
UE SCLAM

Sécurité Logicielle

Lecture 1: introduction

Master M2 Cybersécurité et Informatique Légale

Academic Year 2024 - 2025

Who are we ?

Teaching staff
I Laurent Mounier (UGA)
I research within Verimag Lab
I research focus: formal verification, code analysis, compilation

techniques, language semantics ... and (software) security !

Attendees
I Master M2 CSI students

→ various skills, backgroud and interests . . .

2 / 24

UE SCLAM ?

Sécurité des Composants et des Logiciels et Applications Multimédia

I 42 heures de cours/TD et 37 heures de TP/TD

I ∼ 4 intervenants

I Thèmes couverts :
I Sécurité Logicielle
I Sécurité Matérielle
I Rétro-ingénièrie
I Sécurité des Systèmes Embarqués
I etc.

I Thème “Sécurité Logicielle”
I an overview of software security and secure programming
I some tools and techniques for software security

3 / 24

Evaluation de l’UE
Les règles du jeu . . .

Plusieurs notes possibles
I compte-rendus de TP
I (courtes) présentations orales
I mini "projets"
I Quizz, QCMs, etc.

→ une moyenne pondérée de l’ensemble de ces notes . . .

4 / 24

Course user manual

An (on-going) course web page on Moodle . . .

https://im2ag-moodle.univ-grenoble-alpes.fr/course/view.php?id=367

I course schedule and materials (slides, etc.)
I weekly, reading suggestions, to complete the lecture
I other background reading/browsing advices . . .

During the classes . . .
Alternation between lectures, written exercices, lab exercises . . .

. . . but no “formal” lectures→ questions & discussions always welcome !

heterogeneous audience + open topics ⇒ high interactivity level !

5 / 24

https://im2ag-moodle.univ-grenoble-alpes.fr/course/view.php?id=367

Prerequisites
Ideally . . .

This course is concerned with:

Programming languages
I at least one (classical) imperative language:

C or C++, Python . . .
I some notions on compilation & (informal) language semantics

What happens behind the curtain
Some notions about:
I assembly code (ARM, x86, others . . .)
I runtime memory layout (stack, heap)

6 / 24

Outline

Some practical information

What software security is (not) about ?

About software security

The context: computer system security . . .

Question 1: what is a “computer system”, or an execution plateform ?

Many possible incarnations, e.g.:
I (classical) computer: mainframe, server, desktop, laptop, etc.
I mobile device: phone, tablets, audio/video player, etc.

. . . up to IoT, smart cards, . . .
I embedded (networked) systems: inside a car, a plane, a

washing-machine, etc.
I cloud/remote computing, virtual execution environment
I but also industrial networks (Scada), . . . etc.
I and certainly many more !

→ 2 main characteristics:
I include hardware + software
I open/connected to the outside world . . .

7 / 24

The context: computer system security . . .

Question 1: what is a “computer system”, or an execution plateform ?

Many possible incarnations, e.g.:
I (classical) computer: mainframe, server, desktop, laptop, etc.
I mobile device: phone, tablets, audio/video player, etc.

. . . up to IoT, smart cards, . . .
I embedded (networked) systems: inside a car, a plane, a

washing-machine, etc.
I cloud/remote computing, virtual execution environment
I but also industrial networks (Scada), . . . etc.
I and certainly many more !

→ 2 main characteristics:
I include hardware + software
I open/connected to the outside world . . .

7 / 24

The context: computer system security . . .

Question 1: what is a “computer system”, or an execution plateform ?

Many possible incarnations, e.g.:
I (classical) computer: mainframe, server, desktop, laptop, etc.
I mobile device: phone, tablets, audio/video player, etc.

. . . up to IoT, smart cards, . . .
I embedded (networked) systems: inside a car, a plane, a

washing-machine, etc.
I cloud/remote computing, virtual execution environment
I but also industrial networks (Scada), . . . etc.
I and certainly many more !

→ 2 main characteristics:
I include hardware + software
I open/connected to the outside world . . .

7 / 24

The context: computer system security . . . (ct’d)

Question 2: what does mean security ?

I a set of general security properties: CIA
Confidentiality, Integrity, Availability (+ Non Repudiation + Anonymity + . . .)

I concerns the running software + the whole execution plateform
(other users, shared resources and data, peripherals, network, etc.)

I depends on an intruder model
→ there is an “external actor”1 with an attack objective in mind, and
able to elaborate a dedicated strategy to achieve it (6= hazards)
↪→ something beyond safety and fault-tolerance

→ A possible definition:
I functionnal properties = what the system should do
I security properties = what it should not allow w.r.t the intruder model . . .

Rk: functionnal properties do matter for “security-oriented” software (firewalls, etc.)!

1could be the user, or the execution plateform itself!
8 / 24

The context: computer system security . . . (ct’d)

Question 2: what does mean security ?

I a set of general security properties: CIA
Confidentiality, Integrity, Availability (+ Non Repudiation + Anonymity + . . .)

I concerns the running software + the whole execution plateform
(other users, shared resources and data, peripherals, network, etc.)

I depends on an intruder model
→ there is an “external actor”1 with an attack objective in mind, and
able to elaborate a dedicated strategy to achieve it (6= hazards)
↪→ something beyond safety and fault-tolerance

→ A possible definition:
I functionnal properties = what the system should do
I security properties = what it should not allow w.r.t the intruder model . . .

Rk: functionnal properties do matter for “security-oriented” software (firewalls, etc.)!

1could be the user, or the execution plateform itself!
8 / 24

Example 1: password authentication
Is this code “secure” ?

boolean verify (char[] input, char[] passwd , byte len) {
// No more than triesLeft attempts
if (triesLeft < 0) return false ; // no authentication
// Main comparison
for (short i=0; i <= len; i++)
if (input[i] != passwd[i]) {

triesLeft-- ;
return false ; // no authentication

}
// Comparison is successful
triesLeft = maxTries ;
return true ; // authentication is successful

}

functional property:

verify(input,passwd,len)⇔ input[0..len] = passwd[0..len]

What do we want to protect ? Against what ?
I confidentiality of passwd, information leakage ?
I no unexpected runtime behaviour
I code integrity, etc.

9 / 24

Example 1: password authentication
Is this code “secure” ?

boolean verify (char[] input, char[] passwd , byte len) {
// No more than triesLeft attempts
if (triesLeft < 0) return false ; // no authentication
// Main comparison
for (short i=0; i <= len; i++)
if (input[i] != passwd[i]) {

triesLeft-- ;
return false ; // no authentication

}
// Comparison is successful
triesLeft = maxTries ;
return true ; // authentication is successful

}

functional property:

verify(input,passwd,len)⇔ input[0..len] = passwd[0..len]

What do we want to protect ? Against what ?

I confidentiality of passwd, information leakage ?
I no unexpected runtime behaviour
I code integrity, etc.

9 / 24

Example 1: password authentication
Is this code “secure” ?

boolean verify (char[] input, char[] passwd , byte len) {
// No more than triesLeft attempts
if (triesLeft < 0) return false ; // no authentication
// Main comparison
for (short i=0; i <= len; i++)
if (input[i] != passwd[i]) {

triesLeft-- ;
return false ; // no authentication

}
// Comparison is successful
triesLeft = maxTries ;
return true ; // authentication is successful

}

functional property:

verify(input,passwd,len)⇔ input[0..len] = passwd[0..len]

What do we want to protect ? Against what ?
I confidentiality of passwd, information leakage ?
I no unexpected runtime behaviour
I code integrity, etc.

9 / 24

Example 2: web browser

Unavoidable applications, key functionalities, routinely used . . .

But, quite often:

Is it a simple functionnality issue?
(no damage, users simply need to restart their browser . . .)

10 / 24

Example 2: web browser

Unavoidable applications, key functionalities, routinely used . . .

But, quite often:

Is it a simple functionnality issue?
(no damage, users simply need to restart their browser . . .)

10 / 24

Example 2: web browser

Unavoidable applications, key functionalities, routinely used . . .

But, quite often:

Is it a simple functionnality issue?
(no damage, users simply need to restart their browser . . .)

10 / 24

Why do we need to bother about crashes ?

crash = consequence of an unexpected run-time error
I not foreseen by the programmer and compiler . . .
I . . . and not (always) accurately trapped at runtime

⇒ some part of the execution:
I may take place outside the program scope

(not following the regular program semantic)
I but can be controled/exploited by an attacker (∼ “weird machine”)

normal execution

runtime error

crash

crash
X

X

security violation !

unforeseen executions

↪→ may break all security properties ...
from simple denial-of-service to arbitrary code execution

Rk: may also happen silently (without any crash !)

11 / 24

Why do we need to bother about crashes ?

crash = consequence of an unexpected run-time error
I not foreseen by the programmer and compiler . . .
I . . . and not (always) accurately trapped at runtime

⇒ some part of the execution:
I may take place outside the program scope

(not following the regular program semantic)
I but can be controled/exploited by an attacker (∼ “weird machine”)

normal execution

runtime error

crash

crash
X

X

security violation !

unforeseen executions

↪→ may break all security properties ...
from simple denial-of-service to arbitrary code execution

Rk: may also happen silently (without any crash !)

11 / 24

Some (not standardized) definitions . . .

Bug: an error (or defect/flaw/failure) introduced in a SW, either
I at the specification / design / algorithmic level
I at the programming / coding level
I or even by the compiler (or any other pgm transformation tools) . . .

Vulnerability: a weakness (for instance a bug !) that opens a “security breach”
I non exploitable vulnerabilities: there is no (known !) way for an attaker

to use this bug to corrupt the system
I exploitable vulnerabilities: this bug can be used to elaborate an attack

(i.e., write an exploit)
I 0-day vulnerabilities: yet unpublished (hence not patched !)

Exploit: a concrete attacker behavior allowing to:

1. trigger a (sequence of) vulnerability(-ies)

2. leading to a security property violation

Ex: a single program input, or a complex sequence of interactions with the
target program and/or its execution environment . . .

12 / 24

Some (not standardized) definitions . . .

Bug: an error (or defect/flaw/failure) introduced in a SW, either
I at the specification / design / algorithmic level
I at the programming / coding level
I or even by the compiler (or any other pgm transformation tools) . . .

Vulnerability: a weakness (for instance a bug !) that opens a “security breach”
I non exploitable vulnerabilities: there is no (known !) way for an attaker

to use this bug to corrupt the system
I exploitable vulnerabilities: this bug can be used to elaborate an attack

(i.e., write an exploit)
I 0-day vulnerabilities: yet unpublished (hence not patched !)

Exploit: a concrete attacker behavior allowing to:

1. trigger a (sequence of) vulnerability(-ies)

2. leading to a security property violation

Ex: a single program input, or a complex sequence of interactions with the
target program and/or its execution environment . . .

12 / 24

Some (not standardized) definitions . . .

Bug: an error (or defect/flaw/failure) introduced in a SW, either
I at the specification / design / algorithmic level
I at the programming / coding level
I or even by the compiler (or any other pgm transformation tools) . . .

Vulnerability: a weakness (for instance a bug !) that opens a “security breach”
I non exploitable vulnerabilities: there is no (known !) way for an attaker

to use this bug to corrupt the system
I exploitable vulnerabilities: this bug can be used to elaborate an attack

(i.e., write an exploit)
I 0-day vulnerabilities: yet unpublished (hence not patched !)

Exploit: a concrete attacker behavior allowing to:

1. trigger a (sequence of) vulnerability(-ies)

2. leading to a security property violation

Ex: a single program input, or a complex sequence of interactions with the
target program and/or its execution environment . . .

12 / 24

Some (not standardized) definitions . . .

Bug: an error (or defect/flaw/failure) introduced in a SW, either
I at the specification / design / algorithmic level
I at the programming / coding level
I or even by the compiler (or any other pgm transformation tools) . . .

Vulnerability: a weakness (for instance a bug !) that opens a “security breach”
I non exploitable vulnerabilities: there is no (known !) way for an attaker

to use this bug to corrupt the system
I exploitable vulnerabilities: this bug can be used to elaborate an attack

(i.e., write an exploit)
I 0-day vulnerabilities: yet unpublished (hence not patched !)

Exploit: a concrete attacker behavior allowing to:

1. trigger a (sequence of) vulnerability(-ies)

2. leading to a security property violation

Ex: a single program input, or a complex sequence of interactions with the
target program and/or its execution environment . . .

12 / 24

Software vulnerability examples

Case 1 (not so common . . .)

Functional property not provided by a security-oriented component
I lack of encryption, too weak crypto-system,
I no (strong enough) authentication mechanism,
I bad firewall configuration, too weak access control enforcement rules,
I etc.

Case 2 (the vast majority !)

Insecure coding practice in (any!) software component/application
I improper input validation SQL or code injection, XSS, etc.
I insecure shared resource management (file system, network)
I information leakage (lack of data encapsulation, side channels)
I exploitable coding errors (memory access, arithmetic overflows, etc.)
I etc.

⇒ Sleeping bombs

13 / 24

Software vulnerability examples

Case 1 (not so common . . .)

Functional property not provided by a security-oriented component
I lack of encryption, too weak crypto-system,
I no (strong enough) authentication mechanism,
I bad firewall configuration, too weak access control enforcement rules,
I etc.

Case 2 (the vast majority !)

Insecure coding practice in (any!) software component/application
I improper input validation SQL or code injection, XSS, etc.
I insecure shared resource management (file system, network)
I information leakage (lack of data encapsulation, side channels)
I exploitable coding errors (memory access, arithmetic overflows, etc.)
I etc.

⇒ Sleeping bombs
13 / 24

The intruder model

Who/what is the attacker ?
I a malicious external user, interacting via regular input sources

e.g., keyboard, network (man-in-the-middle), etc.

I a malicious external “observer”, interacting via side channels
(execution time, power consumption)

I another application running on the same plateform
interacting through shared resources like caches, processor elements, etc.

I the execution plateform itself (e,g., when compromised !)

What is he/she/it able to do ?
At low level:
I unexpected memory read (data or code)
I unexpected memory write (data or code)

⇒ powerful enough for
I information disclosure
I unexpected/arbitrary code execution
I priviledge elevation, etc.

14 / 24

The intruder model

Who/what is the attacker ?
I a malicious external user, interacting via regular input sources

e.g., keyboard, network (man-in-the-middle), etc.

I a malicious external “observer”, interacting via side channels
(execution time, power consumption)

I another application running on the same plateform
interacting through shared resources like caches, processor elements, etc.

I the execution plateform itself (e,g., when compromised !)

What is he/she/it able to do ?
At low level:
I unexpected memory read (data or code)
I unexpected memory write (data or code)

⇒ powerful enough for
I information disclosure
I unexpected/arbitrary code execution
I priviledge elevation, etc.

14 / 24

Example: smartphone attack surface

Credits [BT2019]

15 / 24

Outline

Some practical information

What software security is (not) about ?

About software security

Some evidences regarding cyber (un)-security

So many examples of successful computer system attacks:

I the “famous ones”: (at least one per year !)
Morris worm, Stuxnet, Heartbleed, WannaCry, Spectre, Log4j, etc.

I the never-ending records of “cyber-attacks” against large organizations
(private companies, public structures)

I a public database of CVEs (Common Vulnerabilities and Exposures)
Numbers of CVEs per year

I etc.

Why ? Who can we blame for that ??

I 6 ∃ well defined recipe to build secure cyber systems in the large
I permanent trade-off beetween efficiency and safety/security:

I HW and micro-architectures (sharing is everywhere !)
I operating systems
I programming languages and applications
I coding and software engineering techniques

16 / 24

https://cve.mitre.org/
https://www.cvedetails.com/browse-by-date.php

Some evidences regarding cyber (un)-security

So many examples of successful computer system attacks:

I the “famous ones”: (at least one per year !)
Morris worm, Stuxnet, Heartbleed, WannaCry, Spectre, Log4j, etc.

I the never-ending records of “cyber-attacks” against large organizations
(private companies, public structures)

I a public database of CVEs (Common Vulnerabilities and Exposures)
Numbers of CVEs per year

I etc.

Why ? Who can we blame for that ??

I 6 ∃ well defined recipe to build secure cyber systems in the large
I permanent trade-off beetween efficiency and safety/security:

I HW and micro-architectures (sharing is everywhere !)
I operating systems
I programming languages and applications
I coding and software engineering techniques

16 / 24

https://cve.mitre.org/
https://www.cvedetails.com/browse-by-date.php

Some evidences regarding cyber (un)-security

So many examples of successful computer system attacks:

I the “famous ones”: (at least one per year !)
Morris worm, Stuxnet, Heartbleed, WannaCry, Spectre, Log4j, etc.

I the never-ending records of “cyber-attacks” against large organizations
(private companies, public structures)

I a public database of CVEs (Common Vulnerabilities and Exposures)
Numbers of CVEs per year

I etc.

Why ? Who can we blame for that ??

I 6 ∃ well defined recipe to build secure cyber systems in the large
I permanent trade-off beetween efficiency and safety/security:

I HW and micro-architectures (sharing is everywhere !)
I operating systems
I programming languages and applications
I coding and software engineering techniques

16 / 24

https://cve.mitre.org/
https://www.cvedetails.com/browse-by-date.php

But, what about software security ?

Software is greatly involved in “computer system security”:
I it plays a major role in enforcing security properties:

crypto, authentication protocols, intrusion detection, firewall, etc.
I but it is also a major source of security problems2 . . .

“90 percent of security incidents result from exploits against defects in software” (U.S. DHS)

→ SW is clearly one of the weakest links in the security chain!

Why ???

I we do not no very well how to write secure SW
we do not even know how to write correct SW!

I behavioral properties can’t be validated on a (large) SW
impossible by hand, untractable with a machine

I programming languages not designed for security enforcement
most of them contain numerous traps and pitfalls

I programmers feel not (so much) concerned with security
security not get enough attention in programming/SE courses

I heterogenous and nomad applications favor unsecure SW
remote execution, mobile code, plugins, reflection, etc.

2outside security related code!
17 / 24

But, what about software security ?

Software is greatly involved in “computer system security”:
I it plays a major role in enforcing security properties:

crypto, authentication protocols, intrusion detection, firewall, etc.
I but it is also a major source of security problems2 . . .

“90 percent of security incidents result from exploits against defects in software” (U.S. DHS)

→ SW is clearly one of the weakest links in the security chain!

Why ???
I we do not no very well how to write secure SW

we do not even know how to write correct SW!
I behavioral properties can’t be validated on a (large) SW

impossible by hand, untractable with a machine
I programming languages not designed for security enforcement

most of them contain numerous traps and pitfalls
I programmers feel not (so much) concerned with security

security not get enough attention in programming/SE courses
I heterogenous and nomad applications favor unsecure SW

remote execution, mobile code, plugins, reflection, etc.

2outside security related code!
17 / 24

Some concrete CVE examples: back to the browsers . . .

See the online discussions . . .

18 / 24

https://www.openwall.com/lists/oss-security/2024/03/23/1

Some concrete CVE examples: back to the browsers . . .

See the online discussions . . .

18 / 24

https://www.openwall.com/lists/oss-security/2024/03/23/1

A higly critical recent CVE example (Trojan Horse)

(see the Pentest-Tools blog)

And more CVEs are still comming !

19 / 24

https://pentest-tools.com/blog/xz-utils-backdoor-cve-2024-3094
https://github.com/CVEProject/cvelistV5/releases

Some evidences regarding software (un)-security (ct’d)

An increasing activity in the “defender side” as well ...

I all the daily security patches (for OS, basic applications, etc.)

I companies and experts specialized in software security
code audit, search for 0days, malware detection & analysis, etc.
“bug bounties” [https://zerodium.com/program.html

I some important research efforts
from the main software editors (e.g., MicroSoft, Google, etc)
from the academia (conferences) and independent “ethical

hackers” (blogs, etc.)

I software verification tools editors start addressing security issues
e.g.: dedicated static analyser features

I international cooperation for vulnerability disclosure and classification
e.g.: CERT, CVE/CWE catalogue, vulnerability databases

I government agencies to promote & control SW security
e.g.: ANSSI, ENISA, Darpa “Grand Challenge”, etc.

I national/european/international regulations, norms and standards
e.g.: RGPD, NIS-2, Cyber Resilience Act, ISO 27001, IEC 62443

20 / 24

https://zerodium.com/program.html

Some evidences regarding software (un)-security (ct’d)

An increasing activity in the “defender side” as well ...

I all the daily security patches (for OS, basic applications, etc.)

I companies and experts specialized in software security
code audit, search for 0days, malware detection & analysis, etc.
“bug bounties” [https://zerodium.com/program.html

I some important research efforts
from the main software editors (e.g., MicroSoft, Google, etc)
from the academia (conferences) and independent “ethical

hackers” (blogs, etc.)

I software verification tools editors start addressing security issues
e.g.: dedicated static analyser features

I international cooperation for vulnerability disclosure and classification
e.g.: CERT, CVE/CWE catalogue, vulnerability databases

I government agencies to promote & control SW security
e.g.: ANSSI, ENISA, Darpa “Grand Challenge”, etc.

I national/european/international regulations, norms and standards
e.g.: RGPD, NIS-2, Cyber Resilience Act, ISO 27001, IEC 62443

20 / 24

https://zerodium.com/program.html

Some evidences regarding software (un)-security (ct’d)

An increasing activity in the “defender side” as well ...

I all the daily security patches (for OS, basic applications, etc.)

I companies and experts specialized in software security
code audit, search for 0days, malware detection & analysis, etc.
“bug bounties” [https://zerodium.com/program.html

I some important research efforts
from the main software editors (e.g., MicroSoft, Google, etc)
from the academia (conferences) and independent “ethical

hackers” (blogs, etc.)

I software verification tools editors start addressing security issues
e.g.: dedicated static analyser features

I international cooperation for vulnerability disclosure and classification
e.g.: CERT, CVE/CWE catalogue, vulnerability databases

I government agencies to promote & control SW security
e.g.: ANSSI, ENISA, Darpa “Grand Challenge”, etc.

I national/european/international regulations, norms and standards
e.g.: RGPD, NIS-2, Cyber Resilience Act, ISO 27001, IEC 62443

20 / 24

https://zerodium.com/program.html

Some evidences regarding software (un)-security (ct’d)

An increasing activity in the “defender side” as well ...

I all the daily security patches (for OS, basic applications, etc.)

I companies and experts specialized in software security
code audit, search for 0days, malware detection & analysis, etc.
“bug bounties” [https://zerodium.com/program.html

I some important research efforts
from the main software editors (e.g., MicroSoft, Google, etc)
from the academia (conferences) and independent “ethical

hackers” (blogs, etc.)

I software verification tools editors start addressing security issues
e.g.: dedicated static analyser features

I international cooperation for vulnerability disclosure and classification
e.g.: CERT, CVE/CWE catalogue, vulnerability databases

I government agencies to promote & control SW security
e.g.: ANSSI, ENISA, Darpa “Grand Challenge”, etc.

I national/european/international regulations, norms and standards
e.g.: RGPD, NIS-2, Cyber Resilience Act, ISO 27001, IEC 62443

20 / 24

https://zerodium.com/program.html

Some evidences regarding software (un)-security (ct’d)

An increasing activity in the “defender side” as well ...

I all the daily security patches (for OS, basic applications, etc.)

I companies and experts specialized in software security
code audit, search for 0days, malware detection & analysis, etc.
“bug bounties” [https://zerodium.com/program.html

I some important research efforts
from the main software editors (e.g., MicroSoft, Google, etc)
from the academia (conferences) and independent “ethical

hackers” (blogs, etc.)

I software verification tools editors start addressing security issues
e.g.: dedicated static analyser features

I international cooperation for vulnerability disclosure and classification
e.g.: CERT, CVE/CWE catalogue, vulnerability databases

I government agencies to promote & control SW security
e.g.: ANSSI, ENISA, Darpa “Grand Challenge”, etc.

I national/european/international regulations, norms and standards
e.g.: RGPD, NIS-2, Cyber Resilience Act, ISO 27001, IEC 62443

20 / 24

https://zerodium.com/program.html

Some evidences regarding software (un)-security (ct’d)

An increasing activity in the “defender side” as well ...

I all the daily security patches (for OS, basic applications, etc.)

I companies and experts specialized in software security
code audit, search for 0days, malware detection & analysis, etc.
“bug bounties” [https://zerodium.com/program.html

I some important research efforts
from the main software editors (e.g., MicroSoft, Google, etc)
from the academia (conferences) and independent “ethical

hackers” (blogs, etc.)

I software verification tools editors start addressing security issues
e.g.: dedicated static analyser features

I international cooperation for vulnerability disclosure and classification
e.g.: CERT, CVE/CWE catalogue, vulnerability databases

I government agencies to promote & control SW security
e.g.: ANSSI, ENISA, Darpa “Grand Challenge”, etc.

I national/european/international regulations, norms and standards
e.g.: RGPD, NIS-2, Cyber Resilience Act, ISO 27001, IEC 62443

20 / 24

https://zerodium.com/program.html

Some evidences regarding software (un)-security (ct’d)

An increasing activity in the “defender side” as well ...

I all the daily security patches (for OS, basic applications, etc.)

I companies and experts specialized in software security
code audit, search for 0days, malware detection & analysis, etc.
“bug bounties” [https://zerodium.com/program.html

I some important research efforts
from the main software editors (e.g., MicroSoft, Google, etc)
from the academia (conferences) and independent “ethical

hackers” (blogs, etc.)

I software verification tools editors start addressing security issues
e.g.: dedicated static analyser features

I international cooperation for vulnerability disclosure and classification
e.g.: CERT, CVE/CWE catalogue, vulnerability databases

I government agencies to promote & control SW security
e.g.: ANSSI, ENISA, Darpa “Grand Challenge”, etc.

I national/european/international regulations, norms and standards
e.g.: RGPD, NIS-2, Cyber Resilience Act, ISO 27001, IEC 62443

20 / 24

https://zerodium.com/program.html

Some evidences regarding software (un)-security (ct’d)

An increasing activity in the “defender side” as well ...

I all the daily security patches (for OS, basic applications, etc.)

I companies and experts specialized in software security
code audit, search for 0days, malware detection & analysis, etc.
“bug bounties” [https://zerodium.com/program.html

I some important research efforts
from the main software editors (e.g., MicroSoft, Google, etc)
from the academia (conferences) and independent “ethical

hackers” (blogs, etc.)

I software verification tools editors start addressing security issues
e.g.: dedicated static analyser features

I international cooperation for vulnerability disclosure and classification
e.g.: CERT, CVE/CWE catalogue, vulnerability databases

I government agencies to promote & control SW security
e.g.: ANSSI, ENISA, Darpa “Grand Challenge”, etc.

I national/european/international regulations, norms and standards
e.g.: RGPD, NIS-2, Cyber Resilience Act, ISO 27001, IEC 62443

20 / 24

https://zerodium.com/program.html

Couter-measures and protections (examples)

Several existing mechanisms to enforce SW security

I at the programming level:
I disclosed vulnerabilities → language weaknesses databases

↪→ secure coding patterns and libraries
I aggressive compiler options + code instrumentation

↪→ early detection of unsecure code

I at the OS level:
I sandboxing
I address space randomization
I non executable memory zones
I etc.

I at the hardware level:
I Trusted Platform Modules (TPM)
I secure crypto-processor
I CPU tracking mechanims (e.g., Intel Processor Trace)
I etc.

21 / 24

Couter-measures and protections (examples)

Several existing mechanisms to enforce SW security

I at the programming level:
I disclosed vulnerabilities → language weaknesses databases

↪→ secure coding patterns and libraries
I aggressive compiler options + code instrumentation

↪→ early detection of unsecure code

I at the OS level:
I sandboxing
I address space randomization
I non executable memory zones
I etc.

I at the hardware level:
I Trusted Platform Modules (TPM)
I secure crypto-processor
I CPU tracking mechanims (e.g., Intel Processor Trace)
I etc.

21 / 24

Couter-measures and protections (examples)

Several existing mechanisms to enforce SW security

I at the programming level:
I disclosed vulnerabilities → language weaknesses databases

↪→ secure coding patterns and libraries
I aggressive compiler options + code instrumentation

↪→ early detection of unsecure code

I at the OS level:
I sandboxing
I address space randomization
I non executable memory zones
I etc.

I at the hardware level:
I Trusted Platform Modules (TPM)
I secure crypto-processor
I CPU tracking mechanims (e.g., Intel Processor Trace)
I etc.

21 / 24

Couter-measures and protections (examples)

Several existing mechanisms to enforce SW security

I at the programming level:
I disclosed vulnerabilities → language weaknesses databases

↪→ secure coding patterns and libraries
I aggressive compiler options + code instrumentation

↪→ early detection of unsecure code

I at the OS level:
I sandboxing
I address space randomization
I non executable memory zones
I etc.

I at the hardware level:
I Trusted Platform Modules (TPM)
I secure crypto-processor
I CPU tracking mechanims (e.g., Intel Processor Trace)
I etc.

21 / 24

Techniques and tools for assessing SW security

Several existing mechanisms to evaluate SW security

I code review . . .

I fuzzing:
I run the code with “unexpected” inputs → pgm crashes
I (tedious) manual check to find exploitable vulns . . .

I (smart) testing:
coverage-oriented pgm exploration techniques

(genetic algorithms, dynamic-symbolic executions, etc.)
+ code instrumentation to detect (low-level) vulnerabilities

I static analysis: approximate the code behavior to detect potential vulns
(∼ code optimization techniques)

In practice:
I only the binary code is always available and useful . . .
I combinations of all these techniques . . .
I exploitability analysis still challenging . . .

22 / 24

Techniques and tools for assessing SW security

Several existing mechanisms to evaluate SW security

I code review . . .

I fuzzing:
I run the code with “unexpected” inputs → pgm crashes
I (tedious) manual check to find exploitable vulns . . .

I (smart) testing:
coverage-oriented pgm exploration techniques

(genetic algorithms, dynamic-symbolic executions, etc.)
+ code instrumentation to detect (low-level) vulnerabilities

I static analysis: approximate the code behavior to detect potential vulns
(∼ code optimization techniques)

In practice:
I only the binary code is always available and useful . . .
I combinations of all these techniques . . .
I exploitability analysis still challenging . . .

22 / 24

Course objectives (for the part 1)

Understand the root causes of common weaknesses in SW security
I at the programming language level
I at the execution platform level

→ helps to better choose (or deal with) a programming language

Learn some methods and techniques to build more secure SW:
I programming techniques:

languages, coding patterns, etc.
I validation techniques:

what can(not) bring existing tools ?
I counter-measures and protection mechanisms

23 / 24

Course agenda
See
https://im2ag-moodle.univ-grenoble-alpes.fr/course/view.php?id=545

Credits:
I E. Poll (Radboud University)
I M. Payer (Purdue University)
I E. Jaeger, O. Levillain and P. Chifflier (ANSSI)

24 / 24

https://im2ag-moodle.univ-grenoble-alpes.fr/course/view.php?id=545

	Some practical information
	What software security is (not) about ?
	About software security

