
Exo 1
=====

Q1. According to Frama-C RTE 4 runtime errors could happen:
1. a memory error when executing T[x]=y if x<0
2. a memory error when executing T[x]=y if x>=5
3. an integer overflow when executing x=x+1
4. an integer overflow when executing y=y+100

Q2. Running Frama-C EVA we get the following results:
- EVA is not able to prove that error 2 won't occur
- EVA is not able to prove that error 4 won't occur

 The 2 other errors are discharged (they will definitely not occur)

Q3.

Running a VSA by hand we get the following results at the entry of each babsic
block:

* without widening, the loop is unrolled up to termination:
(note that variable y is *not* constrained by condition of block B1)

Entering B0
x=bot, y=bot

Entering B1
x=[0,6], y=[0,600]

Entering B2
x=[0,5], y=[0,600]

Entering B3
x=[1,5], y=[0,600]

Entering B4
x=[0,6], y=[0,600]

Entering B5
x=[6,6], y=[0,600]

We get the same conclusion than Frama-C for error 2, but not for error 4 (no
integer overflow when incrementing y)

* with widening/narrowing, variables are set to +infty after one iteration:
(note that variable y is *not* narrowed by condition of block B1)

Entering B0
x=bot, y=bot

Entering B1
x=[0,6], y=[0,+infty]

Entering B2
x=[0,5], y=[0,+infty]

Entering B3
x=[1,5], y=[0,+infty]

Entering B4
x=[0,6], y=[0,+infty]

Entering B5
x=[6,6], y=[0,+infty]

We get the same conclusions than Frama-C.

* According to the normal program execution, error 1 may really occur at
runtime,
 but error 2 will not occur. This last error is therefore a false positive.
 (Frama-C is not able to discharge because it cannot catch the implicit relation
between x and y,
 which is caught without using widening/narrowing).

Q4. For N=1000 we would get:

Entering B0
x=bot, y=bot

Entering B1
x=[0,1001], y=[0,+infty]

Entering B2
x=[0,1000], y=[0,+infty]

Entering B3
x=[1,999], y=[0,+infty]

Entering B4
x=[0,1000], y=[0,+infty]

Entering B5
x=[1001,1001], y=[0,+infty]

Here error 2 is discharged, because within B3 we have x<1000.
However, error 4 is not discharged, and it is still a false positive ...

Q5.

We want to check under which conditions on N we would get a buffer overflow at
line 11.
To do so we need to express a constraint on N (considered as a symbolic value)
telling whether line 11 can be executed with x<0 or x>=N.
In practice, since the value of N impacts the number of loop iterations, we need
to enumerate several values of N
(since each of them leads to a different path predicate for reaching line 11).

For instance, we should consider the following constraints:
 - no iteration

N=0 and x=0 and x<N+1 and x%2=1 and (x<0 or x>=N),
which is not satisfiable

 - 1 iteration
N=1 and x=0 and x<N+1 and x%2=1 and (x<0 or x>=N) and
x1=x+1 and x1<N+1 and x1%2=1 and (x1<0 or x1>=N),

 which is satisfiable since x1=1.
 - 2 iterations

N=2 and x=0 and x<N+1 and x%2=1 and (x<0 or x>=N) and
x1=x+1 and x1<N+1 and x1%2=1 and (x1<0 or x1>=N) and
x2=x1+1 and x2<N+1 and x2%2=1 and (x2<0 or x2>=N)

 which is not satisfiable
 - etc.

In conclusion the best we can do here is to check a *finite* set of constraints
(corresponding to each numbers of iterations), and we will get an error whenever
N is odd.
But we won't be able to conclude for *any* value of N ...

