
M2 CySec - Advanced Security

 (reverse) shell-code

Credits : Wenliang Du

 www.handsonsecurity.net

Outline

• Challenges in writing shellcode
• Two approaches
• 32-bit and 64-bit Shellcode

Introduction

• In code injection attack: need to inject binary code
• Shellcode is a common choice
• Its goal: get a shell

– After that, we can run arbitrary commands
• Written using assembly code

Writing a Simple Assembly Program

• Invoke exit()

• Compilation (32-bit)

• Linking to generate final binary

THE BASIC IDEA

Writing Shellcode Using C

int execve(const char *pathname, char *const argv[], char *const envp[]);
// executes the program referred to by pathname.
// argv is an array of pointers to strings passed to the new program as its command-line arguments.
// envp is an array of pointers to strings, which are passed as the environment of the new program

argv and argc should be NULL terminated

Getting the Binary Code
0x00 values function calls

Writing Shellcode Using Assembly (x86 32bits)

• Invoking execve(“/bin/sh”, argv, 0)
– eax = 0x0b: execve() system call number
– ebx = address of the command string “/bin/sh”
– ecx = address of the argument array argv
– edx = address of environment variables (set to 0)

• Cannot have zero in the code, why?

Shellcode in the stack - Setting ebx

Avoid 0x00 in the shell-code

Setting ecx

Setting edx

• Setting edx = 0

 xor edx, edx

Invoking execve()

• Let eax = 0x0000000b

Putting Everything Together

Triggers an interrupt:
Switch to kernel mode and executes the 0x80
Interrupt handler (system call)

Compilation and Testing

GETTING RID OF ZEROS FROM SHELLCODE

How to Avoid Zeros

• Using xor
– “mov eax, 0”: not good, it has a zero in the machine code
– “xor eax, eax”: no zero in the machine code

• Using instruction with one-byte operand
– How to save 0x00000099 to eax?
– “mov eax, 0x99”: not good, 0x99 is actually 0x00000099
– “xor eax, eax; mov al, 0x99”: al represent the last byte of eax

Using Shift Operator

• How to assign 0x0011223344 to ebx?

Pushing the “/bin/bash” String Into Stack

• Without using the // technique

ANOTHER APPROACH

Getting the Addresses of String and ARGV[]

This address is
pushed into stack
by “call”

Pop out the address
stored by “call”

…. code omitted …

1

2

3. The data used to call execve will
be located at placeholders just
above ebx … [ebx+delta]

Data Preparation

• Putting a zero at the end of the shell string

• Constructing the argument array

Compilation and Testing

• Error (code region cannot be modified)

• Make code region writable

64-BIT SHELLCODE

64-Bit Shellcode (elf64)

1. rax is 8 bytes long

2. 0x3b = execve call number

A Generic Shellcode (64-bit)

• Goal: execute arbitrary commands

• Data region List of commands

Data Preparation (1)

Data Preparation (2)

Machine Code

The command you want to execute ...

Summary

• Challenges in writing shellcode
• Two approaches
• 32-bit and 64-bit Shellcode
• A generic shellcode

Reverse Shell

Overview
• File descriptor

• Standard input and output devices

• Redirecting standard input and output

• How reverse shell works

The Idea of Reverse Shell

File Descriptor

Execution Result

File Descriptor Table

Standard I/O Devices

Execution Result

Redirection

Redirecting to file Redirecting to file descriptor

An example

How Is Redirection Implemented?

Creates a copy of the file descriptor oldfp, and then assign newfd as the new
file descriptor.

The Change of File Descriptor Table

Redirecting Output to TCP Connections

1. create a TCP connection

3. redirect standart output

Redirecting Input to TCP Connections

1. Redirect standart input
2. Read data from the TCP connection

Redirecting to TCP from Shell
Redirecting Input

Redirecting Output Running a TCP server on 10.0.2.5
$ nc –l 9090

Note
• /dev/tcp is not a real folder: it dos not exist
• It is a built-in virtual file/folder for bash only
• Redirection to /dev/tcp/… can only be done inside bash

Reverse Shell Overview

Redirecting Standard Output
On Attacker Machine (10.0.2.70)

On Server Machine

Redirecting Standard Input & Output

On Server Machine

Redirecting Standard Error, Input, & Output

On Server Machine

Reverse Shell via Code Injection
• Reverse shell is executed via injected code
• Can’t assume that the target machine runs bash
• Run bash first:

Summary
• Reverse shell works by redirecting shell program’s input/output

• Input and output of a program can be redirected to a TCP
connection

• The other end of the TCP connection is attacker

• It is a widely used technique by attackers ...

