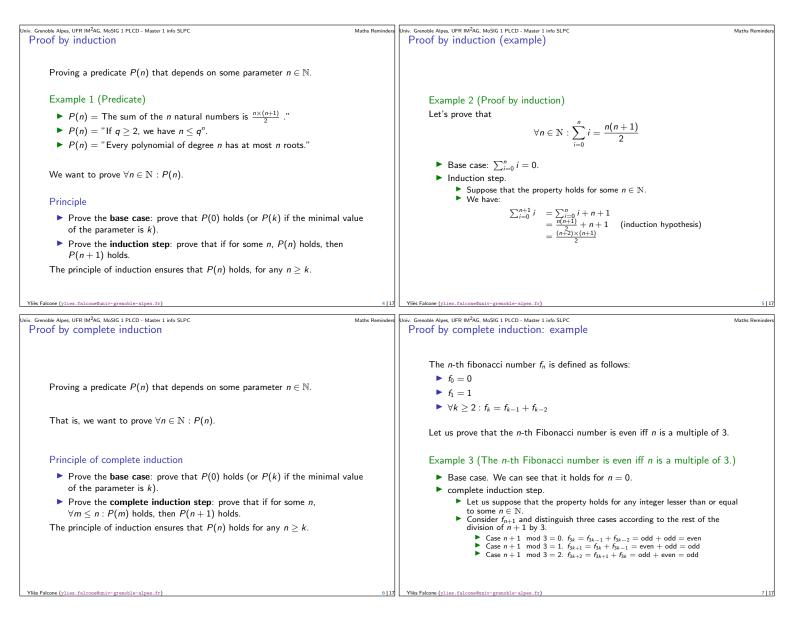
	Univ. Grenoble Alpes, UFR IM ² AG, MoSIG 1 PLCD - Master 1 info SLPC Maths Reminder Some proof techniques
UNIVERSITÉ Crenoble Alpes Programming Language Semantics and Compiler Design	Proofs by contradiction, reducto-ad-absurdum, contraposition, they rely on the principles of propositional and predicate logics.
(Sémantique des Language Semantics and Compiler Design (Sémantique des Languages de Programmation et Compilation) Maths Reminders Yliès Falcone yliès.falcone@univ-grenoble-alpes.fr — www.ylies.fr Univ. Grenoble Alpes, and LIG-Inria team CORSE	 Proof by structural induction Proof for the basic elements, atoms, of the set. Proof for composite elements (created by applying) rules: assume it holds for the immediate components (induction hypothesis) prove the property holds for the composite element
Master of Sciences in Informatics at Grenoble (MoSIG) Master 1 info Univ. Grenoble Alpes - UFR IM ² AG www.univ-grenoble-alpes.fr — im2ag.univ-grenoble-alpes.fr Academic Year 2020 - 2021	 Induction on the shape of a derivation tree Proof for 'one-rule' derivation trees, i.e., axioms. Proof for composite trees: For each rule R, consider a composite tree where R is the last rule applied Proof for the composite tree Assume it holds for subtrees, or premises of the rule (induction hypothesis) Proof for the composite tree
Univ. Grenoble Alpes, UFR IM ² AG, MoSIG 1 PLCD - Master 1 info SLPC Maths Reminder	Yiks Falcone (ylies.falcone@univ-grenoble-alpes.fr) 1 1 Junv. Grenoble Alpes, UFR IM ² AG, MoSIG 1 PLCD - Master 1 info SLPC Maths Reminder
Outline - Maths Reminders	Outline - Maths Reminders
Proof by induction Proof by structural induction A notation: derivation tree	Proof by induction Proof by induction Proof by structural induction A notation: derivation tree



Univ. Grenoble Alpes, UFR IM ² AG, MoSIG 1 PLCD - Master 1 info SLPC Outline - Maths Reminders	Maths Reminders Univ. Grenoble Alpes, UFR IM ² AG, MoSIG 1 PLCD - Master 1 info SLPC Maths Reminder Inductive/Compositional definitions
	Let us consider:
	$\blacktriangleright E$ a set .
	$\blacktriangleright f: E \times E \times \ldots \times E \rightarrow E \text{ a partial function},$
	$\blacktriangleright A \subseteq E \text{ a subset of } E.$
Proof by induction	Definition 4 (closure)
	A is closed by f iff $f(A \times \ldots \times A) \subseteq A$.
Proof by structural induction	
A notation: derivation tree	Definition 5 (Construction rule)
	A construction rule for a set states either:
	that a basis element belongs to the set, or
	how to produce a new element from existing elements (production rule given by a partial function).
	Definition 6 (Inductive definition)
	An inductive definition on E is a family of rules defining the smallest subset of E that is <i>closed</i> by these rules.
Yliès Fakcone (ylies.falcone@univ-grenoble-alpes.fr)	8 17 Yilis Fakone (ylies.falcone@univ-grenoble-alpes.fr) 9 1
Univ. Grenoble Alpes, UFR IM ² AG, MoSIG 1 PLCD - Master 1 info SLPC Inductive definitions: examples	Maths Reminders Univ. Grenoble Alpes, UFR IM ² AG, MoSIG 1 PLCD - Master 1 info SLPC Maths Reminder Binary trees Definition and examples
Example 7 (Natural numbers)	Definition 10 (Binary Tree – Informal definition)
How can define them?	A tree is a binary tree if each node has at most two children (possibly empty).
basis element 0	Definition 11 (Binary Tree – Mathematical definition)
• 1 rule: $x \mapsto succ(x)$	The smallest set $Bt(Elt)$ s.t.:
2 is the natural number defined as <i>succ</i> (<i>succ</i> (0))	$Bt(Elt) = \{EmptyT\} \cup \{Node(tL, e, tR) \mid e \in Elt \land tL, tR \in Bt(Elt)\}$
Example 8 (Even numbers)	Example 12 (Binary trees of natural numbers)
basis element 0	$Bt(\mathbb{N}) = \{EmptyT\} \cup \{Node(tL, e, tR) \mid e \in \mathbb{N} \land tL, tR \in Bt(\mathbb{N})\}$
▶ 1 rule $x \mapsto x + 2$	
	Example 13 (Binary trees)
Example 9 (Palindromes on $\{a, b\}$)	100 'd' "animal"
 ▶ basis elements ε, a, b 	
▶ basis elements ϵ, a, b ▶ 2 rules: $w \mapsto a \cdot w \cdot a, w \mapsto b \cdot w \cdot b$	30 74 's' 'a' "mammal" "insect"
$\blacksquare \ \ \ \ \ \ \ \ \ \ \ \ \ $	/ \ / \ / \ / \ 70 12 8 7 '' ''dog" "cow" "bee" "fly"
Yliès Falcone (ylies.falcone@univ-grenoble-alpes.fr)	10 17 YHès Fakone (ylies.falcone@univ-grenoble-alpes.fr) 11 1

niv. Grenoble Alpes, UFR IM ² AG, MoSIG 1 PLCD - Master 1 info SLPC Proof by Structural Induction	Maths Reminders	Univ. Grenoble Alpes, UFR IM ² AG, MoSIG 1 PLCD - Master 1 info SLPC Proof by Structural Induction: example	Maths Reminder
Proving that the proof holds for any element "however it is built".		Example 14 (Proofs by induction) All proofs by induction are proofs by structural induction where the inductive set is $\mathbb N.$	2
 Proof for the basic elements, atoms, of the set. Proof for composite elements (created by applying) rules: assume it holds for the immediate components (induction hypothesis) prove the property holds for the composite element 		Example 15 (Properties of size and depth of a binary tree) Let us consider $t \in Bt(Elt)$, a binary tree: • depth(t) be the depth of tree t: length of longest path from root to lea • size(t) be the size of tree t: number of nodes + leaves. For any type Elt and any $t \in Bt(Elt)$: • depth(t) \leq size(t), • size(t) \leq 2 ^{depth(t)-1} .	ıf.
Yliks Falcone (ylies.falcone@univ-grenoble-alpes.fr)	12 17	Yliës Falcone (ylies.falcone@univ-grenoble-alpes.fr)	13 1
niv. Grenoble Alpes, UFR IM ² AG, MoSIG 1 PLCD - Maater 1 info SLPC Inductive definitions: examples	Maths Reminders	Univ. Grenoble Alpes, UFR IM ² AG, MoSIG 1 PLCD - Master 1 info SLPC Outline - Maths Reminders	Maths Reminder
Example 16 (Natural numbers) How can define them? ► basis element 0 ► 1 rule: x → succ(x) 2 is the natural number defined as succ(succ(0))		Proof by induction	
Example 17 (Even numbers) • basis element: 0; • 1 rule: $x \mapsto x + 2$.		Proof by structural induction A notation: derivation tree	
Example 18 (Palindromes on $\{a, b\}$) • basis elements: ϵ, a, b ; • 2 rules: $w \mapsto a \cdot w \cdot a, w \mapsto b \cdot w \cdot b$.			

