
Grenoble INP UGA
Master CybserSecurity Year 2022-23

Software Security & Secure Programming

Written Exam - Tuesday January the 17th, 2023

Duration: 2 hours – Answers can be written either in English or in French.
All documents allowed apart books – Electronic devices are forbidden.

This exam contains two distinct parts:

1. One exercise, supposed to be solved in less than 1h;

2. Some questions on a research paper, allow about 1h to read the paper and answer these questions.

Exercise. (∼ 10 pts)

We consider the following C program (on the left) and its Control Flow Graph (CFG, on the right):

1 #define N 5
2
3 int main () {
4 int x , y ;
5 int T[N] ;
6
7 x = 0 ;
8 y = 0 ;
9 while (x<N+1) {
10 i f (x%2==1)
11 T[x] = y ;
12 x = x + 1 ;
13 y = y + 100 ;
14 } ;
15 return 0 ;
16 }

B2
B5

B1

x=0

y=0

B0

true false
x<N+1 ?

x%2 == 1 ?

T[x] = y

x = x+1

y = y + 100

false true
return 0

B3

B4

Figure 1: a C program and its Control-Flow Graph (CFG)

Q1. Figure 2 (left) is a screen copy of the results produced when running the -rte (runtime-error) option
of Frama-C. Explain these results.

Q2. Figure 2 (right) is a screen copy of the results produced when running the -eva (value-set analysis)
option of Frama-C. According to Frama-C what is (potentially) wrong with this program ?

Figure 2: Results obtained with Frama-C when running -rte (left) and -eva (right)

Q3. We would like to know if the results produced by the value-set analysis of Frama-C are false positives.
Compute (manually) a value-set analysis using intervals, and give the abstract values obtained for variables
x and y at the entry and exit locations of each basic block (as Frama-C did when running its value-set
analysis). You can use widening/narrowing operators if you want (but it is not mandatory on this example).
According to this computation, is your conclusion similar to the one produced by Frama-C ?
According to your own understanding of this program behavior at runtime, is there any false positive here ?

Q4. We now define the constant N with the value 1000. What would be the abstract values obtained
when doing a value-set analysis (with widening and narrowing) for variables x and y at each entry and exit
locations of each basic blocks ? Which run-time errors are detected by this analysis ? Which ones are false
positives ?

Q5. We now want to know, using symbolic execution1, under which conditions for the constant N the
code of Figure 1 does contain a buffer overflow. To answer you should:

• explain how you would proceed in practice, including how you would modify the original code (if
necessary);

• give an example of a relevant path predicate you expect to obtain;

• tell if this path predicate is satisfiable;

• and finally conclude about the “soundness” of the results you will obtain at the end (i.e., how much
they are “trustful”).

1e.g., with a tool like PathCrawler

Questions on a research paper. (∼ 10 pts)

Read sections I to V of the paper given in appendix, answering the following questions as long as you
read it. The objective of this part of the exam is to evaluate your ability to understand a description of a
proposed vulnerability mitigation technique (its strengths and limitations, with respect to other approaches
you know). When answering the following questions you should not copy entire sentences from the paper
but rather illustrate your point with examples and comments from your own.

Sections marked with a vertical line in the margin can be skipped. Sentences which are underlined have
to be explained (see questions below).

Q1 [section I].

1. According to you, why do we still find CVEs related to stack memory errors ?

2. What are the main weaknesses of the stack protections mentioned in this section ?

3. “. . . the emergence of return-oriented attacks [69] raised concerns about protecting the in-
tegrity of code pointers on the stack in general, motivating new defenses . . . ”

Can you better explain this sentence ?

4. What are the main objectives of the work described in this paper ?

Q2 [section II-A].

1. Draw a possible layout for the execution stack corresponding to the code of Figure 1.

2. Explain the 3 error classes, giving concrete examples from your own and showing precisely the attacker
gains for each of them.

3. “ . . . the need to circumvent stack defenses (see Section II-D) has motivated other attack
vectors, such as the modification of control data (e.g., line 6 of Figure 1) and exfiltration of
sensitive stack data (e.g., line 4 in Figure 1)”

Can you better explain this sentence ?

Q3 [section II-C].

1. What is a safe object ? And why is it called “safe” ?

2. Explain precisely the purpose and use of the 2 stacks (e.g., by explaining their use on an example of
your own).

3. Why type errors do not impact return addresses, nor other code pointer variables ?

4. What are the false positives and false negatives introduced by the “Safe Stack” solution ?

Q4 [section III].

1. Explain why imax, omax, ibuff and obuff can be considered as safe objects and stored in an isolated
stack.

2. What are the 2 main code analysis techniques used in DataGuard ?

3. Why is it so important for theses analysis to rely on over-approximations ?

Q5 [section IV].

1. Why ALSR is required for DataGuard ?

2. Why constants are expected to be stored all the time in read-only memory ?

Q6 [section V-A].

1. give a C code example from your own containing a safe and a non-safe object (according to Defini-
tion 1) ?

2. Why pointer arithmetic is dangerous for spatial memory errors ?

3. “If any pointer is aliased by a pointer passed from a caller or that references a heap or global
object, then DataGuard identifies the need for temporal analysis”

Can you better explain this sentence ?

Q7 [section V-B]. Back to your example of non safe code object (Question 6.1), explain which constraints
are not satisfied (and hence make these objects non-safe).

Q8 [section V-C]. Mention a tool you are aware of which relies on value-range analysis.

Q9 [section V-D]. Does symbolic execution over-approximate the behavior of a program ? So what is
“wrong” in this paper ?

Q10 (more general question).

1. What about applying the ideas proposed in this paper to avoid heap memory corruptions ?

2. What are the main limitations you can see regarding the proposed approach ?

The Taming of the Stack:
Isolating Stack Data from Memory Errors

Kaiming Huang†, Yongzhe Huang†, Mathias Payer‡, Zhiyun Qian§, Jack Sampson†, Gang Tan†, Trent Jaeger†

† The Pennsylvania State University ‡ École Polytechnique Fédérale de Lausanne (EPFL) § University of California, Riverside
† {kzh529, yzh89, jms1257, gxt29, trj1}@psu.edu, ‡ mathias.payer@nebelwelt.net, § zhiyunq@cs.ucr.edu

Abstract—Despite vast research on defenses to protect stack
objects from the exploitation of memory errors, much stack
data remains at risk. Historically, stack defenses focus on the
protection of code pointers, such as return addresses, but emerg-
ing techniques to exploit memory errors motivate the need for
practical solutions to protect stack data objects as well. However,
recent approaches provide an incomplete view of security by not
accounting for memory errors comprehensively and by limiting
the set of objects that can be protected unnecessarily. In this
paper, we present the DATAGUARD system that identifies which
stack objects are safe statically from spatial, type, and temporal
memory errors to protect those objects efficiently. DATAGUARD
improves security through a more comprehensive and accurate
safety analysis that proves a larger number of stack objects are
safe from memory errors, while ensuring that no unsafe stack
objects are mistakenly classified as safe. DATAGUARD’s analysis
of server programs and the SPEC CPU2006 benchmark suite
shows that DATAGUARD improves security by: (1) ensuring that
no memory safety violations are possible for any stack objects
classified as safe, removing 6.3% of the stack objects previously
classified safe by the Safe Stack method, and (2) blocking exploit
of all 118 stack vulnerabilities in the CGC Binaries. DATAGUARD
extends the scope of stack protection by validating as safe over
70% of the stack objects classified as unsafe by the Safe Stack
method, leading to an average of 91.45% of all stack objects
that can only be referenced safely. By identifying more functions
with only safe stack objects, DATAGUARD reduces the overhead
of using Clang’s Safe Stack defense for protection of the SPEC
CPU2006 benchmarks from 11.3% to 4.3%. Thus, DATAGUARD
shows that a comprehensive and accurate analysis can both
increase the scope of stack data protection and reduce overheads.

I. INTRODUCTION

Researchers have long wanted to protect stack data from
exploitation from memory errors. At least by the time of
the “Anderson report” [6] in 1972, researchers acknowledged
the possibility of stack overflow attacks [64], which exploit
process execution by writing beyond the bounds of a stack
memory buffer to modify other stack data, particularly return
addresses. By modifying a return address, an adversary can
control which code will be executed when a function returns.
Such attacks have been used in the wild since at least the
Morris worm [71] in 1988, including famous worm malware,
such as Code Red [30] and SQL Slammer [58].

Despite increased awareness and testing, stack memory
errors remain a major threat to software security because

stack overflow vulnerabilities remain common and new exploit
methods have been discovered. First, improvements in testing
for memory errors have not eliminated stack overflow vul-
nerabilities. Recent stack overflow vulnerabilities (e.g, CVE-
2021-28972, CVE-2021-24276, CVE-2021-25178) continue to
threaten critical software, such as the Linux kernel. Second,
adversaries have found other ways that they can effectively
exploit memory errors. For example, adversaries may ex-
ploit out-of-bounds read errors1 (e.g., CVE-2021-3444, CVE-
2020-25624, CVE-2020-16221) to disclose sensitive stack
information (e.g., to circumvent stack defenses), type errors
(e.g., CVE-2021-26825, CVE-2020-15202, CVE-2020-14147)
to reference memory using different type semantics, and tem-
poral errors (e.g., CVE-2020-25578, CVE-2020-20739, CVE-
2020-13899) to reference memory using stale or uninitialized
pointers. Nowadays, many attacks target stack data pointers
and data values to exploit programs by circumventing stack de-
fenses to redirect data flows [38] or disclose sensitive data [75],
and such attacks can even be generated automatically [40].

Current defenses to prevent the exploitation of stack mem-
ory errors have a limited scope and/or remain too expensive
for broad deployment. Originally, the focus of stack defenses
was only on protecting the integrity of return addresses, such
as by using Stack Canaries [20] or Shadow Stacks [15]. While
both defenses can now be enforced with low overhead [4],
[11], [92], the emergence of return-oriented attacks [69] raised
concerns about protecting the integrity of code pointers on the
stack in general, motivating new defenses. The Safe Stack [45]
defense employs a separate stack to store all stack objects
whose accesses cannot cause buffer overflows, which protects
code pointers from being overwritten. However, as we show,
the invariants the Safe Stack defense checks do not prevent
other attacks on memory errors, such as type confusion [82]
or use-before-initialization [83], that are necessary to prevent
exploits on stack objects in general. In addition, said invariants
are also too conservative, which causes many stack objects
to be handled as if they are unsafe, which leaves objects
unprotected unnecessarily and increases the overhead of the
Safe Stack defense. Thus, imprecision in identifying safe
stack objects creates a lose-lose situation, where security and
performance both suffer needlessly.

Alternatively, researchers have explored the design of tech-
niques to prevent exploitation of individual classes of memory
errors systematically, but these techniques have been seen to
be too expensive to be deployed in practice. For example,
techniques to prevent spatial errors validate object bounds
on each reference [60], [73], incurring significant overhead
even when applied only to stack objects [28]. Researchers

1In this paper, we group stack over/underflows and out-of-bounds reads
under the term spatial errors.

Network and Distributed Systems Security (NDSS) Symposium 2022
24-28 April 2022, San Diego, CA, USA
ISBN 1-891562-74-6
https://dx.doi.org/10.14722/NDSS.2022.23060
www.ndss-symposium.org

have employed static analysis techniques to remove checks for
objects that can be proven to only be accessed safely [3], [61].
While such analyses validate safety requirements that are less
conservative than those used for the Safe Stack defense, these
static analyses still over-approximate the number of unsafe ob-
jects significantly, causing some unnecessary runtime checks to
be retained on objects that are actually safe. Other defenses are
necessary to prevent exploitation of type [35], [41], [47] and
temporal errors [44], [46], [88] that incur additional overhead.
In addition, the idea of employing isolation or encryption to
provide selective data/memory protection has been proposed
recently [65], [67]. However, these techniques do not ensure
memory safety for all objects in isolated regions and require
user specification and/or ad hoc metrics to select the sensitive
data to protect.

In this paper, we propose the first approach that fully
protects safe stack objects from attacks on memory errors
efficiently. To do so, we develop a safety analysis that
identifies the stack objects that are safe from memory errors
comprehensively, enabling their protection from references to
other (potentially unsafe) objects via isolation on a separate
stack. To ensure security, our proposed analysis is conserva-
tively designed to either prove that all accesses to a stack object
must be safe or classify that object as unsafe (i.e., may not be
safe). We focus on stack objects because they typically have
simpler memory layouts, use constant allocation frequently,
and have more clearly defined scopes (e.g., deallocated on
function returns), which increase the likelihood of successful
safety validation. While our goal may have little impact on
attacks on memory errors on heap and global objects, stack
memory errors are still common and often provide powerful
exploit opportunities. Providing a foundation that isolates all
the stack objects for which safety can be proven systematically
protects many objects that may otherwise be prone to stack
memory exploits, and does so for practical overheads.

Identifying safe stack objects to protect them effectively
and efficiently presents several challenges. First, there is the
challenge of ensuring that safe stack objects are safe from
memory errors comprehensively. In order for stack data and
pointers to be protected from exploitation without runtime
checks, we must validate safety for all classes of memory
errors: spatial, type, and temporal. If we only prove that
a stack object is safe from buffer overflows (one type of
spatial error), type and temporal errors may still enable an
adversary to maliciously modify or disclose other stack objects.
Second, there is the challenge of increasing the number of
stack objects protected from memory errors statically. We
must devise techniques to validate safety requirements that
are more accurate, yet are still practical to apply across entire
codebases. Third, there is the challenge of ensuring that the
safety validation does not misclassify an unsafe object as safe.
The challenge is to ensure that all stack objects that are proven
to be safe from memory errors are actually safe.

We present the DATAGUARD system, which aims to ad-
dress these challenges to protect a large fraction of stack
objects from exploits on memory errors efficiently. First,
DATAGUARD determines whether a stack object is safe from
spatial, type, and temporal memory errors by validating mem-
ory safety constraints generated automatically for each stack
object. Only if a stack object is proven safe from these

three types of memory errors can it be placed on an isolated
stack to ensure its integrity without runtime checks. Second,
DATAGUARD identifies a greater number of stack objects as
safe than prior techniques by augmenting static analyses with
a targeted symbolic execution to remove false positives (i.e.,
falsely unsafe cases). The symbolic execution leverages the
static analysis to only evaluate program paths that may cause
an unsafe operation. Third, all the static analyses and symbolic
execution methods in DATAGUARD are designed to prevent
the misclassification of any unsafe stack objects as safe by
configuring and combining the multiple analyses necessary to
achieve the desired accuracy in a manner that terminates (i.e.,
classifies an object as unsafe) whenever safety can no longer
be guaranteed. DATAGUARD then applies the Clang Safe Stack
defense unmodified, enabling the protection of more stack
objects from memory errors comprehensively. An additional
benefit of the DATAGUARD protection is that by finding a
greater number of safe objects, in particular a greater number
of functions with only safe objects, the performance overhead
of stack protection is reduced.

We evaluate DATAGUARD on nginx, httpd, proftpd, open-
vpn, and opensshd servers and the SPEC CPU2006 [36]
benchmark programs, finding that DATAGUARD improves the
accuracy of classification to improve security and performance.
First, DATAGUARD avoids misclassifying a significant fraction
of unsafe stack objects as safe. For example, over 60% of
the cases found unsafe for type errors and 6.3% of all stack
objects found unsafe by DATAGUARD are classified as safe
by Safe Stack2. Second, DATAGUARD is able to prove safety
from spatial, type, and temporal errors for 91.45% of stack
objects on average for these programs. As a result, over 70%
of the stack objects classified as unsafe by Safe Stack are
classified as safe by DATAGUARD, enabling DATAGUARD to
protect 18% more stack objects on average. We examine the
security impact of DATAGUARD’s classification on the CGC
Binaries [23], finding that, for the 87 binaries that include at
least one stack-based vulnerability, all exploits are thwarted
by DATAGUARD’s classification by isolating safe objects. 95
of the 118 vulnerabilities are thwarted directly, and the other
23 cases are thwarted indirectly because they must exploit
a second memory error to complete their attack. Finally,
experiments show that DATAGUARD can leverage Clang’s
Safe Stack runtime defense, where the DATAGUARD safety
validation results in a performance improvement across the
SPEC CPU2006 benchmarks from 11.3% for the Safe Stack
classification to 4.3% for DATAGUARD.

This paper makes the following contributions:
• We address the goal of marking as many stack objects ”safe”
as possible while ensuring that no unsafe stack object is ever
classified as safe relative to spatial, type, and memory errors.
• We propose the DATAGUARD system - a significantly more
accurate method for validating the safety of stack objects
against spatial, type, and temporal memory errors to increase
the scope of protection for stack objects.
• We provide a novel set of stack object safety constraints and
develop safety analysis for three classes of memory errors that

2As Safe Stack focuses on protecting code pointers only, this limitation does
not create significant attack vectors, but is insufficient for protecting stack data
objects that are prone to attacks on these memory errors.

2

1 void example(int ct, char **buf) {
2 int lct = BUF_SIZE;
3 char lbuf[lct];
4 if (ct < lct){ //(1) ct > buf's size
5 strlcpy(lbuf, *buf, (size_t) ct); //(2) ct < 0
6 }
7 *buf = lbuf; //(3) temporal
8 }

Fig. 1: Example function demonstrates: (1) bounds error that enables overread
of buf; (2) type error due to casting of ct from signed to unsigned; and (3)
temporal error as *buf references local variable lbuf after return.

combines static analysis and symbolic execution to maximize
the number of proven safe stack objects, validating the safety
over 65% of the stack objects found unsafe by Safe Stack.
• We find that DATAGUARD improves the security of safe stack
objects by removing 6.3% of stack objects misclassified as
safe by the Safe Stack due to its incomplete protection against
memory errors and prevents the exploitation of stack memory
errors in CGC Binaries for only 4.3% performance overhead
on average for the 16 supported SPEC CPU2006 benchmarks.

II. MOTIVATION

In this section, we motivate the need to protect stack objects
from memory safety violations and show that current defenses
are too limited and/or expensive.

A. Exploiting Memory Errors on Stack Objects

Figure 1 shows the function example, which demon-
strates the three classes of memory errors that we examine
in this work. Assume that the value assigned at ct may be
controlled by an adversary.

First, line 4 demonstrates a spatial error, which permits
accesses (i.e., reads or writes) outside the memory region of a
stack object. In this case, the spatial error occurs because the
value of the size parameter ct may be larger than the actual
size of the memory region allocated for *buf, whose own size
could also be smaller than the defined constant BUF_SIZE.
Thus, an adversary could read the memory objects following
*buf in the stack segment to exfiltrate sensitive data from
other stack objects. In general, spatial errors may enable access
to memory prior the buffer (i.e., underflows) as well.

Second, line 5 demonstrates one form of a type error,
which causes a stack object to be interpreted in unexpected
ways. In this case, a type error occurs because the value ct
may be negative (as a signed integer), but is cast to positive
value (as size_t is unsigned) at line 5, converting a negative
value to a large positive value that also causes a bounds error
(i.e., a buffer overflow) that may modify sensitive stack data.

Third, line 7 demonstrates one form of a temporal error,
which permits access to a memory object that has been
deallocated. In this case, the pointer *buf is assigned to the
memory location referenced by the local pointer lbuf. Since
*buf may be used after the function example returns (e.g.,
in the function that calls example), this assignment allows
those uses to reference memory that is out of scope, creating a
dangling pointer. Temporal errors may also cause use prior to
initialization as well as or use after deallocation. In addition,
temporal errors on uninitialized data may cause memory errors
if the data is used to compute memory references.

All three classes of memory errors on stack objects are
still frequently discovered. Recent critical vulnerabilities (i.e.,
a CVSS 3.x severity base score of over 7.5) include those for
spatial errors (e.g., CVE-2021-25178, CVE-2021-3444, CVE-
2020-25624), type errors (e.g., CVE-2021-26825, CVE-2020-
15202, CVE-2020-14147), and temporal errors (e.g., CVE-
2020-25578, CVE-2020-20739, CVE-2020-13899). While his-
torically stack exploits have often targeted code pointers (e.g.,
return addresses), the need to circumvent stack defenses (see
Section II-D) has motivated other attack vectors, such as the
modification of control data (e.g., line 6 of Figure 1) and
exfiltration of sensitive stack data (e.g., line 4 in Figure 1).
We examine how DATAGUARD prevents an exfiltration attack
(CVE-2020-20739) in Section VII-G. As a result, defenses that
protect stack objects from all three classes of memory errors
systematically are a necessary foundation for software security.

B. Current Defenses

A set of stack defenses were proposed to prevent exploits
that modify return addresses, such as Stack Canaries [20] and
Shadow Stacks [15]. These defenses can now be implemented
reasonably efficiently (< 5% overhead [4], [11], [92]), but
stack objects other than return addresses are also prone to
attack. Given that advanced adversaries can launch success-
ful attacks by modifying non-return-address stack objects to
redirect control flow (e.g., non-return-address code pointers or
data used in control-flow decisions) and to exfiltrate sensitive
information, limited stack defenses are now insufficient.

Researchers have long recognized this gap and proposed
runtime defenses to prevent an entire class of memory errors
comprehensively, such as to enforce spatial safety [3], [28],
[60], [89], prevent attacks on type errors [35], [41], [47], and
prevent temporal safety violations [25], [44], [46], [88], [91].
but these defenses individually have significant overheads,
even when applied only to stack objects [28] in some cases.
So researchers have proposed optimizations to remove some
runtime checks for references that cannot violate bounds [3],
[24] or can never become dangling references [26], [27]. An
issue is that the underlying static analysis techniques under-
approximate the number of truly safe objects to avoid mis-
classifying unsafe objects as safe, but may miss a significant
fraction of truly safe objects. Ultimately, we want defenses to
protect as many stack objects from these classes of attacks as
possible in reasonable overhead.

An alternative approach focuses on protecting objects that
can be proven safe from memory errors without runtime
checks. For stack objects, such protection can be provided
by using multiple stacks [90], where each with stack objects
satisfying distinct requirements. The Safe Stack defense [45]
applies the multistack [90] approach to protect stack objects
by separating objects whose references are determined safe by
the compiler onto a “safe” stack isolated from other “unsafe”
objects on the “regular” stack. While the focus of the Safe
Stack defense is to protect code pointers (i.e., in addition to
the return addresses), it also protects other stack objects found
to meet its safety criteria, resulting in the ability to protect over
60% of stack objects for the programs assessed in Section VII
without runtime checks. We examine how the safe defense
works and limitations next to motivate the need of providing
a more secure, effective, and efficient defense.

3

C. Safe Stack Background

The safe stack defense consists of a static analysis pass to
classify safe/unsafe stack objects, an instrumentation pass to
place and reference stack objects on their respective stacks, and
runtime support to ensure the integrity of the safe stack. The
static analysis pass classifies objects as safe if they are only
accessed using a constant (i.e., compiler-determined) offset
from the stack pointer within a single stack frame. While
code pointers, such as the return addresses, often satisfy this
requirement, some stack data objects and data pointers may
also comply. The instrumentation pass creates two separate
stacks to separate safe objects from unsafe objects. The run-
time support protects the safe stack by allowing only accesses
to the safe stack through authorized instructions via dedicated
registers, such that no addresses of the safe stack nor pointers
that point to the safe stack are ever stored on the regular stack,
preventing the corruption of safe objects from tampering with
unsafe objects.

To demonstrate how the Safe Stack approach works, return
to the function example in Figure 1. In this example, the Safe
Stack approach classifies lct as safe, placing it on the safe
stack, and lbuf as unsafe, leaving it on the regular (unsafe)
stack. The variable lct is only accessed using a constant
offset from the stack pointer. On the other hand, lbuf is
passed as a parameter to strlcpy in line 5, so its accesses in
strlcpy will not be a constant offset from the stack pointer
in that function. In the latter case, a bug in the program could
change the memory reference to lbuf from something other
than what the compiler defined, and such objects are classified
as unsafe by the Safe Stack approach. Note that the pointer
operations for scanning lbuf in strlcpy are also considered
unsafe because they do not use a constant offset either.

D. Limitations of the Safe Stack Defense

While the Safe Stack defense [45] applies the multi-
stack [90] approach to eliminate runtime checks by isolating
the safe stack, Safe Stack does not validate safety for all three
classes of memory errors, making it insufficient to protect data
objects in general. In particular, Safe Stack does not account
for type errors at all nor use-before-initialization temporal
errors, which permits adversaries to violate memory safety on
stack data objects and their references. To be fair, the focus
of Safe Stack is on protecting code pointers, rather than stack
objects in general. For code pointers, type errors do not impact
return addresses and other safe (to Safe Stack) code pointer
variables, and exploiting code pointer variables via use-before-
initialization is rare and difficult. However, type and temporal
errors are often exploited to enable attacks on stack data.

In addition, Safe Stack’s safety requirements are overly
conservative, leaving many objects unprotected unnecessarily.
For example, Safe Stack is particularly conservative because it
declares all address-taken variables as unsafe, which includes
all arguments passed by reference. We find that many of these
objects can be proven safe even when accounting for all three
classes of memory errors.

In summary, existing multistack defenses, like Safe Stack,
protect some stack objects without runtime checks, but do
not protect stack objects from all three classes of memory
errors systematically, which leads to false negatives that risk

1 int callee(int ict, char *ibuf, int *oct, char *obuf) {
2 if (ict < *oct){
3 if ((strlcpy(obuf, ibuf, (size_t)ict)) >= *oct)
4 return -1; // Truncation Check
5 *oct = (size_t) ict;
6 }
7 else{
8 if ((strlcpy(obuf, ibuf, (size_t) *oct)) >= *oct)
9 return -1; //Truncation Check

10 }
11 return 0;
12 }
13

14 int caller(int fd, char *in) {
15 int imax = 100, omax = imax-10;
16 char ibuf[imax], obuf[omax];
17

18 if ((strlcpy(ibuf, in, (size_t)imax)) >= imax)
19 goto error; // Truncation Check
20 if ((callee(imax, ibuf, &omax, obuf)) < 0)
21 goto error;
22 if ((write(fd, obuf, (size_t)omax)) == omax)
23 return 0;
24 error:
25 return -1;
26 }

Fig. 2: Revised example where the stack objects are provably safe from
bounds, type, and temporal errors.

the integrity of stack protection. In addition, many objects that
could be proven safe are not at present due to false positives
resulting from overly conservative invariants, which both risks
the security of these objects and degrades the performance.

III. OVERVIEW

The core challenge of this work is to identify a maximal
number of stack objects that are safe from spatial, type, and
temporal memory errors without misclassifying any unsafe
stack objects as safe. These safe stack objects are then isolated
to protect them from possibly unsafe memory accesses to other
objects. To achieve this goal, we propose the DATAGUARD
system that implements the approach shown in Figure 3.
DATAGUARD performs a multi-step analysis that combines
static analyses with constrained symbolic execution to validate
stack object safety to prevent unsafe stack objects from being
misclassified as safe. Once the safe stack objects are validated,
DATAGUARD applies the Safe Stack defense of isolating safe
stack objects to protect them at runtime.

To demonstrate the goals of DATAGUARD, Figure 2 shows
an example of code where the safety of stack objects can
be validated statically. The function caller allocates buffer
sizes (i.e., imax and omax) as constants to allocate buffers
of constant size (i.e., ibuf and obuf). A key limitation of
the Safe Stack approach [45] is that all stack objects passed
as parameters are classified as unsafe. While the caller in
Figure 2 passes the constants and buffers to the callee, none
of these parameters have accesses that could cause spatial,
type, or temporal errors. First, although the caller uses a signed
integer type for the buffer sizes and these are cast in the callee
(lines 3 and 8), the constant values are known and will be
unchanged by the cast, so no type error is possible. Second,
although the buffers are used in copy operations (lines 3 and
8), the copies are bound by the strlcpy function to be
within the bounds3Security issues caused by truncation are
not in the scope of this paper. (as determined by the constant

3strlcpy also guarantees the resulting string is null-terminated and
enables detection of truncation.

4

Stack Objects
Step 1: Identify

Error Classes for
Stack Objects

Section 5.1

Step 2: Collect
Safety

Constraints
Section 5.2

Step 3: Verify
Stack Object

Safety
Section 5.3

Per-Object
Classes

Safety
Constraints

Safe Stack
Objects

Compute Safe
Stack Objects

Runtime
Enforcement

Safe Stack
Runtime

Enforcement

Safe Stack Objects
(No Classes)

Unsafe Stack Objects
(Constraint Failure)

Unsafe Stack Objects
(Validation Failure)

Fig. 3: DATAGUARD system technical approach

buffer sizes with safe type casts). Regarding temporal safety,
the buffer references are initialized, their values are initialized
prior to dereferencing (we assume in is initialized also), and
no memory in callee is assigned to these references (i.e.,
in fact these references are unchanged). Thus, the buffers and
their sizes can be isolated of a separate stack (i.e., isolated
stack) without risking other safe stack objects to protect them
from memory errors in other possibly unsafe stack objects (i.e.,
on the regular stack) and other program objects.

DATAGUARD validates stack object safety from memory
errors in three steps, as shown in Figure 3. First, DATAGUARD
identifies the classes of memory errors that may apply for each
stack object, as described in Section V-A. Each class requires
that the stack object be accessed via an associated, unsafe
pointer operation. A stack object is declared safe if no pointer
that may reference the object is used in an unsafe operation.
DATAGUARD leverages prior work for identifying the pointer
operations that may cause spatial and type errors [16], [61],
[62] and proposes how to detect pointer operations required
to cause temporal errors. Second, DATAGUARD generates
constraints for validating the safety of stack objects for each
class of memory error automatically, which we call memory
safety constraints, as described in Section V-B. A stack object
is declared to be unsafe should DATAGUARD not be able to
generate safety constraints for a class requiring validation.
Third, DATAGUARD validates each remaining stack object’s
safety using its safety constraints, as described in Section V-C.
DATAGUARD applies a static analysis first, where the stack
objects that pass validation are declared safe. For the objects
not found to be safe statically, DATAGUARD applies a second
analysis; this time by employing targeted symbolic execution
to validate safety. To ensure that we do not misclassify any
unsafe objects as safe in either analysis, we require that
both analyses overapproximate the possible executions of the
program, i.e., are sound analyses4. The stack objects that pass
either validation are declared safe, whereas others are unsafe
(i.e., cannot be proven safe in either analysis). We assess the
soundness of our approach in Section V-D.

DATAGUARD uses existing runtime enforcement, Clang’s
Safe Stack, to protect the safe stack objects identified by
DATAGUARD. DATAGUARD both removes a significant num-
ber of objects that may be unsafe that other techniques classify
as safe to protect the integrity of the isolated stack and finds
a much greater number of safe objects that prior techniques
classified as unsafe, which extends stack protections to more
objects and reduces the overhead of the Safe Stack defense.
Thus, DATAGUARD creates a win-win situation by extending

4Computer science communities have differing viewpoints of soundness
and completeness. We are using the static analysis community’s definition, as
in [74], where a sound analysis overapproximates the program’s executions.

stack protections while reducing performance overhead.

IV. THREAT MODEL

In this section, we list threats to systems on which DATA-
GUARD will be deployed and outline trust assumptions upon
which DATAGUARD depends in thwarting those threats.

We assume each program protected using DATAGUARD
is benign but may contain memory safety errors, including
spatial, type, or temporal errors. We further assume that
adversaries will exploit memory errors on any stack object
in a program. As described in Section II-A, adversaries can
exploit such memory errors in a variety of ways. We assume
stack objects classified as unsafe by DATAGUARD are prone to
such memory errors and attacks, as are heap and global data.
We leave the problem of extending protection to unsafe stack
objects for future work.

We assume that no stack protection mechanism is deployed
except for ASLR, as DATAGUARD proposes a mechanism
to supplant and extend prior stack defenses. DATAGUARD
uses ASLR to isolate the isolated stack from other references
by placing the isolated stack in an unpredictable location,
as used in Clang’s Safe Stack defense. We note that this
leaves the attacker a (small) probabilistic window of success-
fully compromising an object on the isolated stack through
information disclosure, which is mainly triggered by two
approaches: (1) taking advantage of implementation flaws [19],
[29] and (2) performing just-in-time information disclosure
attack after program load time to decrease the entropy [33],
[34], [63]. As an alternative to ASLR, the isolated stack can
be guarded from other memory accesses through SFI [86] or
hardware isolation, such as Intel MPK [59], [66], [85] for
some additional overhead. Existing works on enhancing the
information-hiding property [11], [87], preventing information
leaks [55], and enforcing access control on sensitive data [31],
[37], [43] can also be applied to strengthen the security of
Safe Stack. We assume that control-flow integrity [1] (CFI)
is deployed and that the program is not permitted to modify
its own code, i.e., the code memory is not writable and data
memory is not executable to ensure that our static and symbolic
analyses really examine an overapproximation of the possible
program executions. We also assume that all constant values
are stored in read-only memory and are not copied into read-
write memory at any time [32].

V. DESIGN

We review the design of the DATAGUARD system, which
comprises the first three steps of Figure 3, and present sound-
ness arguments for the proposed safety validation analyses.

5

A. Identifying Error Classes for Stack Objects

Researchers do not yet have a broadly accepted definition
of safety from memory errors. Distinct safety definitions were
utilized by each of the Safe Stack defense [45], CCured [16],
[61], [62], and SAFECode [24], [26], [27]. In this paper,
our definition of safety is closest in spirit to the CCured
system, where each object is strongly typed and a safe object
complies with its spatial (bounds) and type semantics for all
program executions. A limitation of the CCured approach is
that it does not provide a safety definition for temporal errors,
so we rely on the SAFECode definition for temporal errors.
SAFECode defines safety in terms of points-to information,
where an object is safe if it obeys all its computed points-to
relationships, which enables SAFECode to detect dangling and
uninitialized pointers as points-to violations.

• Definition 1: A stack object is safe if any references
(pointers) that may alias to the object comply with the spatial,
type, and temporal safety requirements associated with the
object and the references themselves are safe objects.

As Definition 1 states, for a stack object to be safe from
memory errors, all pointers that may-alias the object must be
comply with safety requirements for the stack object. Thus,
DATAGUARD computes the pointers that may-alias a stack
object and collects the classes of memory errors associated
with those pointers. If none of a stack object’s pointers
performs any operation that may cause a memory error, that
stack object is safe.

The first step that DATAGUARD takes to determine whether
a stack object is safe, as shown as Step 1 in Figure 3,
is to identify the classes of memory errors for each stack
object that require safety validation. To do this, DATAGUARD
leverages the techniques proposed by CCured (spatial and type
safety) and SAFECode (temporal safety) to determine whether
a pointer may be used in a memory operation that may cause a
particular class of memory error. The classes of memory errors
that must be verified for a stack object are the union of the
classes that may be caused by its aliases.

CCured identifies pointers that may cause spatial and type
errors. First, CCured shows that pointers used in pointer arith-
metic operations (called sequential or seq pointers by CCured),
such as to access array elements or structure fields, may cause
spatial memory errors. While CCured requires runtime checks
for such pointers, DATAGUARD labels any objects that may
be referenced by such pointers as requiring validation for the
spatial error class. Note that DATAGUARD treats fields within
compound objects, including buffers, as distinct variables, as
described in Appendix C.

Second, CCured shows that pointers used in type casting
operations may cause type errors. CCured does aim to prove
safety for upcasts and downcasts [16], but these casts are
uncommon for stack objects. DATAGUARD labels objects that
may be referenced by such pointers as requiring validation
for the type error class. Note that LLVM casts unions into
structures or primitive types, and it occasionally use ptrtoint
and inttoptr cast instructions for accessing fields of compound
objects; so such cases are identified by DATAGUARD as
requiring type safety validation. However, because type errors
are uncommon for stack objects (see Table II) and largely ad

hoc, we only validate unsigned-signed casting for integers of
the same allocated size to identify integers whose values are
not impacted by type cast, which for DATAGUARD to expand
the number of cases that can pass spatial safety validation.

To detect operations that may lead to temporal errors
for pointers, DATAGUARD identifies dangling pointers. The
SAFECode system [26], [27] includes a method to validate
stack objects that are prone to dangling pointers based on
escape analysis. Rather than running full escape analysis,
DATAGUARD detects pointers that may escape to calling
functions or other threads (e.g., via heap or globals) based
on their aliases. If any pointer is aliased by a pointer passed
from a caller or that references a heap or global object, then
DATAGUARD identifies the need for temporal analysis.

DATAGUARD also identifies stack objects that may cause
temporal errors because they may be used prior to initialization
and hence reference stale memory. In this case, both pointer
and data variables may be prone to use-before-initialization. If
a variable is initialized to a value at declaration, it does not
require temporal analysis for UBI, otherwise it does.

B. Collecting Stack Object Constraints

DATAGUARD uses the following approach to collect con-
straints. First, for each stack object, DATAGUARD collects
constraints from the stack object’s declaration for the classes of
memory errors that require safety validation. These constraints
are assigned to pointers whenever that stack object is assigned
to a pointer (e.g., at pointer definitions). For static analysis,
we make such assignments based on whether the pointer may
alias the stack object. For symbolic execution, we make such
assignments when the symbolic execution finds that the stack
object may be referenced by the pointer. Should multiple stack
objects be assigned to the same pointer (i.e., at the same
pointer definition with an LLVM phi instruction), the analyses
proceed independently, as these represent distinct contexts.
State relevant to safety validation (e.g., index of a pointer in
a buffer) may be updated at each pointer definition and each
pointer operation (i.e., at pointer use). Constraints are then
validated on each pointer use.

Spatial Constraints: As is typical since the CCured method
was proposed [61], checking spatial safety involves determin-
ing the size of the object and ensuring that all accesses are
within the bounds determined by that size. To check such a
requirement statically, we require the following information.
Stack objects that do not satisfy the following four constraints
will remain on the regular, unprotected stack.

• Declaration: The size from the object’s base must be
declared as a constant value. The initial index is 0.
• Definition: When a pointer is defined to reference the object,
the reference may be offset to change the index. This offset
must be a constant value.
• Use: When a pointer is used in an operation, the pointer may
be further offset to change the index. Each offset in a use must
also be a constant value.
• Validation: For all uses, pointer index < size and index ≥ 0.

To check that a stack object is free of spatial errors, the
stack object must be declared with constant size. An index
of the pointer into the stack object is maintained. Pointer

6

definitions and uses may change the value of the index by
a constant offset. The resultant index from the combination of
offsets in pointer definitions and uses must be within the range
of the stack object on each use, i.e., greater than 0 and less
than object size.

Type Constraints: The use of structured types and type
casting among them is less common for stack objects, so
DATAGUARD focuses on validating the safety of integer type
casts. Below, we describe the four requirements for type safety
validation for integer stack objects and the definition and use
of their references.

• Declaration: Integer variables are assigned the type and value
(optionally) used in the declaration.
• Definition: When a pointer is defined to reference the object,
if the operation includes a type cast the newtype is identified.
If validation succeeds type is assigned to the newtype.
• Use: When a pointer is used to reference the object, if
the operation includes a type cast the newtype is identified.
If validation succeeds type is assigned to the newtype. If the
operation assigns a value, the value is stored.
• Validation: For a definition or use that produces a newtype,
the resultant type cast must not change the value of the integer
object referenced (e.g., by changing size or signedness).

For type safety validation, we require that type casts not
change the value associated with the reference to change. This
check enables validation of safety from integer overflows, e.g.,
to prevent attacks on control data.

Temporal Constraints: For temporal constraints, we focus
on scoping constraints to prevent (1) memory use before it
is initialized (i.e., use of aliases before the stack object is
declared), and (2) memory use after it is deallocated (i.e., upon
return of a function in which the stack object is declared).

• Declaration: The object is declared in basic block bob jinit
implying that it may be live in a set of basic blocks Bob j.
• Definition: The pointer is defined in basic block bptrde f .
• Use: The pointer uses occur in basic blocks Bptruse .
• Validation: The pointer definition occurs when the object is
live, bptrde f ∈ Bob j, and all uses occur in a basic block in where
the object is still live, Bptruse \Bob j = /0.

An object cannot be used prior to initialization as long as
there cannot be a use of the alias before the declaration of the
object. An object cannot be referenced by a dangling pointer
as long as there cannot be a use of the object after its lifetime,
e.g., after the function in which it was declared returns. We
define this constraint in terms of the basic blocks in which
an object may be live given the object’s declaration. Then,
DATAGUARD validates that the pointer definition occurs when
the stack object is live and that all uses occur in a basic block
in which the stack object is still live.

C. Validating Stack Object Safety Statically

In this section, we specify methods to validate stack object
safety with respect to the constraints from the last section.
The challenge is to maximize the number of stack objects
that are safe without misclassifying any unsafe stack objects
as safe. We first apply a two-stage analysis that uses an

inexpensive static analysis first, followed by symbolic exe-
cution that leverages the relevant program paths found by
static analysis. Note that researchers have previously used
symbolic execution to determine whether positives found in
static analysis are actually true positives (e.g., a recent example
is the UbiTect system [91]). However, our two-stage analysis
for safety validation differs from bug finding analyses in that
each positive must be a true positive for all possible program
executions, requiring that all the static and symbolic analyses
used in safety validation must overapproximate all program
executions, i.e., be sound analyses.

Validating Spatial Safety. Spatial safety analysis is per-
formed in two stages: (1) a static analysis to classify pointers
to find pointers that may be proven safe, similarly to the Baggy
Bounds [3] and SAFECode [24], [25] optimizations, and (2) a
guided symbolic execution to determine whether the pointers
found to be unsafe in the first stage can be proven safe in a
more comprehensive analysis (i.e., are false positives).

For the static analysis, DATAGUARD first performs a def-
use analysis [52], [84] on each pointer detected to require
spatial safety validation. LLVM uses SSA form for its interme-
diate representation, so each pointer has only one definition,
but may have many uses. The computed def-use chains are
used in both the static analysis and to guide the symbolic
execution. To assess bounds statically, DATAGUARD performs
a value range analysis [8], [72], [81] for each pointer use
from its definition. Value range analysis is a type of data-flow
analysis that tracks the range (interval) of values that a numeric
variable can assume at each point of a program’s execution.
To validate spatial safety for all possible program executions,
every pointer that may alias the stack object must use offsets
from the object’s base whose value range is between 0 and
stack object size as determined by the spatial safety constraints.

A problem is that traditional value range analysis assumes
that values in memory are not prone to memory errors, so the
value ranges computed may not be correct under such errors.
Baggy Bounds [3] does not specifically mention this problem,
although since Baggy Bounds aims to prevent all spatial errors
through runtime checks, this assumption is not necessarily
inconsistent for that method. For DATAGUARD, unsafe stack
objects may remain and we cannot trust that the data in these
stack objects are protected from memory errors. Instead, our
value range analysis only uses constant values, either from
def/use instructions explicitly or from loads of constant values
into registers used by them. All other cases are identified as
unsafe. Thus, under the assumption that code and constant
values are loaded in read-only memory (see Section IV), spatial
safety validation is not impacted by those memory errors.

For the cases that the static analysis finds to be unsafe,
a problem is that these cases may be false positives due
to the overapproximations inherent in the sound analysis.
DATAGUARD employs a second stage that performs a guided
symbolic execution to determine if it can prove whether any
of the positives found in static analysis can actually be proven
safe. To do this, DATAGUARD symbolically executes the part
of the program covered by the def-use chains of each pointer
that may alias the stack object, starting from the stack object
declaration. To satisfy the requirement of using constant inputs
for sizes and offsets, the symbolic execution relies on the value
range analysis. If a stack object is inferred to be unsafe by

7

value range analysis, it either does not use a constant input or
is detected to violate bounds. The former is more likely, so
DATAGUARD classifies pointers that rely on such data as un-
safe, only analyzing the latter cases. We find that imprecision
that may cause false positives occurs due to the lack of path
sensitivity, where the effects of multiple program branches may
falsely indicate that bounds are violated. Symbolic execution
can check these paths independently. All non-constant data
remain symbolic, and the use of symbolic data in computing
sizes or offsets causes a failure in the safety validation.

A challenge in using symbolic execution is to avoid path
explosion. Since DATAGUARD employs symbolic execution
on the positive (i.e., presumed unsafe) cases found by static
analysis, we only need to symbolically execute the program
from the stack object’s declaration to its last unsafe use
in its def-use chains, which improves DATAGUARD’s ability
to identify safe cases over pure symbolic execution without
static analysis based on our evaluation on Section VII-D.
DATAGUARD applies LLVM’s loop simplify [54] and canoni-
calization technique [53] to reduce the path explosion problem
introduced by loops, as applied in patch generation to satisfy
safety properties [39]. DATAGUARD also leverages symbolic
state merging employed by S2E [14] to eliminate unnecessary
forks when encountering branches, which reduces the number
of paths to explore by orders of magnitude [70]. To avoid path
explosion in long sequences of def-use chains, we limit the
analysis depth. As longer def-use chains are more likely to
lead to unsafe operations, we focus on shorter paths.

Validating Type Safety. Since validating type safety involves
checking that values do not change on type casts, the core of
type safety validation is in the static value range analysis. If
a stack object that is validated for type safety is also used as
a bound or memory (e.g., array) index, DATAGUARD uses the
result of type safety to validate spatial safety (i.e., all such
integers must be safe from type errors).

Validating Temporal Safety. The intuition of the proposed
approach to detect dangling pointers is to determine whether
a pointer use may occur outside the scope of a referenced
stack object. To detect such cases without misclassifying any
unsafe cases as safe, DATAGUARD uses a sound liveness
analysis [5], [50], [51] to determine the basic blocks in which
a stack object is in scope in the program (its live set) and
determine whether any uses of pointers that may reference
the stack variable occur in basic blocks outside the live set.
However, false positives may occur in aliasing, so we validate
that the pointer can actually be assigned to the stack object
using symbolic execution for any positive cases.

Liveness analysis computes the variables that are alive at
each basic block, so we can determine the set of basic blocks
in which a stack object declared in block bob jinit is live as Bob j,
which is called the live range [9], [10], [49] of ob j. Similarly,
we compute the live ranges for each of the pointers that may-
alias ob j, which determines the set Bptr. Since LLVM uses
SSA form for its IR, DATAGUARD evaluates safety for a stack
object relative to each pointer individually. To be specific, the
live-range of the pointer ptr that may alias an object ob j begins
at the basic block when ptr is declared, and it ends after the
last use of ptr. For each pointer ptr and aliased object ob j,
DATAGUARD validates whether any use of ptr (in ptr’s live-
range) is outside the ob j’s live-range. We note that aliases may

have uses before the stack object is declared or after the stack
object’s live-range has completed. In static analysis, either case
results in the stack object being classified as unsafe.

However, we also recognize that if a pointer is found unsafe
by the live-range analysis, it may not actually be exploitable,
since overapproximation in alias analysis may identify aliases
that cannot actually reference the stack object. As a result,
we similarly propose to apply guided symbolic execution to
validate whether each stack object found to be unsafe is really
assigned to a pointer whose uses may occur outside the stack
object’s live range. If the symbolic execution proves that such
a reference is not possible for all pointers failing temporal
validation statically, then the stack object is found to be safe.
To do that, we again track the computed def-use chains. For
each stack object, we start the symbolic execution at the
object’s declaration and follow all the def-use chains for all
the aliases, similarly to symbolic spatial validation, including
the methods to avoid path explosion.

D. Validation Soundness

In this section, we assess the soundness of the proposed
static analyses and symbolic execution for safety validation.

Static Analysis Soundness The static analyses methods for
safety validation are built upon multiple prior static analyses.
They include: (1) LLVM’s built-in def-use analysis; (2) SVF
pointer alias analysis using its VFG [76]–[80]; (3) Program
Dependence Graph (PDG) of PtrSplit [48]; (4) value range
analysis [8], [72], [81]; and (5) live range analysis [9], [10],
[49]. These static analyses are claimed to be sound by their
respective papers. However, we note that the soundness argu-
ments in these papers are informal and there are no formal
soundness proofs (with the exception of value range anal-
ysis, whose soundness proof is formalized [72]). Therefore,
it is possible that these analyses and their implementations
do not handle all corner cases in sound ways. To separate
the analyses DATAGUARD relies on from how DATAGUARD
applies them, we next argue that DATAGUARD’s static analyses
achieve relative soundness: assuming those prior analyses are
sound, DATAGUARD’s static analyses are sound. We note that
DATAGUARD avoids several corner cases (e.g., type casting)
by design by classifying objects accessed using such operations
as unsafe, as listed in Appendix C.

DATAGUARD’s safety validation methods require finding
all pointers that may alias each stack object. For that, DATA-
GUARD relies on the SVF pointer alias analysis [76]–[80]
intraprocedurally based on its VFG and the PDG representation
of PtrSplit [48] to represent the data flows between functions
to compute interprocedural may-aliases. Since both the VFG
construction in SVF and the PDG representation are claimed
to be sound, DATAGUARD soundly overapproximates the set
of pointers that may alias a stack object.

The spatial and type safety validations apply value range
analysis [8], [72], [81] to compute the possible ranges of
indices in accessing stack objects. The value range analysis is
computed based on the PDG and tracks only simple patterns:
(1) pointers with constant offsets from bases of stack objects
and (2) constant offsets when dereferencing pointers. Since the
PDG is claimed to be sound and we assume (Section IV) that
all constants are stored in read-only memory and are not copied

8

into read-write memory at any time [32], it is straightforward
that DATAGUARD’s value range analysis is sound.

The temporal validation applies liveness analysis [50] to
compare the basic blocks in which a stack object is live to
those basic blocks of each pointer that may alias the object.
Liveness analysis is also computed based on the PDG and
tracks the def-use chains and object’s scope in a fully context-
sensitive manner. Since the PDG is claimed to be sound, it is
straightforward that DATAGUARD’s liveness analysis is sound.

Symbolic Execution Soundness By default, symbolic execu-
tion is a sound form of analysis because it follows all execution
paths in a program [7]. In practice, factors complicate ensuring
the soundness of a particular symbolic execution analysis that
DATAGUARD addresses.

First, path explosion in symbolic execution often means
that it is impractical to execute all paths in the program,
even with loop canonicalization and symbolic state merging.
DATAGUARD limits the depth of the symbolic execution to
avoid expensive cases, but any symbolic execution terminated
for this reason classifies the associated stack object as unsafe.

Second, symbolic analyses may sacrifice soundness when
employing concrete values for some variables, creating a
concolic execution [7], [14]. DATAGUARD only concretizes
values that are constants in spatial safety analysis. All other
variables are initialized with symbolic values. Only symbolic
values are used to initialize variables in the temporal analysis.

Third, the symbolic analyses in this paper do not start at
the program initialization, so if other execution contexts (i.e.,
threads) have been created they may impact the state of the
symbolic execution. DATAGUARD validates whether a single
stack object (at a time) is safe relative to spatial and temporal
errors. This would imply, if successful, the object would be on
an isolated stack, protected from tampering by accesses from
this thread or others to unsafe globals, stack and heap objects.

Fourth, DATAGUARD’s symbolic executions utilize the def-
use chains soundly in validating stack objects found unsafe
by static analysis. The symbolic execution analysis starts at
the stack object’s declaration and symbolically executes the
program until the last unsafe pointer operation (use) of any
alias of the stack object. Thus, all paths that can possibly
lead to a memory error are executed symbolically before a
stack object can be declared safe. DATAGUARD only allows
safe objects (i.e., proven by the static analysis) to be used in
any constraints derived from the symbolic execution. Unsafe
objects remain symbolic, so they are not constrained during
the execution. The loop-canonicalization applied to simplify
loops [39] and symbolic state merging [70] are also sound.

VI. IMPLEMENTATION

DATAGUARD is implemented on Ubuntu 20.04 with Linux
kernel version 5.8.0-44-generic on x86 64 architecture using
LLVM 10.0, running on an Intel CPU i9-9900K with 64 GB
RAM. The CCured pointer analysis tool is ported, adapted,
and extended from nesCheck [57] which consists of 1,958
SLoC in C++. Originally, nesCheck aims to analyze TinyOS
where all code for applications, libraries, and OS is fully
available at compile time, so that the whole-program static
analysis can be done effectively. In our work, we statically

link libraries at compilation to make the code of the library
available in bitcode. Also, we found that the original nesCheck
framework fails to propagate changes in the classification of
global pointers. To solve this problem, we port the PDG
of the PtrSplit framework [48] which leverages SVF’s [77]
alias analysis into the framework to propagate classifications
to pointers comprehensively. The static analysis portion of
DATAGUARD consists of 4,568 SLoC in C and C++.

The def-use chain implemented in DATAGUARD is derived
from LLVM’s built-in def-use analysis. The interprocedural
alias analysis is based on the PDG-based alias analysis from
PtrSplit [48], using the SVF analysis for intra-procedural
pointer alias analysis. The implementation of value range
analysis, live range analysis is based on the data-flow equations
provided in Appendix A and B. For the symbolic execution, we
apply S2E [14]. DATAGUARD adapts LLVM’s loop canonical-
ization feature [53] and S2E’s symbolic state merging [70] to
reduce the effect by potential path explosion problem. DATA-
GUARD limits the scope of symbolic execution by limiting
the depth of the call stack, currently set to four functions.
This depth was chosen based on angr’s CFGEmulated method
supporting a depth of three [17], [18] and experience that the
depth of four functions is practical. The depth is configurable.

As buffers are often processed using functionality provided
by the C library, we also evaluate the uClibc library in
the DATAGUARD safety analyses. uClibc is a lightweight C
library for developing embedded Linux systems, and nearly
all programs that work with glibc work with uClibc without
modifications, even with other shared libraries and multi-
threading. KLEE, the symbolic execution engine for S2E,
already has a model for uClibc but lacks such a model for
glibc. But even with uClibc, KLEE symbolic execution fails for
some library functions in some cases. DATAGUARD maintains
a list of unsafe library functions; if unsafe library function is
called, we assume related memory object/pointer is unsafe.

VII. EVALUATION

In this section, we examine the ability of DATAGUARD to
improve the protection of safe stack objects, determine how the
steps in the DATAGUARD approach impact the validation of
stack objects, and assess how the application of DATAGUARD
impacts the security and performance of programs. In this
evaluation, we examine several server programs, nginx-1.18.0,
httpd-2.4.46, proftpd-1.3.7, openvpn-2.5.2, and opensshd-8.6,
and the SPEC CPU2006 benchmark suite5.

A. Stack Object Safety Comparison

Q1: How does DATAGUARD impact the security of safe
stack objects compared with prior work? Table I shows the
counts and percentages of safe stack objects found using the
NesCheck framework’s CCured implementation, Clang Safe
Stack, and DATAGUARD methods.

As shown in Table I DATAGUARD classifies 91.45% of
stack objects as safe in server programs and the SPEC
CPU2006 benchmarks on average. After excluding unsafe

5We examined 16 out of 19 benchmarks in SPEC CPU INT 2006 and
SPEC CPU FP 2006 that are written in C or C++. The remaining benchmarks
(xalancbmk, povray and dealII) are not supported by SVF.

9

