
Grenoble INP UGA
Master CyberSecurity Year 2023-24

Software Security & Secure Programming

Written Assignment - Tuesday November the 14th, 2023

Duration: 1h15 – Answers can be written either in English or in French – All documents allowed.

Exercise 1 (∼ 6 pts)

We consider the two (independent) functions f1 end f2 given below. We assume that in both cases, the
string parameter s[] is controled by the user.

1 #define L 256
2
3 int f (char s []) {
4 char buf [L] ;
5 for (int i=0 ; i<s t r l e n (s) ; i++) {
6 buf [i]= s [i] ;
7 } ;
8 p r i n t f (”%s ” , s) ;
9 }

1 #define L 256
2
3 void f (int s []) {
4 int x ;
5 for (int i=0 ; i<L ; i++) {
6 scan f (”%d” , &x) ;
7 i f (i %2) s [i] = x ;
8 } ;
9 }

Q1. We assume first that these functions are compiled and executed without any specific protections. Tell,
fo each of them, if the function contains a vulnerability that could be exploited by an attacker, indicating
the gain it may obtain (if any). You should explain your answer in a few line and/or with the help of a
figure.

Q2. We now assume that these functions are compiled with the -fstack-protector flag, to include stack
canaries. Does it modify the answers you gave for Q1? If a function is still vulnerable, which protection
mechanism would ou advise to prevent its exploitability? Explain your answers . . .

Exercise 2 (∼ 7 pts)

When compiling (without any specific option) and running the C program given on the next page we obtain
the value 0 printed on the screen.

Q1. Explain why, preferably with the help of a figure.

Q2. What are the implications of this behavior with respect to security? Give a small code example, using
the same “vulnerable pattern”, and allowing an attacker to break some expected security property.

Q3. Compiling this program with Address Sanitizer1 does not change its behavior (no error detected, still
prints 0). Propose and discuss some techniques that would (help to) detect this vulnerability:

1. at compile-time;

2. at run-time.

1using the flag -fsanitize=address

1 int * f oo () {
2 int a ;
3 int *x ;
4 a = 42 ;
5 x = &a ;
6 return x ;
7 }
8
9 int bar () {

10 int buf [2 0] ;
11 for (int i =0; i <20; i++)
12 buf [i]=0 ;
13 }
14
15 int main () {
16 int *p ;
17 p = foo () ;
18 bar () ;
19 p r i n t f (”%d\n” , *p) ;
20 return 0 ;
21 }

Exercise 3 (∼ 7 pts)

We consider the function foo below:

1 void f oo (char s []) {
2 char buf [L] ;
3 s t r cpy (buf , s) ;
4 }

We know that a remote server, owned by a criminal organisation2, executes an application calling function
foo and, on this server:

� the size of the string parameter s can be up to 300 bytes long, and we do control its content remotely;

� buffer buf lies in the stack at address 0xFFDEAD003;

� the size of the buffer (L) is between 40 an 100 bytes (we do not know its exact value);

� the distance between the end of the buffer and the return address location of function foo in the stack
is 8;

We also have a 30 bytes long sequence SC (shell-code) which, when executed on the remote server, would
allow to crash it definitely (which is our goal!).

Give a possible content for string s in order to activate our shell-code SC when function foo terminates.
Remember that in C language the null-byte 0x00 is a string termination mark, and beware, only one try is
allowed, and it should be successful!

Here again you can explain your solution with a picture

2the one you wants!
3addresses are 4 bytes long on this machine

