Second session exam
INF 232: Languages and Automata
L2, 2012/2013

Reminder about guidelines and some advices/remarks

- Duration: 2 hours (10:45am \rightarrow 12:45pm).
- No exit before 30 minutes. No entry after 30 minutes.
- Any document of the course or the tutorial is allowed.
- Any electronic device is forbidden (calculator, phone, tablet, etc.).
- Care of your submission will be taken into account.
- Exercises are independent.
- The grading scale is indicative.

Exercice 1 (True or False - 3 points)

Answer by True or False to the following questions. Justify carefully your answers, and without proof.

- 1. A regular language contains a finite number of words.
- 2. A complete and deterministic automaton recognizes the universal language.
- 3. If L is not a finite-state language and and L' is finite then $L \cap L'$ is a finite-state language.
- 4. The difference between two regular languages is a regular language.
- 5. Let L be a language, then $L \cap L$ is a finite-state language.
- 6. In the Floyd verification method, the post-condition has to be implied by at least one condition of the final states.

Exercice 2 (Union of Languages - 2 points)

The union of two non-regular languages L_1 and L_2 can be a regular language or not. Justify without proof your answers to the following questions.

- 1. Give an example of pair of languages L_1 and L_2 such that $L_1 \cup L_2$ is not regular.
- 2. Give an example of pair of languages L_1 and L_2 such that $L_1 \cup L_2$ is regular.

Exercice 3 (Regular and non-regular Languages - 5 points)

We consider the alphabet $\Sigma = \{0, 1, 2\}$. Given a word $w \in \Sigma^*$, by f(w) we denote the first position of w which symbol is 1, if such a position exists; and |w| + 1 otherwise. We can inductively define f as follows: $-f(\epsilon) = 1$.

- $-f(1 \cdot u) = 0, f(0 \cdot u) = 1 + f(u) \text{ and } f(2 \cdot u) = 1 + f(u).$
 - 1. Compute f(0210) and f(100).
 - 2. Given a word $w \in \Sigma^*$, $|w|_0$ denotes the numbers of 0 in w. Let us consider $L = \{w \in \Sigma^* \mid f(w) = |w|_0\}$. Prove that L is not regular.
 - 3. Let M be the language described by the regular expression $(0+1)^*$. Show that $L \cap M$ is regular.

Exercice 4 (An automaton - 5 points)

We consider the automaton in Figure 1.

- 1. Suppress ϵ -transitions.
- 2. Determinize the obtained automaton.
- 3. Minimize the obtained automaton.

Exercice 5 (Floyd Verification Method - 6 points)

FIGURE 1: Automaton for exercise 4

FIGURE 2: Extended automaton for Exercise 5

We consider the extended automaton in Figure 2.

1. Give the executions of the automaton by considering states σ such that :

1.
$$\sigma(x) = 2$$
, $\sigma(y) = 5$ and $\sigma(u) = 0$,

2.
$$\sigma(x) = 3$$
, $\sigma(y) = 4$ and $\sigma(u) = 0$,

as initial states.

2. Demonstrate that the extended automaton is partially correct w.r.t. the specification :

$$(x = x_0 \land y = y_0 \land x_0 > 0, y = y_0^{x_0})$$

Hint: One can take $P_{q_3}: x \ge 1 \wedge y_0^{x_0} = u * y^{2x+1}$.

When you will show that the automaton is inductive, you will only consider the following transitions: from q_1 to q_3 , from q_3 to q_4 , from q_4 to q_1 and from q_1 to q_t .