Contrôle Continu UE INF451: Architectures des ordinateurs

Mars 2021, durée 1 h 30

Document: 1 A4 R/V personnel manuscrit autorisé; calculettes et téléphones portables interdits. La plupart des questions sont indépendantes, si vous avez du mal avec l'une, passez à la suivante. Tant que possible, indiquez bien tous les détails et justifiez vos réponses. Le barème est donné à titre indicatif.

1 Numération et opération en binaire et en complément à 2 (6 points)

(a) Déterminer le nombre de bits minimum pour représenter ensemble les valeurs suivantes puis donner la représentation binaire de ces entiers relatifs avec le nombre de bits choisi globalement $(codage en complément à 2) : (+121)_{10}, (-323)_{10}. (2 points)$

Réponse : Il faut l'intervalle [-512,+511] donc 10 bits

 $(+121)_{10} = (00\ 0111\ 1001)_2 = 79_{16}$

 $(+323)_{10} = (01\ 0100\ 0011)_2$

Complément à $1: (10\ 1011\ 1100)_2$

Complément à 2 : $(-323)_{10} = (10\ 1011\ 1101)_2 = 2BD_{16}$

(b) Donner les valeurs binaires et décimales des 2 entiers relatifs suivants codés sur 16 bits en complément à $2:(2021)_{16}$ et $(FA57)_{16}$. (2 points)

```
Réponse : (2021)_{16} = (0010\ 0000\ 0010\ 0001)_2 donne en décimal 8225
(FA57)_{16} = (1111\ 1010\ 0101\ 0111)_2 donne en décimal -1 449
C2(FA57)_{16} = 0000\ 0101\ 1010\ 1001_2 : -(5 * 256 + 10 * 16 + 9) = -(1024 + 256 + 169)
```

(c) Poser chacune des opérations suivantes sur 1 octet, effectuer l'opération en binaire (sur 1 octet, avec les retenues) et donner une interprétation de l'opération pour la représentation binaire usuelle et pour le codage en complément à 2 (sur 1 octet) ainsi que la valeur des indicateurs $(Z, N, C \text{ et } V): (0111\ 1011)_2 + (1110\ 1010)_2 \text{ et } (0110\ 1111)_2 - (1101\ 1110)_2 \text{ (soustraction par)}$ addition du complémentaire). Pour la soustraction, détailler la méthode employée. (2 points)

Réponse : im2ag-turing:[~]: add 8 123 234

Rit numbers

	DICI	Iumpei	. 5							
	7654	3210					if natura	al	if signed	
	0111	1011	left	:	Оx	7b>	123	or	+123	
+	1110	1010	right	:	Оx	ea>	234	or	-22	
C=1 ==	1111	0100	< c0=0		(in	carries)				
V=0 ^										
Z=0 N=0-2	>0110	0101	=	:	Оx	65>	101	or	+101	

```
im2ag-turing:[~]: subc2 8 111 222
          Bit numbers
          7654 3210
                                                if natural
                                                               if signed
          0110 1111 left
                              0x
                                       6f -->
                                                     111 or
                                                                   +111
        + 0010 0001 right :
                              0x
                                                      33 or
                                                                    +33
   C=0 != 1101 1111 < c0=1
                              (in carries)
       ^ ____
                                       91 -->
 Z=O N=1->1001 0001
                           : 0x
                                                     145 or
                                                                   -111
```

On a choisi ici d'utiliser le complément à 1 comme opérande plus 1 en retenue initiale. Il est possible de prendre le complément à 2 0010 0010 comme opérande et une retenue initiale nulle.

2 Triangle de Pascal (ARM)

voir Caseine

https://moodle.caseine.org/mod/vpl/view.php?id=40048

3 Codage NégaBinaire (6 points)

"Le système négabinaire (base -2) est un système de numération positionnel non standard utilisé dans l'ordinateur expérimental polonais BINEG, construit en 1957-59. Il possède la propriété inhabituelle d'avoir les nombres négatifs et positifs représentés sans un bit de signe" source Wikipédia.

Le négabinaire (base -2), c'est comme le binaire (base 2), les chiffres possibles sont aussi les bits 0 et 1. La différence? en binaire, un nombre $(N_3N_2N_1N_0)_2$ a pour valeur $\sum_i N_i \times 2^i$; en négabinaire, un nombre $(N_3N_2N_1N_0)_{-2}$ a pour valeur $\sum_i N_i \times (-2)^i$.

Questions:

(a) Donnez les valeurs décimales des 16 premiers nombres binaires et négabinaires sur 4 bits. Faites un tableau à trois colonnes (1 : combinaisons binaires sur 4 bits [dans l'ordre], 2 : valeurs associées en binaire habituel, 3 : valeurs associées en négabinaire). Encadrez les lignes où la valeur binaire est égale à la valeur négabinaire. (2 points)

Réponse :

code	bin	negabin									
0000	0	0	0001	1	1	0010	2	-2	0011	3	-1
0100	4	4	0101	5	5	0110	6	2	0111	7	3
1000	8	-8	1001	9	-7	1010	10	-10	1011	11	- 9
1100	12	-4	1101	13	-3	1110	14	-6	1111	15	-5

Les valeurs sont identiques si les chiffres de rangs pairs sont nuls.

- (b) Donnez le plus grand nombre sur 8 bits, en binaire, en héxadécimal et en décimal dont la valeur en binaire est égale à la valeur en négabinaire (1 points).
- (c) Dénombrez le nombre de demi-mots de 16 bits où la valeur binaire est égale à la valeur négabinaire. Expliquez votre calcul. (1 points).

Réponses:

Le plus grand nombre sur 8 bits de valeurs identiques est celui dont tous les bits de rangs impairs sont nuls et tous ceux de rang pairs non nuls :

$$\mathbf{0}1\mathbf{0}1\mathbf{0}1\mathbf{0}1_2 = 55_{16} = 5 * 16 + 5 = 85$$

Prendre toutes les combinaisons possibles des 8 bits de rang pairs, en mettant 0 pour tous les bits de rangs impairs, soit $2^8 = 256$ nombres de valeur identique dans les deux conventions.

Le négabinaire (base -2), c'est comme le binaire (base 2), pour trouver le codage d'un nombre il "suffit" d'utiliser le même algorithme de divisions successives : en binaire, des divisions successives par 2; en négabinaire, des divisions successives par -2. Attention, cependant, ne pas se tromper dans les divisions par -2 des nombres impairs (rappel, le reste ne peut prendre que les 2 valeurs possibles 0 et 1) : 7 divisé par -2 vaut -3 reste 1; -9 divisé par -2 vaut 5 reste 1.

Questions:

- (d) Appliquer l'algorithme des divisions successives par -2 pour 22 et donner la décomposition négabinaire de 22 sur 8 bits. (1 points)
- (e) Appliquer l'algorithme des divisions successives par -2 pour -34 et donner la décomposition négabinaire de -34 sur 8 bits. (1 points)

Réponse :

```
22 = -2 * -11  reste 0
-11 = -2 * 6
               reste 1
  6 = -2 * -3 reste 0
 -3 = -2 * 2 reste 1
  2 = -2 * -1 reste 0
 -1 = -2 * 1 reste 1
  1 = -2 * 0 reste 1
0 110 1010
               64 - 32 - 8 - 2 = 32 - 10 = 22
-34 = -2 * 17 reste 0
 17 = -2 * -8  reste 1
 -8 = -2 * 4 reste 0
  4 = -2 * -2 reste 0
 -2 = -2 * 1 reste 0
  1 = -2 * 0 reste 1
00\ 10\ 0010 = -32\ -2 = -34
```