′F = QF [a1/y1, . . . , am/ym,w1/z1, . . . ,wp/zp]

I R is any predicate such that {w1, . . . ,wp} ∩ vars(R) = ∅, allowing
constraints unaffected by the call to occur in both pre and postcondition.

Remark The proof of a statement S is valid only if a proof can be built for
the contract of each procedure called in S . �

Frédéric Lang & Laurent Mounier (firstname.lastname@univ-grenoble-alpes.fr) 43 53

Univ. Grenoble Alpes, UFR IM2AG, MoSIG 1 PLCD - Master 1 info SLPC Axiomatic Semantics - Hoare Logic

First example of proof with procedure call
Procedure:

proc incr(x , ?y) is y := x + 1 end

with contract:
{true︸︷︷︸

Pincr

} y := x + 1 {y = x + 1︸ ︷︷ ︸
Qincr

}

We prove {x = 0 ∧ y = 0} incr(x , ?x ′); incr(y , ?y ′) {x ′ = 1 ∧ y ′ = 1}.
T1 T2

{x = 0 ∧ y = 0} incr(x , ?x ′); incr(y , ?y ′) {x ′ = 1 ∧ y ′ = 1}
where T1 is the following tree (consequence + procedure call):

{x = 0 ∧ y = 0︸ ︷︷ ︸
R

∧ true︸︷︷︸
P′

incr

} incr(x , ?x ′) {x = 0 ∧ y = 0︸ ︷︷ ︸
R

∧ x ′ = x + 1︸ ︷︷ ︸
Qincr′

}

{x = 0 ∧ y = 0} incr(x , ?x ′) {x ′ = 1 ∧ y = 0}
and T2 is the following similar tree:

{x ′ = 1 ∧ y = 0︸ ︷︷ ︸
R

∧ true︸︷︷︸
P′

incr

} incr(y , ?y ′) {x ′ = 1 ∧ y = 0︸ ︷︷ ︸
R

∧ y ′ = y + 1︸ ︷︷ ︸
Qincr′

}

{x ′ = 1 ∧ y = 0} incr(y , ?y ′) {x ′ = 1 ∧ y ′ = 1}

Question: Why is this proof valid?
Frédéric Lang & Laurent Mounier (firstname.lastname@univ-grenoble-alpes.fr) 44 53

Univ. Grenoble Alpes, UFR IM2AG, MoSIG 1 PLCD - Master 1 info SLPC Axiomatic Semantics - Hoare Logic

Second example of proof with procedure call

Procedure:

proc fact(x , ?y) is if x = 0 then y := 1 else fact(x − 1, ?y); y := y ∗ x fi end

with contract:

{x ≥ 0︸ ︷︷ ︸
Pfact

} if x = 0 then y := 1 else fact(x − 1, ?y); y := y ∗ x fi {y = x!︸ ︷︷ ︸
Qfact

}

We build a proof of the contract:

{x! = 1} y := 1 {y = x!}
{x = 0} y := 1 {y = x!}

T0

{x 6= 0 ∧ y = (x − 1)!} y := y ∗ x {x 6= 0 ∧ y = x!}
{x 6= 0 ∧ y = (x − 1)!} y := y ∗ x {y = x!}

{x > 0} fact(x − 1, ?y); y := y ∗ x {y = x!}
{x ≥ 0} if x = 0 then y := 1 else fact(x − 1, ?y); y := y ∗ x fi {y = x!}

where T0 is the following valid instance of the axiom of procedure call:

{x 6= 0︸ ︷︷ ︸
R

∧((x ≥ 0︸ ︷︷ ︸
Pfact

)[x − 1/x])} fact(x − 1, ?y) {x 6= 0︸ ︷︷ ︸
R

∧((y = x!︸ ︷︷ ︸
Qfact

)[x − 1/x , y/y])}

which is equivalent to: {x > 0} fact(x − 1, ?y) {x 6= 0 ∧ y = (x − 1)!}
Question: Why is this proof valid?

Frédéric Lang & Laurent Mounier (firstname.lastname@univ-grenoble-alpes.fr) 45 53

Outline - Axiomatic Semantics - Hoare Logic

Introduction

Axiomatic Semantics for Partial Correctness

Axiomatic Semantics for Total Correctness

Summary

Univ. Grenoble Alpes, UFR IM2AG, MoSIG 1 PLCD - Master 1 info SLPC Axiomatic Semantics - Hoare Logic

Motivation for total correctness

Partial vs total correctness:

I Partial correctness provides correctness, supposing the termination of the
program.

I Total correctness additionally provides termination.

Example 16 (Limitation of partial correctness)

I `p {true} while true do skip od {false}
I `p {true} while true do skip od {true}
I `p {false} while true do skip od {true}
I `p {x = 1 ∧ y = 2} while true do skip od {x = 2 ∧ y = 1}

because for all P,Q (e.g., true, false, x = 1 ∧ y = 2, x = 2 ∧ y = 1),
P =⇒ true, false =⇒ Q, and then:

{true} skip {true}
[skip]

{true} while true do skip od {false(∗)}
[while]

{P} while true do skip od {Q}
[conseq]

(∗) ¬true ∧ true = false

Frédéric Lang & Laurent Mounier (firstname.lastname@univ-grenoble-alpes.fr) 46 53

Univ. Grenoble Alpes, UFR IM2AG, MoSIG 1 PLCD - Master 1 info SLPC Axiomatic Semantics - Hoare Logic

Motivation for total correctness (continued)

Partial vs total correctness:

I Partial correctness provides correctness, supposing the termination of the
program.

I Total correctness additionally provides termination.

Example 17 (Limitation of partial correctness - continued)

Similarly, one can easily show that:
I For any program S :

I `p {true} S {true}
I `p {false} S {true}
I `p {false} S {false}

I For any program S that always loops

`p {P} S {Q}

(generalization of previous slide)

Frédéric Lang & Laurent Mounier (firstname.lastname@univ-grenoble-alpes.fr) 47 53

Univ. Grenoble Alpes, UFR IM2AG, MoSIG 1 PLCD - Master 1 info SLPC Axiomatic Semantics - Hoare Logic

Total correctness assertions

Triples of the form:
{P} S {⇓ Q}

if the precondition P is fulfilled
then S is guaranteed to terminate (⇓)
and the state after executing S satisfies the postcondition Q

Inference of Hoare triples

`t {P} S {⇓ Q}

Validity of Hoare triples

�t {P} S {⇓ Q}

iff ∀σ ∈ State : P(σ) implies (∃σ′ ∈ State)

{
Q(σ′) = tt
(S , σ)→ σ′

Frédéric Lang & Laurent Mounier (firstname.lastname@univ-grenoble-alpes.fr) 48 53

Univ. Grenoble Alpes, UFR IM2AG, MoSIG 1 PLCD - Master 1 info SLPC Axiomatic Semantics - Hoare Logic

The inference system: terminating statements

Those rules are the same as for partial correctness as they may not themselves
involve non-termination.

Skip:
{P} skip {⇓ P}

Assignment:
{P[a/x]} x := a {⇓ P}

Sequential composition:

{P} S1 {⇓ Q} {Q} S2 {⇓ R}
{P} S1;S2 {⇓ R}

Conditional statement:

{b ∧ P} S1 {⇓ Q} {¬b ∧ P} S2 {⇓ Q}
{P} if b then S1 else S2 fi {⇓ Q}

Consequence: If P ⇒ P ′ and Q ′ ⇒ Q, then:

{P ′} S {⇓ Q ′}
{P} S {⇓ Q}

Frédéric Lang & Laurent Mounier (firstname.lastname@univ-grenoble-alpes.fr) 49 53

Univ. Grenoble Alpes, UFR IM2AG, MoSIG 1 PLCD - Master 1 info SLPC Axiomatic Semantics - Hoare Logic

The inference system: while

While loop is where non-termination may be introduced.

The invariant is replaced by a predicate P(z), called variant, which depends on
a positive integer logical variable z that decreases strictly at each iteration:

{P(z + 1)} S {⇓ P(z)}
{(∃z ≥ 0) P(z)} while b do S od {⇓ P(0)}

where:

I P(z + 1)⇒ b, i.e., if P(z + 1) holds then the loop body is executed

I P(0)⇒ ¬b, i.e., if P(0) holds then the loop is terminated

Since there is a positive number that strictly decreases at each iteration, the
loop will have that finite number of iterations (z is an upper bound on the
number of iterations), i.e., the while loop will always terminate.

Remark Another source of non-termination is recursive procedures. The total
correctness rule for procedures remains out of the scope of this course. �

Frédéric Lang & Laurent Mounier (firstname.lastname@univ-grenoble-alpes.fr) 50 53

Univ. Grenoble Alpes, UFR IM2AG, MoSIG 1 PLCD - Master 1 info SLPC Axiomatic Semantics - Hoare Logic

Example: Total correctness

Example 18

Proving {x ≥ 0} while x 6= 0 do x := x − 1 od {⇓ true},
i.e., if x ≥ 0 then the program terminates.

{x = z + 1} x := x − 1 {x = z}
[ass]

{(∃z ≥ 0) x = z} while x 6= 0 do x := x − 1 od {⇓ x = 0}
[while]

{x ≥ 0} while x 6= 0 do x := x − 1 od {⇓ true}
[conseq]

Justifications of the rule of while:

I P(z) is the predicate x = z

I P(z + 1) =⇒ x 6= 0 (because P(z + 1) is x = z + 1 with z ≥ 0)

I P(0) =⇒ x = 0 (trivially as P(0) is x = 0)

Justifications of the rule of consequence:

I x ≥ 0 =⇒ (∃z ≥ 0) x = z

I x = 0 =⇒ true

Frédéric Lang & Laurent Mounier (firstname.lastname@univ-grenoble-alpes.fr) 51 53

Univ. Grenoble Alpes, UFR IM2AG, MoSIG 1 PLCD - Master 1 info SLPC Axiomatic Semantics - Hoare Logic

Properties of Hoare logic for total correctness

Correctness (We can infer only valid triples)

For every total correctness formula {P} S {⇓ Q}, we have:

If `t {P} S {⇓ Q} then �t {P} S {⇓ Q}

Completeness (We can infer all valid triples)

For every total correctness formula {P} S {⇓ Q}, we have:

If �t {P} S {⇓ Q} then `t {P} S {⇓ Q}

Relation between partial and total correctness

For every assertion P,Q, and statement S , we have:

If `t {P} S {⇓ Q} then `p {P} S {Q}

Remark The converse property does not hold. �

Frédéric Lang & Laurent Mounier (firstname.lastname@univ-grenoble-alpes.fr) 52 53

Outline - Axiomatic Semantics - Hoare Logic

Introduction

Axiomatic Semantics for Partial Correctness

Axiomatic Semantics for Total Correctness

Summary

Univ. Grenoble Alpes, UFR IM2AG, MoSIG 1 PLCD - Master 1 info SLPC Axiomatic Semantics - Hoare Logic

Summary - Axiomatic Semantics - Hoare Logic

Axiomatic Semantics

I Partial vs total correctness of programs.

I Focus on the essential properties.

I Hoare triples are assertions on programs.

I Hoare calculus - inference system.

I Sound and complete.

Applications: design by contract and its implementations (e.g., JML for Java,
D and in/out blocks), computer-aided proof of programs, B method.

Frédéric Lang & Laurent Mounier (firstname.lastname@univ-grenoble-alpes.fr) 53 53

