
Grenoble INP UGA
Master CyberSecurity Year 2021-22

Software Security & Secure Programming

Written Assignment - Tuesday November the 30th, 2021

Duration: 1 hour – Answers can be written either in English or in French – All documents allowed

This exam contains two exercises which are independent each others.

Exercise 1 (∼ 12 pts, about 40 minutes)

Appendix A is the code of function grub username get() found in a previous version of the Linux Grub2
bootloader, which happened to contain several vulnerabilities, some of them being exploitable. These vul-
nerabilities are (classical !) memory errors due to buffer overflows. In the following we assume that:

� Buffer buf has been properly allocated before the call, and its length (buf size) is 1024 bytes.

� The attacker controls – as a regular user – the value of the local variable key through function
grub getkey(). In particular she/he is expected to fill buffer buf with its user name, some edit-
ing facilities being provided (i.e., backspacing and erasing the whole input).

Q1. Within function grub username get() buffer buf is written at line 29. Obviously (!), this write access
may lead to a so-called off-by-two error.

1. explain what is meant by off-by-two error;

2. how such an error could occur (what should do the attacker to trigger this vulnerability) ?

3. what could be the possible consequences of this error from a security point view (i.e, what could be
the attacker gains) ?

4. how to rewrite the code in oder to prevent this error ?

Q2. Function grub memset, called at line 34, is similar to the standard function memset: it is used here to
“clear” (with 0’s) the suffix of buf which have not been filled by the user in the while loop. The motivation
is the following:

Typing “root” as username, cur len is 5, and the grub memset() function will clear (set to zero)
bytes form 5 to 1024-5. This way of programming is quite robust. For example, if the typed
username is stored in a clean 1024-byte array, then we can compare the whole 1024-bytes with
the valid username, rather than comparing both strings. This protects against some short of
side-channels attacks, like timing attacks.

Explain what is meant here, and how an attacker could get secret information (like valid usernames) if
(classical) string comparison was used later on, without having called grub memset() in this way.

Q3. Unfortunately, this call to function grub memset at line 34 may trigger itself a memory error, writing
outside buf bounds ... In particular the value of cur len is attacker controlled.

1. what happens for instance if the user immediately enters one backspace followed by a return when
running grub username get() (noticing that cur len is an unsigned int, and remembering that in C
arithmetic operations on unsigned int are performed modulo 232, with wrap-around) ?

2. Assuming buf address is 0xabcd what would be the value of buf + cur len ? And the value of
buf size - cur len ?

3. As a consequence, explain how the attacker may overwrite (a part of) the execution stack in a controlled
way. Why is this (in general) dangerous and potentially exploitable ? Draw a picture of the stack
when grub memset is under execution, illustrating how having entered several backspaces may allow
to overwrite critical data in the stack . . .

Q4. According to the previous questions the attacker may “only” overwrite a part of the execution stack
with 0’s, which is (hardly) exploitable under regular execution conditions. However, at this early stage of the
boot sequence, the IVT (Interrupt Vector Table) resides at address 0x0, and it contains pointer to security
sensitive functions. Moreover:

� There is no memory protection. The whole memory is readable/writable/executable.

� There is no Stack Smashing Protector (SSP).

� There is no Address Space Layout Randomization (ASLR).

Explain if and how these protections would allowed to mitigate this attack.

Q5. How to (slightly !) rewrite the code of grub username get in order to prevent this vulnerability ?

You can have a look (after the exam !) to the following web page if you want more information about this
vulnerability:

http://hmarco.org/bugs/CVE-2015-8370-Grub2-authentication-bypass.html

Exercise 2 (∼ 8 pts), about 20 minutes

We consider the following C code, where function checkKey() is supposed to check if the public input string
inputKey is equal to the secret value secretKey. This function uses the auxiliary function equalString to
perform a string comparison. We assume that all buffers are properly allocated, of size KLENGTH (no buffer
overflows !).

1 #define KLENGTH 16
2
3 char secretKey [KLENGTH] ; // s e c r e t v a l u e
4
5 int equa lS t r i ng (char * s1 , char * s2) {
6 int i ;
7 for (i=0 ; i<KLENGTH ; i++)
8 i f (s1 [i] != s2 [i])
9 return 0 ; // s1 and s2 are not e q u a l . . .

10 return 1 ; // s1 and s2 are e q u a l
11 }
12
13 int checkKey (char * inputKey) {
14 i f (! equa lS t r i ng (inputKey , secretKey)
15 p r i n t f (”wrong key !\n”) ;
16 }

Q1. When running several times function checkKey() with an incorrect inputKey (i.e., not equal to
secretKey) an attacker may get some information about the secret key by measuring the execution times.
What is this leaking information ? More precisely, if the secret key is "xxxxxxxxxxxxxxxx" and the input
key is "xxxxyyyyyyyyyyyy" what the attacker may learn ?

Q2. What is the cost (i.e., the maximal number of tries) to guess the correct key using a brute-force attack
(without measuring at all the execution times) ? And what would be the cost of a timing attack (exploiting
the vulnerability discussed in question Q1) ?

Q3. A golden rule to avoid some timing attack is to use the so-called constant-time programming paradigm:

Secret information may only be used as an instruction input if that input has no impact on what
resources will be used and for how long.

Explain why functions equalString and checkKey are not constant-time.

Q4. Rewrite function equalString using the constant-time paradigm. Is function checkKey() now constant-
time ? Is the timing attack still possible ?

Q5. Knowing that this critical code (buffer secretKey and function checkKey()) is written in C, what
would be the possible solution(s) to protect an external process to access and/or execute it ? And what
about an external thread ?

Appendix A - function grub username get (Exercise 1)

1 stat ic int grub username get (char buf [] , unsigned b u f s i z e) {
2 unsigned c u r l e n = 0 ;
3 int key ;
4
5 while (1)
6 {
7 key = grub getkey () ;
8 i f (key == ’ \n ’ | | key == ’ \ r ’)
9 break ;

10
11 i f (key == ’ \e ’)
12 {
13 c u r l e n = 0 ;
14 break ;
15 }
16
17 i f (key == ’ \b ’) // backspace key
18 {
19 cur l en −−;
20 g r u b p r i n t f (”\b”) ;
21 continue ;
22 }
23
24 i f (! g r u b i s p r i n t (key))
25 continue ;
26
27 i f (c u r l e n + 2 < b u f s i z e)
28 {
29 buf [c u r l e n++] = key ; // Off−by−two ! !
30 g r u b p r i n t f (”%c” , key) ;
31 }
32 }
33
34 grub memset (buf + cur l en , 0 , b u f s i z e − c u r l e n) ;
35
36 grub xputs (”\n”) ;
37 g r u b r e f r e s h () ;
38 return (key != ’ \e ’) ;
39 }

