
Programming Language Semantics and Compiler Design
(Sémantique des Langages de Programmation et Compilation)

Structural Operational Semantics of While and of extensions

Frédéric Lang & Laurent Mounier
firstname.lastname@univ-grenoble-alpes.fr

Univ. Grenoble Alpes, Inria,
Laboratoire d’Informatique de Grenoble & Verimag

Master of Sciences in Informatics at Grenoble (MoSIG)
Master 1 info

Univ. Grenoble Alpes - UFR IM2AG
www.univ-grenoble-alpes.fr — im2ag.univ-grenoble-alpes.fr

Outline - Structural Operational Semantics of While and of extensions

Structural Operational Semantics (SOS)

Comparing NOS and SOS for While

Comparing NOS and SOS for extensions of While

Conclusion / Summary

Outline - Structural Operational Semantics of While and of extensions

Structural Operational Semantics (SOS)

Comparing NOS and SOS for While

Comparing NOS and SOS for extensions of While

Conclusion / Summary

Univ. Grenoble Alpes, UFR IM2AG, MoSIG 1 PLCD - Master 1 info SLPC Structural Operational Semantics of While and of extensions

Structural Operational Semantics (SOS): intuition

SOS is also known as “small-step semantics”.

Emphasis on individual steps of the execution:

I In NOS: (S , σ)→ σ′ (big step)

I In SOS: (S , σ) = (S0, σ0)⇒ . . .⇒ (Sn, σn)⇒ σ′ (small steps).

SOS provides a finer definition of computation:

I necessary to define some language extensions (e.g., parallelism)

I useful to prove some properties (e.g., state invariants)

I better/more intuitive account of non-termination: infinite execution
sequence rather than infinite derivation tree

Transition relation in SOS

I Written ⇒ to be distinguished from NOS

I Transitions of the form (S , σ)⇒ γ
I The result γ of an execution step can be either:

I (S ′, σ′): the execution is not completed, or
I σ′: the execution has terminated successfully.

Frédéric Lang & Laurent Mounier (firstname.lastname@univ-grenoble-alpes.fr) 1 29

Univ. Grenoble Alpes, UFR IM2AG, MoSIG 1 PLCD - Master 1 info SLPC Structural Operational Semantics of While and of extensions

Transition system: NOS vs. SOS

Transition system – general definition (reminder)

A transition system is a 3-tuple (Γ,T ,→), where:

I Γ is the set of configurations

I T ⊆ Γ is the set of final configurations

I →⊆ Γ× Γ is the transition relation

Transition system for NOS (reminder)

1. Γ = (Stm× State) ∪ State

2. T = State

3. → ⊆ (Stm× State)× State

4. executions (one step) defined by derivation trees

Transition system for SOS

1. Γ = (Stm× State) ∪ State

2. T = State

3. ⇒ ⊆ (Stm× State)× ((Stm× State) ∪ State)

4. executions defined by derivation sequences

Frédéric Lang & Laurent Mounier (firstname.lastname@univ-grenoble-alpes.fr) 2 29

Univ. Grenoble Alpes, UFR IM2AG, MoSIG 1 PLCD - Master 1 info SLPC Structural Operational Semantics of While and of extensions

Structural Operational Semantics: Inference System

Goal: Define a single execution step.

We define ⇒ by induction on Stm.

Axioms
Same as NOS.

(skip, σ)⇒ σ
[skipsos]

(x := a, σ)⇒ σ[x 7→ A[a](σ)]
[asssos]

Example 1 (Application of the axioms)

I (skip, [x 7→ 42])⇒ [x 7→ 42] because (skip, [x 7→ 42])⇒ [x 7→ 42]
[skipsos]

I (y := 42 + x , [x 7→ 1])⇒ [x 7→ 1, y 7→ 43] because

(y := 42 + x , [x 7→ 1])⇒ [x 7→ 1, y 7→ A[42 + x]([x 7→ 1])]
[asssos]

and A[42 + x]([x 7→ 1]) = 43.

Frédéric Lang & Laurent Mounier (firstname.lastname@univ-grenoble-alpes.fr) 3 29

Univ. Grenoble Alpes, UFR IM2AG, MoSIG 1 PLCD - Master 1 info SLPC Structural Operational Semantics of While and of extensions

Structural Operational Semantics: Inference System

Rules for sequential composition

Differ from NOS: 2 rules with 1 premise each instead of 1 rule with 2 premises.

(S1, σ)⇒ σ′

(S1; S2, σ)⇒ (S2, σ
′)

[comp1sos]

“execution of S1 has terminated”

(S1, σ)⇒ (S ′1, σ
′)

(S1; S2, σ)⇒ (S ′1; S2, σ
′)

[comp2sos]

“execution of S1 has not terminated”

Example 2 (Application of the rules for sequential composition)

((skip; x := 42); y := x + 1, [])
(1)⇒ (x := 42; y := x + 1, [])

(2)⇒ (y := x + 1, [x 7→ 42])
(3)⇒ [x 7→ 42, y 7→ 43]

I First derivation (
(1)⇒):

(skip, []) ⇒ []
[skipsos]

(skip; x := 42, []) ⇒ (x := 42, [])
[comp1sos]

((skip; x := 42); y := x + 1, []) ⇒ (x := 42; y := x + 1, [])
[comp2sos]

I Second derivation (
(2)⇒):

(x := 42, []) ⇒ [x 7→ 42]
[asssos]

(x := 42; y := x + 1, []) ⇒ (y := x + 1, [x 7→ 42])
[comp1sos]

I Third derivation (
(3)⇒): (y := x + 1, [x 7→ 42]) ⇒ [x 7→ 42, y 7→ 43]

[asssos]

Frédéric Lang & Laurent Mounier (firstname.lastname@univ-grenoble-alpes.fr) 4 29

Univ. Grenoble Alpes, UFR IM2AG, MoSIG 1 PLCD - Master 1 info SLPC Structural Operational Semantics of While and of extensions

Structural Operational Semantics: Inference System (continued)

Rules for conditional statements

I If B[b](σ) = tt, then

(if b then S1 else S2 fi, σ)⇒ (S1, σ)
[iftt

sos]

I If B[b](σ) = ff, then

(if b then S1 else S2 fi, σ)⇒ (S2, σ)
[ifffsos]

Example 3 (Application of the rules for conditional statements)

(if x > 0 then skip else x := 42 fi, [x 7→ 0])⇒ (x := 42, [x 7→ 0])

because

(if x > 0 then skip else x := 42 fi, [x 7→ 0])⇒ (x := 42, [x 7→ 0])
[ifffsos]

Frédéric Lang & Laurent Mounier (firstname.lastname@univ-grenoble-alpes.fr) 5 29

Univ. Grenoble Alpes, UFR IM2AG, MoSIG 1 PLCD - Master 1 info SLPC Structural Operational Semantics of While and of extensions

Structural Operational Semantics: Inference system (continued)

Rules for iterative statements (unbounded)

I If B[b](σ) = tt, then

(while b do S od, σ)⇒ (S ; while b do S od, σ)
[whilett

sos]

I If B[b](σ) = ff, then

(while b do S od, σ)⇒ σ
[whileffsos]

Exercise 1 (Application of the rule for iterative statements)

Give an example of derivation obtained using the above rule.

Frédéric Lang & Laurent Mounier (firstname.lastname@univ-grenoble-alpes.fr) 6 29

Univ. Grenoble Alpes, UFR IM2AG, MoSIG 1 PLCD - Master 1 info SLPC Structural Operational Semantics of While and of extensions

Derivation trees, derivation sequences, and execution

Remark Only sequential composition requires premises in the SOS of While.
As sequences of statements are always finite, all derivation trees are finite. �
Derivation sequences can be either finite or infinite.

Definition 1 (Finite derivation sequence)

γ1 ⇒ . . .⇒ γk for some k > 0, where γk 6⇒

(Read γk 6⇒ as: there is no configuration γ with γk ⇒ γ)
If γk = (S , σ) is not a final configuration (e.g., avariable used by S is not
defined in σ), it is called a blocking configuration.

Definition 2 (Infinite derivation sequence)

γ1 ⇒ γ2 ⇒ . . . where for all k > 0, γk ⇒ γk+1

Definition 3 (Execution of a statement)

The execution(s) of a statement S on a state σ is/are the maximal derivation
sequence(s) starting with the initial configuration (S , σ).

Exercise 2 (Derivation sequences)

Give examples of finite and infinite derivation sequences.

Frédéric Lang & Laurent Mounier (firstname.lastname@univ-grenoble-alpes.fr) 7 29

Univ. Grenoble Alpes, UFR IM2AG, MoSIG 1 PLCD - Master 1 info SLPC Structural Operational Semantics of While and of extensions

The Ssos semantic function

Definition 4 (The Ssos semantic function)

Ssos[S](σ) = σ′ iff (S , σ)⇒∗ σ′

Example 4 (Applying function Ssos)

I Ssos[skip](σ) = σ, for any σ ∈ State

I Ssos[x := 42 + y]([y 7→ 2]) = [x 7→ 44, y 7→ 2]

I Ssos[if x + y > 0 then x := 42 else y := 42 fi]([x 7→ 1, y 7→ 2]) = [x 7→
42, y 7→ 2]

Exercise 3 (Applying function Ssos)

Apply function Ssos to some other statements of your choice in While.

Frédéric Lang & Laurent Mounier (firstname.lastname@univ-grenoble-alpes.fr) 8 29

Outline - Structural Operational Semantics of While and of extensions

Structural Operational Semantics (SOS)

Comparing NOS and SOS for While

Comparing NOS and SOS for extensions of While

Conclusion / Summary

Univ. Grenoble Alpes, UFR IM2AG, MoSIG 1 PLCD - Master 1 info SLPC Structural Operational Semantics of While and of extensions

Program divergence

How do the two operational semantics model program divergence (i.e., infinite
execution)?

Definition 5 (Program divergence)

Consider a statement S and a state σ:

I Natural semantics:
S diverges in σ iff the procedure to build a derivation tree does not
terminate.
This implies that (S , σ) does not have a successor (configuration):

(S , σ) 6→, i.e., @σ′ ∈ State : (S , σ)→ σ′

but there may be other causes than divergence (e.g., use of a
non-initialized variable).

I Structural semantics:

S diverges in σ,
iff there exists an infinite derivation sequence starting from (S , σ).

(equivalently all configurations have a successor configuration)

Frédéric Lang & Laurent Mounier (firstname.lastname@univ-grenoble-alpes.fr) 9 29

Univ. Grenoble Alpes, UFR IM2AG, MoSIG 1 PLCD - Master 1 info SLPC Structural Operational Semantics of While and of extensions

Semantic equivalence

Consider two statements S1 and S2.

Semantic equivalence in natural semantics

S1 and S2 are semantically equivalent, if for all states σ and σ′:

(S1, σ)→ σ′ iff (S2, σ)→ σ′

Semantic equivalence in structural semantics

S1 and S2 are semantically equivalent, if for all states σ

I for any final or blocking configuration γ:

(S1, σ)⇒∗ γ iff (S2, σ)⇒∗ γ

I there exists an infinite derivation sequence starting from (S1, σ)
iff
there exists an infinite derivation sequence starting from (S2, σ).

Frédéric Lang & Laurent Mounier (firstname.lastname@univ-grenoble-alpes.fr) 10 29

Univ. Grenoble Alpes, UFR IM2AG, MoSIG 1 PLCD - Master 1 info SLPC Structural Operational Semantics of While and of extensions

Equivalence between NOS and SOS?

Do we have Sns = Ssos?
(that is, for all S ∈ Stm, for all σ ∈ State: Sns[S](σ) = Ssos[S](σ))

Lemma 1 (NOS “simulates” SOS)

For every statement S in Stm, states σ and σ′ in State, k in N \ {0}:

(S , σ)⇒k σ′ implies (S , σ)→ σ′

Lemma 2 (SOS “simulates” NOS)

For every statement S in Stm, states σ and σ′ in State:

(S , σ)→ σ′ implies (S , σ)⇒∗ σ′

Theorem: equivalence of NOS and SOS for While

For every statement S in Stm: Sns[S] = Ssos[S].

Frédéric Lang & Laurent Mounier (firstname.lastname@univ-grenoble-alpes.fr) 11 29

Univ. Grenoble Alpes, UFR IM2AG, MoSIG 1 PLCD - Master 1 info SLPC Structural Operational Semantics of While and of extensions

Semantic styles and associated proof patterns (reminder)

Inductive semantics: (e.g., functions A,B)
Construction using composition rules
→ Proofs by structural induction on the (syntax of) the
arithmetic/Boolean expressions

Natural operational semantics (“big steps/bird-eye view” of executions)
Transition relation defined by derivation trees.
→ Proofs by induction on the structure of the derivation trees.

Structural operational semantics (“small steps/fine-grain view” of executions)
Transition relation defined by derivation sequences.
→ Proofs by induction on the length of the derivation
sequences.

Frédéric Lang & Laurent Mounier (firstname.lastname@univ-grenoble-alpes.fr) 12 29

Univ. Grenoble Alpes, UFR IM2AG, MoSIG 1 PLCD - Master 1 info SLPC Structural Operational Semantics of While and of extensions

Lemma: SOS “simulates” NOS

Lemma 3 (Composing statements)

For every statement S1,S2 ∈ Stm, state σ ∈ State, and k ∈ N:

(S1, σ)⇒k σ′ implies (S1; S2, σ)⇒k (S2;σ′)

(Executing a statement is not influenced by the sequentially composed
statement – S2 in the lemma)

Proof.
By induction on k ∈ N (left as an exercise).

Frédéric Lang & Laurent Mounier (firstname.lastname@univ-grenoble-alpes.fr) 13 29

Univ. Grenoble Alpes, UFR IM2AG, MoSIG 1 PLCD - Master 1 info SLPC Structural Operational Semantics of While and of extensions

Lemma: SOS “simulates” NOS

Proof of Lemma 2: SOS “simulates” NOS.
By induction on the structure of the derivation tree of (S , σ)→ σ′.
That is, we distinguish cases according to the first rule that has been applied to
obtain (S , σ)→ σ′.

[assnos] The conclusion of this rule has the form (x := a, σ)→ σ[x 7→ A[a](σ)],
i.e., S has the form “x := a” and σ′ = σ[x 7→ A[a](σ)].
According to [asssos], we also have (x := a, σ)⇒ σ[x 7→ A[a](σ)].

[skipnos] S has the form “skip” and σ′ = σ.
According to [skipsos], we also have (skip, σ)⇒ σ.

[compnos] S has form “S1; S2” and σ′ is obtained as follows:

(S1, σ)→ σ′′ (S2, σ
′′)→ σ′

(S1; S2, σ)→ σ′

By the induction hypothesis applied to both premisses (S1, σ)→ σ′′ and
(S2, σ

′′)→ σ′, we obtain (S1, σ)⇒∗ σ′′ and (S2, σ
′′)⇒∗ σ′, respectively.

Since (S1, σ)⇒∗ σ′′, we have (S1; S2, σ)⇒∗ (S2, σ
′′) by the lemma

(composing statements).
Then, since (S2, σ

′′)⇒∗ σ′, we have (S1; S2, σ)⇒∗ σ′ by transitivity of
the relation ⇒∗.

Frédéric Lang & Laurent Mounier (firstname.lastname@univ-grenoble-alpes.fr) 14 29

Univ. Grenoble Alpes, UFR IM2AG, MoSIG 1 PLCD - Master 1 info SLPC Structural Operational Semantics of While and of extensions

Lemma: SOS “simulates” NOS

Proof of SOS “simulates” NOS (continued).

By induction on the structure of the derivation tree of (S , σ)→ σ′.

[ifttnos] S has the form “if b then S1 else S2 fi” and σ′ is obtained as follows:

(S1, σ)→ σ′

(if b then S1 else S2 fi, σ)→ σ′
B[b](σ) = tt

Since, B[b](σ) = tt, rule [ifttsos] implies
(if b then S1 else S2 fi, σ)⇒ (S1, σ). By the induction hypothesis applied
to to the premise (S1, σ)→ σ′, we obtain (S1, σ)⇒∗ σ′.
From (S , σ)⇒ (S1, σ) and (S1, σ)⇒∗ σ′, we obtain (S , σ)⇒∗ σ′

[ifffnos] Analogous to [ifttnos].

Frédéric Lang & Laurent Mounier (firstname.lastname@univ-grenoble-alpes.fr) 15 29

Univ. Grenoble Alpes, UFR IM2AG, MoSIG 1 PLCD - Master 1 info SLPC Structural Operational Semantics of While and of extensions

Lemma: SOS “simulates” NOS

Proof of SOS “simulates” NOS (continued).

By induction on the structure of the derivation tree of (S , σ)→ σ′.

[whilettnos] S has the form “while b do S ′ od” and σ′ is obtained as follows:

(S ′, σ)→ σ′′ (while b do S ′ od, σ′′)→ σ′

(while b do S ′ od, σ)→ σ′
B[b](σ) = tt

By the induction hypothesis applied to both premises (S ′, σ)→ σ′′ and
(while b do S ′ od, σ′′)→ σ′, we obtain respectively

(S ′, σ)⇒∗ σ′′ (1)
(while b do S ′ od, σ′′)⇒∗ σ′ (2)

From (1) and the lemma (composing statements), we obtain
(S ′; while b do S ′ od, σ)⇒∗ (while b do S ′ od, σ′′) (3)

Then since B[b](σ) = tt, we have the following derivation:

(while b do S ′ od, σ) ⇒ (S ′; while b do S ′ od, σ) by rule [whilettsos]

⇒∗ (while b do S ′ od, σ′′) from (3)
⇒∗ σ′ from (2)

[whileffnos] Straightforward.

Frédéric Lang & Laurent Mounier (firstname.lastname@univ-grenoble-alpes.fr) 16 29

Univ. Grenoble Alpes, UFR IM2AG, MoSIG 1 PLCD - Master 1 info SLPC Structural Operational Semantics of While and of extensions

Lemma: NOS “simulates” SOS

We need an additional intermediate lemma.

Lemma 4 (Decomposing computations in SOS)

For every statement S1,S2 ∈ Stm, state σ ∈ State, and k ∈ N:

(S1;S2, σ)⇒k σ′′ implies that there exist σ′ and k1, k2 ∈ N \ {0} such that
k = k1 + k2 and (S1, σ)⇒k1 σ′ and (S2, σ

′)⇒k2 σ′′.

Proof.
By induction on k ∈ N in (S1; S2, σ)⇒k σ′′ (left as an exercise).

Lemma 5 (NOS “simulates” SOS)

For every statement S ∈ Stm, state σ ∈ State and σ′ ∈ State, and
k ∈ N \ {0}:

(S , σ)⇒k σ′ implies (S , σ)→ σ′.

Proof.
By induction on k ∈ N \ {0} in (S , σ)⇒k σ′, i.e., the length of the derivation
sequence.

Frédéric Lang & Laurent Mounier (firstname.lastname@univ-grenoble-alpes.fr) 17 29

Univ. Grenoble Alpes, UFR IM2AG, MoSIG 1 PLCD - Master 1 info SLPC Structural Operational Semantics of While and of extensions

Lemma: NOS “simulates” SOS

NOS “simulates” SOS.
Let us assume that there exists a number k such that for every derivation
(S , σ)⇒i σ′ of length i ≤ k, then (S , σ)→∗ σ′. Note that this holds for
k = 0, since there is no derivation of length 0. Now let us consider derivations
of length k + 1 and show that if (S , σ)⇒k+1 σ′, then (S , σ)→∗ σ′. We
proceed by case on the rule used to derive the first step of (S , σ)⇒k+1 σ′.

[asssos] Straightforward. In this case, k = 0 since the derivation has only one step.

[skipsos] Straightforward. In this case, k = 0 (same as above).

[compxsos] (x = 1, 2). S has the form “S1; S2” and we assume that
(S1; S2, σ)⇒k+1 σ′′. We can apply the lemma (decomposing
computations) to get that there exist σ′ ∈ State and k1, k2 ∈ N \ {0} s.t.

(S1, σ)⇒k1 σ′ and (S2, σ
′)⇒k2 σ′′

where k1 + k2 = k + 1, i.e., k1 ≤ k and k2 ≤ k. Thus, the induction
hypothesis can be applied to both of these derivation sequences, giving:

(S1, σ)→ σ′ and (S2, σ
′)→ σ′′

Using [compnos], we get (S1; S2, σ)→ σ′′.

Frédéric Lang & Laurent Mounier (firstname.lastname@univ-grenoble-alpes.fr) 18 29

Univ. Grenoble Alpes, UFR IM2AG, MoSIG 1 PLCD - Master 1 info SLPC Structural Operational Semantics of While and of extensions

Lemma: NOS “simulates” SOS

NOS “simulates” SOS.

[ifttsos] We have B[b](σ) = tt and (if b then S1 else S2 fi, σ)⇒ (S1, σ)⇒k σ′.
The induction hypothesis can be applied to (S1, σ)⇒k σ′, giving
(S1, σ)→ σ′, which is the premise of rule [ifttnos]. Therefore, its conclusion
(if b then S1 else S2 fi, σ)→ σ′ holds as expected.

[ifffsos] Analogous to the previous case.

[whilettsos] We have B[b](σ) = tt and

(while b do S od, σ)⇒ (S ; while b do S od, σ)⇒k σ′′

From (S ; while b do S od, σ)⇒k σ′′ and the lemma (decomposing
computations), we get that there exists σ′, k1 > 0 and k2 > 0 such that
k1 + k2 = k, (S , σ)⇒k1 σ′, and (while b do S od, σ′)⇒k2 σ′′. Therefore,
k1 < k and k2 < k and the induction hypothesis can be applied to those
two last derivations, giving

(S , σ)→ σ′ and (while b do S od, σ′)→ σ′′

which are the premises of rule [whilettnos]. Therefore, its conclusion
(while b do S od, σ)→ σ′′ holds as expected.

[whileffsos] Immediate.

Frédéric Lang & Laurent Mounier (firstname.lastname@univ-grenoble-alpes.fr) 19 29

Outline - Structural Operational Semantics of While and of extensions

Structural Operational Semantics (SOS)

Comparing NOS and SOS for While

Comparing NOS and SOS for extensions of While
Statement abort for abnormal termination
Statement or for Non-Determinism
Statement ‖ for parallel composition

Conclusion / Summary

Outline - Structural Operational Semantics of While and of extensions

Structural Operational Semantics (SOS)

Comparing NOS and SOS for While

Comparing NOS and SOS for extensions of While
Statement abort for abnormal termination
Statement or for Non-Determinism
Statement ‖ for parallel composition

Conclusion / Summary

Univ. Grenoble Alpes, UFR IM2AG, MoSIG 1 PLCD - Master 1 info SLPC Structural Operational Semantics of While and of extensions

Extending While with abnormal termination

Definition 6 (abort)

I Statement abort: used to represent abnormal terminating computations

I “Behaves” differently from previous statements:
↪→ It stops the program
I different from skip and while true do skip od
I same effect as read of non-initialized variable.

I Configuration (abort, σ) has no successors (blocking):

for all σ ∈ State : (abort, σ) 9 (in NOS)
and

for all σ ∈ State : (abort, σ) ; (in SOS)

↪→ we do not add any rule to the transitions systems

Example 5 (Program with possible abnormal termination)

var sensor := some initial value
. . .
sensor := read(. . .)
if sensor < 0 then abort else skip fi

Frédéric Lang & Laurent Mounier (firstname.lastname@univ-grenoble-alpes.fr) 20 29

Univ. Grenoble Alpes, UFR IM2AG, MoSIG 1 PLCD - Master 1 info SLPC Structural Operational Semantics of While and of extensions

Examples with abort

Exercise 4 (Assertions)

Provide natural and structural operational semantic rules to the following
construct:

assert b

The informal semantics is that one should check that b holds before executing
the subsequent statements. If b does not hold, the program should stop.

(assert b, σ)→ σ
B[b](σ) = tt

(assert b, σ)⇒ σ
B[b](σ) = tt

Frédéric Lang & Laurent Mounier (firstname.lastname@univ-grenoble-alpes.fr) 21 29

Univ. Grenoble Alpes, UFR IM2AG, MoSIG 1 PLCD - Master 1 info SLPC Structural Operational Semantics of While and of extensions

Comparison of abort in natural and structural semantics

In natural operational semantics:

I abort and

I while true do skip od

are semantically equivalent.

In structural operational semantics:

I abort and

I while true do skip od

are not semantically equivalent.

Frédéric Lang & Laurent Mounier (firstname.lastname@univ-grenoble-alpes.fr) 22 29

Outline - Structural Operational Semantics of While and of extensions

Structural Operational Semantics (SOS)

Comparing NOS and SOS for While

Comparing NOS and SOS for extensions of While
Statement abort for abnormal termination
Statement or for Non-Determinism
Statement ‖ for parallel composition

Conclusion / Summary

Univ. Grenoble Alpes, UFR IM2AG, MoSIG 1 PLCD - Master 1 info SLPC Structural Operational Semantics of While and of extensions

Statement or

Definition 7 (Or statement)

S ::= S1 or S2 | . . .
Execute S1 or S2 nondeterministically

Example 6 (Using the or statement)

We expect that the execution of the statement

x := 1 or x := 2

could result in a state where x has the value 1 or 2.

Frédéric Lang & Laurent Mounier (firstname.lastname@univ-grenoble-alpes.fr) 23 29

Univ. Grenoble Alpes, UFR IM2AG, MoSIG 1 PLCD - Master 1 info SLPC Structural Operational Semantics of While and of extensions

The or statement: extending the transition system

Definition 8 (NOS and SOS transition systems for statement or)

I Natural semantics:

(S1, σ)→ σ′

(S1 or S2, σ)→ σ′
(S2, σ)→ σ′

(S1 or S2, σ)→ σ′

I Structural semantics:

(S1 or S2, σ)⇒ (S1, σ) (S1 or S2, σ)⇒ (S2, σ)

Remark Adding or makes it now impossible to define Sns and Ssos as
functions since the language becomes nondeterministic. �
Example 7 (Applying the rules of statement or)

Consider the statement x := 1 or x := 2.

I Natural semantics:

(x := 1, [])→ [x 7→ 1]

(x := 1 or x := 2, [])→ [x 7→ 1]

(x := 2, [])→ [x 7→ 2]

(x := 1 or x := 2, [])→ [x 7→ 2]
I Structural semantics:

(x := 1 or x := 2, [])⇒ (x := 1, [])⇒ [x 7→ 1]
(x := 1 or x := 2, [])⇒ (x := 2, [])⇒ [x 7→ 2]

Frédéric Lang & Laurent Mounier (firstname.lastname@univ-grenoble-alpes.fr) 24 29

Univ. Grenoble Alpes, UFR IM2AG, MoSIG 1 PLCD - Master 1 info SLPC Structural Operational Semantics of While and of extensions

Discussion on or and non-termination

With natural operational semantics, statement or hides non-termination.

Example 8 (or and non-termination in NOS and SOS)

Consider the two following statements:

I S1 = while true do skip od

I S2 = skip

Comparing semantics:

I natural semantics enables only one derivation: (S1 or S2, σ)→ σ
I structural semantics enables two derivations:

I a finite one (S1 or S2, σ) ⇒ (S2, σ) ⇒ σ and
I an infinite one (S1 or S2, σ) ⇒ (S1, σ) ⇒ (S1, σ) ⇒

Henceforth:

I in NOS: “while true do skip od or skip” is semantically equivalent to skip.

I in SOS: “while true do skip od or skip” is not equivalent to skip;

Frédéric Lang & Laurent Mounier (firstname.lastname@univ-grenoble-alpes.fr) 25 29

Outline - Structural Operational Semantics of While and of extensions

Structural Operational Semantics (SOS)

Comparing NOS and SOS for While

Comparing NOS and SOS for extensions of While
Statement abort for abnormal termination
Statement or for Non-Determinism
Statement ‖ for parallel composition

Conclusion / Summary

Univ. Grenoble Alpes, UFR IM2AG, MoSIG 1 PLCD - Master 1 info SLPC Structural Operational Semantics of While and of extensions

Parallel composition

S ::= S1 ‖ S2 | . . .
In S1 ‖ S2, we expect S1 and S2 to execute in parallel, i.e., both S1 and S2 will
execute, not caring about the order.

Definition 9 (Attemps to define parallel composition semantics)

I Natural semantics:

(S1, σ)→ σ′ (S2, σ
′)→ σ′′

(S1 ‖ S2, σ)→ σ′′
(S2, σ)→ σ′ (S1, σ

′)→ σ′′

(S1 ‖ S2, σ)→ σ′′

→ The executions of S1 and S2 are atomic.
→ “S1 ‖ S2” is semantically equivalent to “(S1;S2) or (S2; S1)”.

I Structural semantics:

(S1, σ)⇒ (S ′1, σ
′)

(S1 ‖ S2, σ)⇒ (S ′1 ‖ S2, σ
′)

(S2, σ)⇒ (S ′2, σ
′)

(S1 ‖ S2, σ)⇒ (S1 ‖ S ′2, σ
′)

(S1, σ)⇒ σ′

(S1 ‖ S2, σ)⇒ (S2, σ
′)

(S2, σ)⇒ σ′

(S1 ‖ S2, σ)⇒ (S1, σ
′)

→ The executions of S1 and S2 are interleaved.
Frédéric Lang & Laurent Mounier (firstname.lastname@univ-grenoble-alpes.fr) 26 29

Univ. Grenoble Alpes, UFR IM2AG, MoSIG 1 PLCD - Master 1 info SLPC Structural Operational Semantics of While and of extensions

Discussion about the parallelism and interleaving

Example 9 (Parallel execution)

Consider the following statement:

x := 1 ‖ (x := 2; x := x + 2)

I natural operational semantics: 2 possible ending states
1. (x := 1 ‖ (x := 2; x := x + 2), []) → [x 7→ 4] (left before right)
2. (x := 1 ‖ (x := 2; x := x + 2), []) → [x 7→ 1] (right before left)

I structural operational semantics: 3 possible ending states
1. (x := 1 ‖ (x := 2; x := x + 2), []) ⇒ (x := 2; x := x + 2, [x 7→ 1])

⇒ (x := x + 2, [x 7→ 2]) ⇒ [x 7→ 4]
2. (x := 1 ‖ (x := 2; x := x + 2), []) ⇒ (x := 1 ‖ x := x + 2, |x 7→ 2])

⇒ (x := x + 2, [x 7→ 1]) ⇒ [x 7→ 3]
3. (x := 1 ‖ (x := 2; x := x + 2), []) ⇒ (x := 1 ‖ x := x + 2, |x 7→ 2])

⇒ (x := 1, [x 7→ 4]) ⇒ [x 7→ 1]

Frédéric Lang & Laurent Mounier (firstname.lastname@univ-grenoble-alpes.fr) 27 29

Univ. Grenoble Alpes, UFR IM2AG, MoSIG 1 PLCD - Master 1 info SLPC Structural Operational Semantics of While and of extensions

Discussion about the parallelism and interleaving (continued)

Natural vs Structural (operational) semantics and interleaving

I Natural semantics:
I does not allow to express interleaving
I executions of constituents are atomic

I Structural semantics:
I allows to express interleaving
I we focus on the small steps of computations

Remark There exist languages dedicated to the description of parallelism,
whose semantics elegantly combine big steps (for atomic sequences of
statements) and small steps (for non-atomic sequences of statements). �

Frédéric Lang & Laurent Mounier (firstname.lastname@univ-grenoble-alpes.fr) 28 29

Outline - Structural Operational Semantics of While and of extensions

Structural Operational Semantics (SOS)

Comparing NOS and SOS for While

Comparing NOS and SOS for extensions of While

Conclusion / Summary

Univ. Grenoble Alpes, UFR IM2AG, MoSIG 1 PLCD - Master 1 info SLPC Structural Operational Semantics of While and of extensions

Conclusion / Summary: Structural Operational Semantics of While and of
extensions

Natural operational semantics (NOS):

I bird-eye view of computations

I does not distinguish between blocking and non-termination

I non-determinism “hides” blocking and non-termination

I does not allow to express an interleaving semantics

Structural operational semantics (SOS):

I step-by-step view of computations

I distinguishes between blocking and non-termination

I non-determinism does not “hide” non-termination

I allows to express an interleaving semantics

As we have shown, NOS and SOS are equivalent for While.
They are not for the studied extensions.

Frédéric Lang & Laurent Mounier (firstname.lastname@univ-grenoble-alpes.fr) 29 29

