Q1. According to Frama-C RTE 4 runtime errors could happen:

1. a memory error when executing $T[x]=y$ if $x<0$
2. a memory error when executing $T[x]=y$ if $x>=5$
3. an integer overflow when executing $x=x+1$
4. an integer overflow when executing $y=y+100$

Q2. Running Frama-C EVA we get the following results:

- EVA is not able to prove that error 2 won't occur
- EVA is not able to prove that error 4 won't occur

The 2 other errors are discharged (they will definitely not occur)
Q3.
Running a VSA by hand we get the following results at the entry of each babsic block:

* without widening, the loop is unrolled up to termination:
(note that variable y is *not* constrained by condition of block B1)
Entering B0
$x=b o t, y=b o t$
Entering B1
$x=[0,6], y=[0,600]$
Entering B2
$x=[0,5], y=[0,600]$
Entering B3
$x=[1,5], y=[0,600]$
Entering B4
$x=[0,6], y=[0,600]$
Entering B5
$x=[6,6], y=[0,600]$
We get the same conclusion than Frama-C for error 2, but not for error 4 (no integer overflow when incrementing y)
* with widening/narrowing, variables are set to +infty after one iteration:
(note that variable y is *not* narrowed by condition of block B1)
Entering B0
$x=$ bot, $y=b o t$
Entering B1
$x=[0,6], y=[0,+i n f t y]$
Entering B2 $x=[0,5], y=[0,+i n f t y]$
Entering B3 $x=[1,5], y=[0,+i n f t y]$
Entering B4 $x=[0,6], y=[0,+i n f t y]$
Entering B5 $x=[6,6], y=[0,+i n f t y]$

We get the same conclusions than Frama-C.

[^0]Q4. For $\mathrm{N}=1000$ we would get:
Entering B0
$x=b o t, y=b o t$
Entering B1 $x=[0,1001], y=[0,+i n f t y]$
Entering B2 $x=[0,1000], y=[0,+i n f t y]$
Entering B3 $x=[1,999], y=[0,+i n f t y]$
Entering B4 $x=[0,1000], y=[0,+i n f t y]$
Entering B5 $x=[1001,1001], y=[0,+i n f t y]$

Here error 2 is discharged, because within $B 3$ we have $x<1000$.
However, error 4 is not discharged, and it is still a false positive ...
Q5.
We want to check under which conditions on N we would get a buffer overflow at line 11.
To do so we need to express a constraint on N (considered as a symbolic value)
telling whether line 11 can be executed with $x<0$ or $x>=N$.
In practice, since the value of N impacts the number of loop iterations, we need
to enumerate several values of N
(since each of them leads to a different path predicate for reaching line 11).
For instance, we should consider the following constraints:

- no iteration $N=0$ and $x=0$ and $x<N+1$ and $x \% 2=1$ and $(x<0$ or $x>=N)$, which is not satisfiable
- 1 iteration $N=1$ and $x=0$ and $x<N+1$ and $x \% 2=1$ and $(x<0$ or $x>=N)$ and $x 1=x+1$ and $x 1<N+1$ and $x 1 \% 2=1$ and ($x 1<0$ or $x 1>=N$), which is satisfiable since $\times 1=1$.
- 2 iterations
$N=2$ and $x=0$ and $x<N+1$ and $x \% 2=1$ and $(x<0$ or $x>=N)$ and $x 1=x+1$ and $x 1<N+1$ and $x 1 \% 2=1$ and ($x 1<0$ or $x 1>=N$) and $x 2=x 1+1$ and $x 2<N+1$ and $x 2 \% 2=1$ and ($x 2<0$ or $x 2>=N$) which is not satisfiable
- etc.

In conclusion the best we can do here is to check a *finite* set of constraints (corresponding to each numbers of iterations), and we will get an error whenever N is odd.
But we won't be able to conclude for *any* value of $\mathrm{N} .$.

[^0]: * According to the normal program execution, error 1 may really occur at runtime, but error 2 will not occur. This last error is therefore a false positive. (Frama-C is not able to discharge because it cannot catch the implicit relation between x and y, which is caught without using widening/narrowing).

