
Software Engineering

Lydie du Bousquet
Lydie.du-bousquet@imag.fr

In collaboration with J.-M. Favre, I. Parissis, Ph. Lalanda, Y. Ledru

1

Short introduction

• Lydie du Bousquet
– Professor at UGA
– Software engineering, validation, test

• Frédéric Lang
– Researcher at INRIA
– Compositional Verification, New Generation

Formal Description Techniques

2

This class

• Introduction to software engineering
as a tool box

3

Choose a tool to drill something

4

Wait! What should I drill? What size?

5

Before using a tool, you should :

• Know the characteristics of the tools
• Learn to use them
• Be able to choose the appropriate one(s)

This is the objective of the class!
(for software engineering tools)

6

Class program during the semestrer

• Software engineering, development process
• Requirement engineering
• Modeling with UML
• Modeling with formal methods
• Validation by test

7

Moodle space

8

Evaluation

• One mid-term exam (0.3)
– Exercises to check that

the notions are mastered
– Basic exercices but not so simple
– Related to dev. process, req. eng. and UML

• One final exam (0.7)
– More complex problems
– Related to all the chapters

9

24 oct

Class program of this week

1(a) Software engineering and dev. process
1(b) Requirement engineering

10

Schedule

• What is Software Engineering?

• What are the activities during the development?

• How are they organized?

• Which process should you choose?

11

What is software Engineering?

Exercise 0, Q1

12

What is software Engineering?

• Engineering?
– derived from the Latin

– ingenium, meaning "cleverness"

– ingeniare, meaning "to contrive, devise"
(find a solution, build)

• Software Engineering
– discipline that is concerned with

all aspects of software production

13

Why Software Engineering?

• Provide systematic methods, tools
• To achieve

– predictability
– precision
– mitigated risk
– professionalism

14

Schedule

• What is Software Engineering?

• What are the activities during the

development?

• How are they organized?

• Which process should you choose?

15

What are the activities during
a software project?

Exercise 0, Q2

16

Classical activities

• Requirements Analysis
• Specification
• Software architecture
• Design
• Implementation
• Testing
• Documentation
• Installation, deployment
• Training and Support
• Maintenance

17

Development process

• Also known as
– development methodology
– software development life cycle,
– software process

• Process followed during the
development of a software product
– organization of the tasks or activities that

take place during the development
– several models of development process

18

What development process
do you know ?

How the previous activities
are organized?

19

Classical development processes

• Code and fix
• Waterfall development
• V-shaped Model
• Prototyping
• Incremental/iterative development
• Agile development, SCRUM, KANBAN, …
• Spiral

20

Classical development processes

A software engineer should
• Be able to recognize a development process
• Know the step order
• Know the advantages and the drawbacks
• Choose an appropriate process w.r.t. the

situation

21

Code and fix

• Without much of a design in the way,
programmers immediately begin producing code.

• At some point, testing begins (often late),
unavoidable bugs must then be fixed before the
product can be shipped.

22

Waterfall development

• sequential development approach,
in which development is seen as flowing steadily
downwards through several phases

23

Waterfall development

• The idea behind:
– structured approach:

the current phase should be finished before
starting a new one

– identifiable milestones:
each phase is documented and validated

24

Waterfall development

• Advantages
– Each phase has specific deliverables
– Verification at each stage for early detection

of errors / misunderstanding
– Simple

• Disadvantages
– Assumes that the requirements are frozen
– Very difficult to go back to any stage after it finished
– Little flexibility and adjusting scope
– Executable is only available at the end

25

Waterfall development

• Can be used
– Projects with well-known requirements
– Middle-size

• Criticisms
– (Too) many documents
– Clients may not know exactly what their requirements
– Requirements may change

26

V-shaped Model

• Like the waterfall model, it is a sequential path
of execution of processes

• Testing of the product is planned in parallel
with a corresponding phase of development

27

V-shaped process

• The idea behind
– Speed up and Improve validation (testing, most of the time)

• Advantages
– Simple and easy to use.
– Tests are prepared before/in parallel of coding.

• Disadvantages = same as water-fall process
– If any changes happen in midway, then the test documents

along with requirement documents have to be updated.
• When to use the V-model ?

– For projects where requirements are easily understood
– When validation is a key point,

when you have an independent validation team

28

Incremental/iterative development

• Objective:
– Being able provide an adequate final product
– Reduce risks by breaking a project into smaller parts and

providing more ease-of-change during the development

• Different possibilities:
– A series of mini-Waterfalls are performed.

All phases of the Waterfall are completed for a small part,
before proceeding to the next increment,

– Overall requirements are defined before proceeding to evolutionary,
mini-Waterfall development of individual increments of a system, or

– Requirements analysis, architecture and system core are defined,
followed by developing successively the different parts
(= increments).

29

Incremental development
• Principles:

– Requirements are globally collected,
– Development is sliced into parts
– Parts are developed at various times and integrated to obtain the releases
– Each increment adds more software value – e.g. adding package

• Advantages
– First release can be delivered sooner than in a waterfall process
– Major parts can be developed first, the order of others can be modify
– Users can provide feedbacks to adjust requirements for each the release
– Easier to test and easier to manage risks than waterfall

• Disadvantages
– Architecture generally chosen at the beginning => needs a complete

definition of the whole system before it can be broken down into parts
– Total cost is higher than waterfall 30

Illustration from https://productcoalition.com/product-development-using-agile-methodology-446c01ecd510

Iterative development

• Principles
– Build a very first version,
– Get some feedback and refine it to make better,
– Keep doing that until the product is good

• Advantages
– Reduce the rarely used features, maximize the frequently used features
– Usable product at any time
– Usually used in Agile processes (see after)

• Disadvantages
– Increased pressure on User engagement
– Each phase of an iteration is rigid with no overlaps
– Requires higher level of technical excellence (than the other processes)
– Costly system architecture or design issues may arise because not all

requirements are gathered up front for the entire lifecycle

31Illustration from https://productcoalition.com/product-development-using-agile-methodology-446c01ecd510

Incremental vs iterative development

• The word increment fundamentally means add onto
• The word iterate fundamentally means re-do

• For incremental,
– you need to have well defined requirements
– Between each increment, you can adjust part of the requirements
– Several increments can be produced in parallel

• For iterative,
– You start with a set of requirements in order to produce a first delivery
– At each iteration, you collect new requirements and you make a new version

32

Incremental vs iterative development

33

Illustration from http://www.golali.co/waterfall-vs-iterative-model/ and from
https://agilenotion.com/agile-categoriesiterative-incremental-evolutionary/

Incremental

Iterative

Waterfall vs Iterative

34
Adapted from an image of http://www.golali.co/waterfall-vs-iterative-model/

Agile development processes

• Mainly an iterative development processes
– Rapid cycles (1 to 3 weeks)
– Small release

• Examples of agile processes
– XP (Extreme Programming)
– Scrum
– …

35

Agile processes: 12 principles

• Customer satisfaction by early and continuous delivery of useful software
• Welcome changing requirements, even in late development
• Working software is delivered frequently (weeks rather than months)
• Close, daily cooperation between business people and developers
• Projects are built around motivated individuals, who should be trusted
• Face-to-face conversation is the best form of communication (co-location)
• Working software is the principal measure of progress
• Sustainable development, able to maintain a constant pace
• Continuous attention to technical excellence and good design
• Simplicity (maximizing the amount of work not done) is essential
• Self-organizing teams
• Regular adaptation to changing circumstance

36

Agile software development practices

• Backlogs (Product and Sprint)
• Behavior-driven development (BDD)
• Continuous integration (CI)
• Daily stand-up / Daily Scrum
• Iterative and incremental development (IID)
• Pair programming
• Planning poker
• Refactoring
• Retrospective
• Story-driven modeling
• Test-driven development (TDD)

37

Agile processes:
• Advantages

– Customer satisfaction by rapid, continuous delivery of useful
software

– People and interactions are emphasized rather than process and
tools

– Customers, developers and testers constantly interact with each
other

– Working software is delivered frequently (weeks rather than
months)

– Face-to-face conversation is the best form of communication
– Close, daily cooperation between business people and developers
– Continuous attention to technical excellence and good design
– Regular adaptation to changing circumstances
– Even late changes in requirements are welcomed

38

Agile processes

• Disadvantages
– Difficult to assess the effort required at the beginning

of the dev. life cycle.
– There is lack of emphasis on necessary designing and

documentation.
– The project can easily get taken off track

• When to use Agile processes:
– When new changes are needed to be implemented
– End users’ needs are ever changing in a dynamic

business and IT world

39

Extreme Programming (XP)

40

• Agile project management
• Intended to improve

– software quality and
– responsiveness to changing requirements

• Based on multiple short development cycles
to reduce the cost of changes in requirements

• Some key elements
– programming in pairs or doing extensive code review,
– unit testing of all code,
– not programming features until they are really needed,
– code simplicity and clarity
– a flat management structure

Extreme Programming (XP)

41www.scnsoft.com/software-development/software-development-models

Extreme Programming (XP)
• Best for:

– Small, co-located teams (5–12 people) that deal with rapidly
changing software requirements.

– Complex modules or components that need frequent iterations
and high-quality output, for example, core modules of a larger
system under active development, where practices like pair
programming and TDD ensure maintainability.

– Rapid prototyping for R&D projects and innovative technology
software.

• Not ideal for:
– Large distributed teams with complex collaboration workflows.
– Projects with less experienced developers or limited access to

end users or product experts for rapid feedback and iteration.

42

Extreme Programming (XP)
• Benefices

– Ensures strong focus on code quality.
– Welcomes mid-iteration changes.
– Improves knowledge sharing through pair programming

• Challenges
– Demands significant resources due to specific roles (XP coach, tracker, etc.)

and multiple developers per task (e.g., for pair programming).
– Requires constant client (or proxy) presence.
– Relies on face-to-face communication => distributed teams hard to manage.
– Creates pressure on team members due to rapid cycles and tight deadlines.
– Requires mature infrastructure and DevOps practices to support frequent

releases.
– Knowledge management overtime (no documentation)

• According to the 2022 State of Agile report, only 7% of Agile teams use
Extreme Programming.

43

SCRUM
• Agile project management
• Scrum team: product owner, developers, scrum master
• Sprint

– fixed period, between one week and one month
– starts with a sprint planning to define sprint goal
– ends with

• A sprint review = to elicit stakeholders feedback
• A sprint retrospective = to identify lessons and improvements for the

next sprints
• Daily scrum meetings

– are intended to be less than 15 minutes in length,
– to announce progress and issues that may be hindering the goal

44

SCRUM

45

SCRUM
• Benefits

– Provides a clear process
– Maintains team focus on the most important work first through

defined sprint goals.
– Facilitates easy incorporation of changes.

• Challenges
– Requires to make the roles and ceremonies effective.
– Becomes time-consuming without strict focus and discipline.
– Demands self-discipline to maintain code quality, as Scrum

doesn’t prescribe specific technical practices (like test-driven
development).

• 68% to 80% of Agile teams use Scrum

46

SCRUM

• Best for:
– Feature-driven projects with a clear vision

but evolving requirements.
– Solutions that benefit from time-boxed sprints with regular

demos and retrospectives, such as customer-facing apps,
SaaS features, and new modules for enterprise software
that need early validation by business users.

• Not ideal for:
– Fast-paced projects where priorities may change daily.
– Projects where work doesn’t produce frequent changes

visible to users (e.g., back-end refactoring, database
migration, internal API or middleware development).

47

KANBAN
• Agile process
• Absence of pronounced iteration
• Work is visualized on a Kanban board,
• Tasks flow continuously based on team capacity
• Communication with the client is ongoing

49www.scnsoft.com/software-development/software-development-models

KANBAN

• Advantages/benefits
– Enables quick delivery with minimal planning overhead.
– Visualizes the entire workflow, improving progress visibility

and task prioritization.
– Allows tasks to be reshuffled on the fly.

• Challenges
– Requires strong leadership to prevent miscoordination
– Demands careful setting and enforcement of work-in-

progress (WIP) limits to prevent delays and quality issues.
– Risks moving in the wrong direction, delivering outcomes

that don’t fully align with business needs.

50

KANBAN

• Appropriate for:
– Support,
– Maintenance and evolution projects where tasks like

bug fixes and small updates arrive unpredictably.
• Not ideal for:

– New development projects where features are highly
interlinked and need to be delivered in a specific
order.

– Newcomer teams with less mature self-management
and development discipline.

51

Spiral development model

• Risk-driven process model
– Meta development model,
– with emphasis placed on risk analysis.

• Each spiral corresponds to a “step”
that can be used for an
increment/iteration/activity

• Each spiral has four phases:
– Planning,
– Risk Analysis,
– Engineering and
– Evaluation

52

Spiral development model

• Advantages of Spiral model
– High amount of risk analysis hence, avoidance of Risk is

enhanced
– Strong approval and documentation control
– Additional Functionality can be added at a later date

• Disadvantages of Spiral model
– Can be a costly model to use.
– Risk analysis requires highly specific expertise.
– Project’s success is highly dependent on the risk analysis
– Doesn’t work well for smaller projects.

53

Spiral development model

• When to use Spiral model?
– When costs and risk evaluation is important
– For medium to high-risk projects
– Users are unsure of their needs
– Requirements are complex
– Significant changes are expected (research and

exploration)

54

Prototyping
(activity, not a process)

• Activity of creating a prototype of the application,
= an incomplete version of the product
– concerns only a few aspects of the final product

• Outline
– Identify basic requirements
– Develop an Initial Prototype
– Review of the customers, including end-users, to examine

the prototype and to provide feedback on additions or
changes.

– Revise and Enhance the specification / prototype using the
feedback

55

Prototyping (activity)

• The idea behind
– Not a standalone, complete development

methodology
– Attempts to reduce inherent project risk
– User is involved throughout the development

process
• Example of usages

– Understanding of user requirements
– Checking some technology relevance

56

Prototyping (activity)

• Advantages of prototyping
– Improved and increased user involvement
– Reduced time and costs

• Risks using of prototyping
– Insufficient analysis
– Prototype vs finished system
– Excessive development time of the prototype

57

TDD (agile practice)

• Test Driven Development
– Reverse the order between dev and unit testing

• Usual order
– Code simple functions, then achieve unit testing
– Done by the same person

which makes testing not as efficient as expected
• TDD

– Elaboration of the tests before the code
– Help the developer to understand the requirements
– Help the developer to identify corner cases
– Can be applyied in any development process

• Not to be confused with V-cycle development process

58

Choice of a development process

• Learn the about the development processes
• Assess the needs of Stakeholders
• Use the criteria

59

Choice of a development process

61https://www.scnsoft.com/software-development/software-development-models

Exercise 3 for
Which development process?

• System for student management in a university
(this system replace an existing system without any
functional evolutions)

• An new interactive system for travelers to have
schedules on their smartphones

• A system to control subway without drivers
• A very large system for Air traffic management
• A very new 3D-system for software maintenance
• Infrastructure and services for city that wants to

become a “smart-city”

63

