Software Engineering

Lydie du Bousquet

Lydie.du-bousquet@imag.fr

In collaboration with J.-M. Favre, I. Parissis, Ph. Lalanda, Y. Ledru

Short introduction

* Lydie du Bousquet
— Professor at UGA
— Software engineering, validation, test

* Frédeéric Lang
— Researcher at INRIA

— Compositional Verification, New Generation
Formal Description Techniques

This class

* Introduction to software engineering
as a tool box

Choose a tool to drill something

Mitre Saw Sheet Sander Orbital Sander with dust Power Screwdriver Circular Saw

collection bag Rechargeable Drill

Power Plane E ligsaw

Power Nailer/Stapler Power Drill Palm Sander

Oscillating Multi-Tool
With Blade

Multi Purpose Saw
Circular Saw Blade

=

=
| =]
=

| J.Elll!Jiuin!lr

Drill Stand Drill Press

Lathe

Table saw

Wait! What should | drill? What size?

~

?"’4 i

-

Ab‘(l
/ M

~

Before using a tool, you should :

e Know the characteristics of the tools
e Learn to use them
* Be able to choose the appropriate one(s)

This is the objective of the class!
(for software engineering tools)

Class program during the semestrer

e Software engineering, development process
* Requirement engineering

* Modeling with UML

* Modeling with formal methods

e Validation by test

Moodle space

Generality

@ Exercise Book
L) UML guide

E] Annonces

Week 1: Software
Engineering, process and
requirement engineering

Week 2: Requirement
engineering (bis)

Week 7 : Mid-term
Exam

Week 8: Software
architecture

Week 3 -4 : UML - Use
cases, state diagrams and
sequence diagrams

Week 9: Test

Week 5 to 6 : UML
Class diagrams and
object diagrams

Week 10 & 11: formal
approaches of
Software Engineering

Evaluation

* One mid-term exam (0.3)

— Exercises to check that
the notions are mastered

— Basic exercices but not so simple
— Related to dev. process, req. eng. and UML

* One final exam (0.7)
— More complex problems
— Related to all the chapters

Class program of this week

1(a) Software engineering and dev. process
1(b) Requirement engineering

10

Schedule

What is Software Engineering?

What are the activities during the development?

How are they organized?

Which process should you choose?

11

What is software Engineering?

* Engineering?

— derived from the Latin

— ingenium, meaning "cleverness"

— ingeniare, meaning "to contrive, devise"
(find a solution, build)
* Software Engineering

— discipline that is concerned with
all aspects of software production

13

Why Software Engineering?

* Provide systematic methods, tools

* To achieve
— predictability
— precision
— mitigated risk

— professionalism

Schedule

 What are the activities during the

development?
* How are they organized?

* Which process should you choose?

What are the activities during
a software project?

Classical activities

Requirements Analysis
Specification

Software architecture
Design

Implementation

Testing

Documentation
Installation, deployment
Training and Support
Maintenance

Development process

* Also known as
— development methodology
— software development life cycle,
— software process
* Process followed during the
development of a software product

— organization of the tasks or activities that
take place during the development

— several models of development process

What development process
do you know ?

How the previous activities
are organized?

19

Classical development processes

Code and fix

Waterfall development

V-shaped Model

Prototyping

Incremental/iterative development
Agile development, SCRUM, KANBAN, ...
Spiral

Classical development processes

A software engineer should

* Be able to recognize a development process
* Know the step order

 Know the advantages and the drawbacks

* Choose an appropriate process w.r.t. the
situation

Code and fix

* Without much of a design in the way,

programmers immediately begin producing code.

* At some point, testing begins (often late),
unavoidable bugs must then be fixed before the
product can be shipped.

specilicaton
(maybe)

22

Waterfall development

* sequential development approach,
in which development is seen as flowing steadily
downwards through several phases

R * Requirement Doc.
Requirement * Prepare Use Cases

. Software architecture
* Map the stakeholders

> Implementation

 Construct the software
* Data storage & retrieval

* |nstall
* Test and Debug

> Verification

~ Maintenance

e Check errors
* Optimize capabilities
|

23

Waterfall development

rrrrrrrrrrrrr
= Optimize capabilities

e The idea behind:

— structured approach:

the current phase should be finished before
starting a new one

— identifiable milestones:
each phase is documented and validated

24

Waterfall development

rrrrrrrrrrrrr
= Optimize capabilities

* Advantages
— Each phase has specific deliverables

— Verification at each stage for early detection
of errors / misunderstanding

— Simple
* Disadvantages
— Assumes that the requirements are frozen
— Very difficult to go back to any stage after it finished
— Little flexibility and adjusting scope
— Executable is only available at the end

25

Waterfall development

rrrrrrrrrrrrr
= Optimize capabilities

* Can be used
— Projects with well-known requirements
— Middle-size
* Criticisms
— (Too) many documents
— Clients may not know exactly what their requirements
— Requirements may change

26

V-shaped Model

* Like the waterfall model, it is a sequential path
of execution of processes

* Testing of the product is planned in parallel
with a corresponding phase of development

Planning

""""""""" Acceptance
Testi
Architecture f€=======~-- .| ln;ogrgtion: i

N “,__\W‘Q
\)

-

Detailed .

Design - Unit Testing

1

7
h'rplementatio:f

27

V-shaped process

NF——2/
The idea behind
— Speed up and Improve validation (testing, most of the time)
 Advantages
— Simple and easy to use.
— Tests are prepared before/in parallel of coding.
* Disadvantages = same as water-fall process

— If any changes happen in midway, then the test documents
along with requirement documents have to be updated.

When to use the V-model ?

— For projects where requirements are easily understood

— When validation is a key point,
when you have an independent validation team

28

Incremental/iterative development

* Objective:
— Being able provide an adequate final product

— Reduce risks by breaking a project into smaller parts and
providing more ease-of-change during the development

* Different possibilities:

— A series of mini-Waterfalls are performed.

All phases of the Waterfall are completed for a small part,
before proceeding to the next increment,

— Overall requirements are defined before proceeding to evolutionary,
mini-Waterfall development of individual increments of a system, or

— Requirements analysis, architecture and system core are defined,

followed by developing successively the different parts
(= increments).

Incremental development

* Principles:

— Requirements are globally collected,

— Development is sliced into parts HAVE NO VALUE

— Parts are developed at various times and integrated to obtain the releases
— Each increment adds more software value — e.g. adding package

* Advantages

— First release can be delivered sooner than in a waterfall process

— Major parts can be developed first, the order of others can be modify

— Users can provide feedbacks to adjust requirements for each the release
— Easier to test and easier to manage risks than waterfall

* Disadvantages

— Architecture generally chosen at the beginning => needs a complete
definition of the whole system before it can be broken down into parts

— Total cost is higher than waterfall

lllustration from https://productcoalition.com/product-development-using-agile-methodology-446c01ecd510

30

Iterative development

o ON oY © '

* Principles
— Build a very first version,
— Get some feedback and refine it to make better,
— Keep doing that until the product is good

 Advantages
— Reduce the rarely used features, maximize the frequently used features
— Usable product at any time
— Usually used in Agile processes (see after)
* Disadvantages
— Increased pressure on User engagement
— Each phase of an iteration is rigid with no overlaps
— Requires higher level of technical excellence (than the other processes)

— Costly system architecture or design issues may arise because not all
requirements are gathered up front for the entire lifecycle

lllustration from https://productcoalition.com/product-development-using-agile-methodology-446c01ecd510 31

Incremental vs iterative development

The word increment fundamentally means add onto
The word iterate fundamentally means re-do

For incremental,
— you need to have well defined requirements
— Between each increment, you can adjust part of the requirements
— Several increments can be produced in parallel

For iterative,

— You start with a set of requirements in order to produce a first delivery
— At each iteration, you collect new requirements and you make a new version

32

Incremental vs iterative development

BizTeck:

(>
;" =
(>
VA
It
Incremental
oy e
(31 1.:"."r.l_lh‘::l_'|‘;:-,',}F
g N
T I\)
L7 Iterative

[llustration from http://www.golali.co/waterfall-vs-iterative-model/ and from
https://agilenotion.com/agile-categoriesiterative-incremental-evolutionary/

33

Waterfall vs Iterative

-

Waterfall process: during the development phase a unique version is built N
and delivered at the end of the project.

0 " o0 b0 >

 Iterative/Agile process: sucessive versions are delivered until client's)
satisfaction. The architecture of the product evolves during the project.

e e R o)

o

Adapted from an image of http://www.golali.co/waterfall-vs-iterative-model/ 34

Agile development processes

* Mainly an iterative development processes
— Rapid cycles (1 to 3 weeks)

— Small release

 Examples of agile processes

— XP (Extreme Programming)

— Scrum Iterative &

35

Agile processes: 12 principles

Customer satisfaction by early and continuous delivery of useful software
Welcome changing requirements, even in late development

Working software is delivered frequently (weeks rather than months)
Close, daily cooperation between business people and developers
Projects are built around motivated individuals, who should be trusted
Face-to-face conversation is the best form of communication (co-location)
Working software is the principal measure of progress

Sustainable development, able to maintain a constant pace

Continuous attention to technical excellence and good design

Simplicity (maximizing the amount of work not done) is essential
Self-organizing teams

Regular adaptation to changing circumstance

36

Agile software development practices

Backlogs (Product and Sprint)
Behavior-driven development (BDD)
Continuous integration (Cl)

Daily stand-up / Daily Scrum
lterative and incremental development (IID)
Pair programming

Planning poker

Refactoring

Retrospective

Story-driven modeling

Test-driven development (TDD)

Agile processes:

* Advantages

— Customer satisfaction by rapid, continuous delivery of useful
software

— People and interactions are emphasized rather than process and
tools

— Customers, developers and testers constantly interact with each
other

— Working software is delivered frequently (weeks rather than
months)

— Face-to-face conversation is the best form of communication

— Close, daily cooperation between business people and developers
— Continuous attention to technical excellence and good design

— Regular adaptation to changing circumstances

— Even late changes in requirements are welcomed

38

Agile processes

* Disadvantages

— Difficult to assess the effort required at the beginning
of the deuv. life cycle.

— There is lack of emphasis on necessary designing and
documentation.

— The project can easily get taken off track
 When to use Agile processes:

— When new changes are needed to be implemented

— End users’ needs are ever changing in a dynamic
business and IT world

39

Extreme Programming (XP)

Agile project management

Intended to improve
— software quality and
— responsiveness to changing requirements
Based on multiple short development cycles
to reduce the cost of changes in requirements
Some key elements
— programming in pairs or doing extensive code review,
— unit testing of all code,
— not programming features until they are really needed,
— code simplicity and clarity
— a flat management structure

Extreme Programming (XP)

www.scnsoft.com/software-development/software-development-models 41

Extreme Programming (XP)

e Best for:

— Small, co-located teams (5—12 people) that deal with rapidly
changing software requirements.

— Complex modules or components that need frequent iterations
and high-quality output, for example, core modules of a larger
system under active development, where practices like pair
programming and TDD ensure maintainability.

— Rapid prototyping for R&D projects and innovative technology
software.

* Not ideal for:

— Large distributed teams with complex collaboration workflows.

— Projects with less experienced developers or limited access to
end users or product experts for rapid feedback and iteration.

Extreme Programming (XP)

* Benefices

— Ensures strong focus on code quality.

— Welcomes mid-iteration changes.

— Improves knowledge sharing through pair programming
* Challenges

— Demands significant resources due to specific roles (XP coach, tracker, etc.)
and multiple developers per task (e.g., for pair programming).

— Requires constant client (or proxy) presence.
— Relies on face-to-face communication => distributed teams hard to manage.
— Creates pressure on team members due to rapid cycles and tight deadlines.

— Requires mature infrastructure and DevOps practices to support frequent
releases.

— Knowledge management overtime (no documentation)

* According to the 2022 State of Agile report, only 7% of Agile teams use
Extreme Programming.

SCRUM

Agile project management

Scrum team: product owner, developers, scrum master
Sprint

— fixed period, between one week and one month

— starts with a sprint planning to define sprint goal

— ends with
* Asprint review = to elicit stakeholders feedback

* A sprint retrospective = to identify lessons and improvements for the
next sprints

Daily scrum meetings
— are intended to be less than 15 minutes in length,
— to announce progress and issues that may be hindering the goal

Stakeholder liaison

Product
Backlog

1S Refinement | 4 | | Daily Scrum
Product Owner '
N
2 Development Team
: Team forecasts
i Q;fp Sprint Goal " Potentially
= Q Releasable
. Sprint Sprint - Increment s
. Planning Backlog &4. % §
13 Topic 1: forecast PBI's) ‘3 _ s
14 Topic 2: plan work (e.g. tasks) Sprlnt @éﬁ!{: Sprmt @'*‘!"—
® Review Retrospective
Product
Backlog

45

SCRUM

e Benefits

— Provides a clear process

— Maintains team focus on the most important work first through
defined sprint goals.

— Facilitates easy incorporation of changes.

* Challenges
— Requires to make the roles and ceremonies effective.
— Becomes time-consuming without strict focus and discipline.

— Demands self-discipline to maintain code quality, as Scrum
doesn’t prescribe specific technical practices (like test-driven

development).

* 68% to 80% of Agile teams use Scrum

SCRUM

 Best for:

— Feature-driven projects with a clear vision
but evolving requirements.

— Solutions that benefit from time-boxed sprints with regular
demos and retrospectives, such as customer-facing apps,
SaaS features, and new modules for enterprise software
that need early validation by business users.

* Not ideal for:
— Fast-paced projects where priorities may change daily.

— Projects where work doesn’t produce frequent changes
visible to users (e.g., back-end refactoring, database
migration, internal APl or middleware development).

KANBAN

Agile process

Absence of pronounced iteration

Work is visualized on a Kanban board,

Tasks flow continuously based on team capacity
Communication with the client is ongoing

Backlog Todo In progress Testing Done Blocked
Feats \.‘a.“"‘ Bug fix - P wﬂ“ $‘M
\i W eat %'b
o :""#u.r. o re o
Fearyr, ' Featyy, = Faatun
‘—i"'
wﬁ

Fag T

www.scnsoft.com/software-development/software-development-models

KANBAN

* Advantages/benefits
— Enables quick delivery with minimal planning overhead.

— Visualizes the entire workflow, improving progress visibility
and task prioritization.

— Allows tasks to be reshuffled on the fly.
* Challenges

— Requires strong leadership to prevent miscoordination

— Demands careful setting and enforcement of work-in-
progress (WIP) limits to prevent delays and quality issues.

— Risks moving in the wrong direction, delivering outcomes
that don’t fully align with business needs.

KANBAN

* Appropriate for:
— Support,

— Maintenance and evolution projects where tasks like
bug fixes and small updates arrive unpredictably.

e Not ideal for:

— New development projects where features are highly
interlinked and need to be delivered in a specific
order.

— Newcomer teams with less mature self-management
and development discipline.

Spiral development model

Risk-driven process model
— Meta development model,
— with emphasis placed on risk analysis.
Each spiral corresponds to a “step”

that can be used for an
increment/iteration/activity

Each spiral has four phases:
— Planning, i e
— Risk Analysis, et

— Engineering and \ e,
— Evaluation

Spiral development model

* Advantages of Spiral model

— High amount of risk analysis hence, avoidance of Risk is
enhanced

— Strong approval and documentation control
— Additional Functionality can be added at a later date

* Disadvantages of Spiral model
— Can be a costly model to use.
— Risk analysis requires highly specific expertise.
— Project’s success is highly dependent on the risk analysis
— Doesn’t work well for smaller projects.

Spiral development model

When to use Spiral model?

— When costs and risk evaluation is important
— For medium to high-risk projects

— Users are unsure of their needs

— Requirements are complex

— Significant changes are expected (research and
exploration)

Prototyping
(activity, not a process)

Activity of creating a prototype of the application,
= an incomplete version of the product

— concerns only a few aspects of the final product

Outline

— ldentify basic requirements
— Develop an Initial Prototype

— Review of the customers, including end-users, to examine
the prototype and to provide feedback on additions or
changes.

— Revise and Enhance the specification / prototype using the
feedback

Prototyping (activity)

* The idea behind

— Not a standalone, complete development
methodology

— Attempts to reduce inherent project risk

— User is involved throughout the development
process

* Example of usages
— Understanding of user requirements
— Checking some technology relevance

Prototyping (activity)

* Advantages of prototyping
— Improved and increased user involvement
— Reduced time and costs
* Risks using of prototyping
— Insufficient analysis
— Prototype vs finished system
— Excessive development time of the prototype

TDD (agile practice)

Test Driven Development
— Reverse the order between dev and unit testing
Usual order

— Code simple functions, then achieve unit testing

— Done by the same person
which makes testing not as efficient as expected

TDD
— Elaboration of the tests before the code
— Help the developer to understand the requirements
— Help the developer to identify corner cases
— Can be applyied in any development process

Not to be confused with V-cycle development process

Choice of a development process

e Learn the about the development processes
* Assess the needs of Stakeholders
* Use the criteria

Choice of a development process

Flexibility
to implement MVP delivery Client Risk Documentation
changes speed involvement management complexity
V-mode o o e [
Incremental Medium Medium Medium Medium
lterative Medium - Medium Medium
Spira wedum | wigh [Neryhigh |

RUP Medium Medium Medium Medium _

Scrum Medium Medium

https://www.scnsoft.com/software-development/software-development-models &1

Exercise 3 for
Which development process?

System for student management in a university
(this system replace an existing system without any
functional evolutions)

An new interactive system for travelers to have
schedules on their smartphones

A system to control subway without drivers
A very large system for Air traffic management
A very new 3D-system for software maintenance

Infrastructure and services for city that wants to
become a “smart-city”

