
UGA INP Grenoble
M2 CySeC & M2 CSI

Lab: Detecting and correcting software vulnerabilities

Exercise 1 : a vulnerable python library

The file code.py contains a tiny library simulating an e-commerce server able to receive
customer orders (either product commands, payments, or refund requests).
Its main functionality is to check if a given sequence of orders is valid, and to print the
resulting customer balance (typically wether it is null, positive, or negative).

The file test.py gives some examples of interactions with this library (creating sequences
of orders and checking them).

Question 1.

The current version of this library is vulnerable in the sense that it is possible for a user,
using only some sequence of valid orders, to fake the computation of the resulting
balance (earning money in a dishonest way :-).

The objective is therefore to change the content of file test.py to exploit these
vulnerabilities, either by getting for free a non-free product, or by ending with a greater
balance than the regular one. To do so, you should not modify the content of code.py.

Hint: think about using floating-point values in Python, which may lead to overflow or
precision errors ...

Question 2.

Update code.py in order to get rid of the vulnerabilities you found at Question 1.

Exercise 2 : a vulnerable C library

The file code.h contains a (very) lightweight C library allowing to create and manage a set
of user accounts.

Each user account consists in:
 a user id (a strictly positive integer), which uniquely identifies a user;
 a boolean value telling if these user is "administrator" or not;
 a user name (possibly non unique, we don't care)
 a sequence of dummy user information called "setting", stored as pairs

(index,value), where both index and values are integers.

File test.c is an example of code using this library.

* Question 1

The first objective is to pawn this library by successfully promoting as admin a user initially
created as non-admin (i.e, privilege escalation vulnerability).

To do so, you should *only* use the API functions provided in code.h, as they are, without
changing them nor adding anything else in this file!
In practice you should therefore only change the contents of test.c.

Rk: succeeding in downgrading as non-admin an admin user is a valuable exploit as well!

* Question 2

Update (in a minimal way) the content of file.h to correct the vulnerability, since preserving
the initial functional behavior.

Hint: think about possible buffer overflows ...

