0 O Ui Wi =

Grenoble INP UGA
Master CyberSecurity Year 2024-25

Software Security & Secure Programming

Written Assignment - Tuesday November the 19th, 2024

Duration: 1h15 — Answers can be written either in English or in French — All documents allowed.

Exercise 1 (~ 6 pts)

We consider the code given below where:

e global variables T and y contain high (i.e., confidential) values stored in secure memory locations;

e function foo is public, its code is visible and its parameter x is low (i.e., user controlled).

char T[] ; // confidential
int y ; // confidential

int foo (int x) {
int r=0 ;
while (r < x) {
if (T[r] > 0)
r=x
else
r=r+1 ;

b

}
Tly] = r4x ;
return r ;

Q1. Tell why function foo is not constant-time', briefly explaining your answer.

Q2. Indicate precisely what information an attacker may gain on T and y when executing foo (as many
time he/she wants). You will distinguish between two situations:

1. foo has not been compiled with Address Sanitizer

2. foo has been compiled with Address Sanitizer

Q3. Re-write foo as a constant-time function, preserving its nominal behavior (i.e., only reducing
potential side-channels).

1from a confidentiality point of view

Exercise 2 (~ 6 pts)

Two recent hardware-level enhancements have been proposed to mitigate software vulnerabilities targeting
the control-flow integrity (CFI) of the program under execution.

Intel CET consists in duplicating the normal execution stack with a shadow stack in order to store a copy
of the current sequence of function return-addresses. This shadow stack being non accessible from
the applications it allows to check the integrity of the return address when calling a ret instruction.

ARM PAC consists in signing the pointers used to access code or data memory locations (including the
return addresses). Before dereferencing such pointers their signature is checked to make sure that it
has not been altered by an attacker.

Q1. Give a (short!) vulnerable code which cannot be exploited thanks to these protections.

Q2. Briefly compare these two solutions in terms of memory and execution time overhead.

Q3. Give a of short example of vulnerable code those exploitation would be prevented by ARM PAC only.

Exercise 3 (~ 8 pts)

The file vuln.c (in Appendix A) contains a lightweight C library allowing to create and manage a set of
user accounts. Each user account consists in:

e a user id (a strictly positive integer), which uniquely identifies a user;
e a boolean value telling if this user is "administrator” or not;
e a user name (possibly non unique, we don’t care)

e a sequence of dummy user information called ”setting”, stored as pairs (index,value), where both index
and values are integers.
Account creation can be performed by privileged users only, whereas updating settings can be performed by

any users. File test.c (in Appendix B) gives an example of code using this library.

Q1. File vuln.c contains a buffer overflow vulnerability allowing an unprivileged attacker to success-
fully promote as admin? a user id initially created as non-admin. The attacker can only use the API
functions provided for a non-privileged user.

Give a new version of test.c allowing to trigger and exploit this vulnerability, explaining how it works.

Q2. Tell whether each following solutions might help to detect/prevent the exploitation of this vulnerablity,
briefly justifying your answer:

1. compiling the code with the stack protector option (i.e., adding stack canaries)
2. compiling the code with Address Sanitizer

3. ensuring that the stack is non exrecutable

Q3. How would you patch vunl.c to correct this vulnerability at the source level?

2such that function is_admin() would return true

0 O Uik Wi

Appendix A: vuln.c

#define MAX USERNAME LEN 39
#define SETTINGS.COUNT 10
#define MAX_USERS 100

// The following type and variables are not accessible to non—privileged users

typedef struct {
long userid;
char username [MAX USERNAMEILEN + 1];
long setting [SETTINGS.COUNT];
int isAdmin;
} user_account;

// Simulates an internal store of active user accounts
user_account sxaccounts [MAXUSERS];

// Internal counter of user accounts
static int userid_next = 0;

// The following function can be called by privileged users only

// Creates a new user account and returns it’s unique identifier
int create_user_account (int isAdmin, const char xusername) {
printf(”Creating user account for %s .7, username) ;
if (userid_next >= MAXUSERS) {
fprintf(stderr, "maximum user number exceeded”); return —1;
}

user_account *xua

if (strlen (username) > MAXUSERNAMELEN) ({

fprintf(stderr, ”username is too long”); return —1;
}
ua = malloc(sizeof (user_account));
if (ua = NULL) {
fprintf(stderr, "malloc failed to allocate memory”); return —1;
}
ua—>isAdmin = isAdmin;
ua—>userid = userid_next-++;

strepy (ua—>username, username):;

memset(&ua—>setting , 0, sizeof ua—>setting); // empty setting
accounts [userid_next] = ua;

return userid_next;

53
54
95

o6
57
58
99
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86

0 O Uik Wi

©

// The following function can be called by any wuser

// Updates the matching setting for the specified user and returns the status
of the operation

// A setting is some arbitrary string associated with an index as a key

int update_setting (int user_id , const char xindex, const char xvalue) {
int i, v;

printf(” Updating setting for user id %d 7 user_id) ;
if (user_-id < 0 || wuser_-id >= MAXUSERS) {
fprintf(stderr, ”invalid user id”); return O0;
}s
if (value=NULL) {
fprintf(stderr, ”invalid value setting”); return O;
}s
// convert strings wvalue and index to int
v = atoi(value) ; i = atoi(index) ;
if (index=NULL || i >= SETTINGS.COUNT) {
fprintf(stderr, ”invalid index setting”); return O0;
}s
accounts [user_id]—>setting [i] = v;
return 1;
}
// Returns whether the specified user is an admin
int is_admin (int user_id) {
if (user_.id < 0 || wuser_-id >= MAXUSERS) {
fprintf(stderr, ”invalid user id”); return O0;

}

return accounts|user_id]—>isAdmin;

Appendix B: test.c

int main() {
// Creates an admin username called 7alice”

int userl = create_user_account (true, ”alice”);
// Creates a non—admin username called "bob”
int user2 = create_user_account (false, ”bob”);

// Updates the setting ’'2° of userl to the number ’10’
update_setting (userl, 72”7, 7107);

return O0;

