
Software security, secure programming

Lecture 1: introduction

Master M2 Cybersecurity

Academic Year 2023 - 2024



Who are we ?

Teaching staff
▶ Laurent Mounier (UGA)
▶ research within Verimag Lab (PACS team)
▶ research focus: formal verification, code analysis, compilation

techniques, language semantics ... and (software) security !

Attendees
▶ Master M2 CySec students

→ various skills, backgroud and interests . . .

2 / 22



Agenda

Part 1: an overview of software security and secure programming
▶ ∼ 7 weeks (21 hours)
▶ classes on wednesday (2pm - 5pm)

Part 2: some tools and techniques for software security
▶ ∼ 6 weeks (18 hours)
▶ class on tuesday (2pm - 5pm)

→ includes lectures, training exercises, labs . . .

3 / 22



Examination rules
The rules of the game . . .

Assignments
▶ M1: a written assignment (duration=1h, mid-November)
▶ M2: (short) reports on some lab sessions
▶ M3: final written exam (duration=2h, end of January)

Mark computation (3 ECTS)

M = (0.66 × M1 + 0.33 × M2) + (0.5 × M3)

4 / 22



Course user manual

An (on-going) course web page on Moodle . . .

https://im2ag-moodle.univ-grenoble-alpes.fr/course/view.php?id=545

▶ course schedule and materials (slides, past exams, etc.)
▶ weekly, reading suggestions, to complete the lecture
▶ other background reading/browsing advices . . .

During the classes . . .
Alternation between lectures, written excercices, lab exercises . . .

. . . but no “formal” lectures → questions & discussions always welcome !

heterogeneous audience + open topics ⇒ high interactivity level !

5 / 22

https://im2ag-moodle.univ-grenoble-alpes.fr/course/view.php?id=545


Prerequisites
Ideally . . .

This course is concerned with:

Programming languages
▶ at least one (classical) imperative language:

C or C++, Java, maybe Python . . .
▶ some notions on compilation & (informal) language semantics

What happens behind the curtain
Some notions about:
▶ assembly code (x86, others ? . . . )
▶ runtime memory layout (stack, heap)

6 / 22



Outline

Some practical information

What software security is (not) about ?

About software security



The context: computer system security . . .

Question 1: what is a “computer system”, or an execution plateform ?

Many possible incarnations, e.g.:
▶ (classical) computer: mainframe, server, desktop, laptop, etc.
▶ mobile device: phone, tablets, audio/video player, etc.

. . . up to IoT, smart cards, . . .
▶ embedded (networked) systems: inside a car, a plane, a

washing-machine, etc.
▶ cloud/remote computing, virtual execution environment
▶ but also industrial networks (Scada), . . . etc.
▶ and certainly many more !

→ 2 main characteristics:
▶ include hardware + software
▶ open/connected to the outside world . . .

7 / 22



The context: computer system security . . . (ct’d)

Question 2: what does mean security ?

▶ a set of general security properties: CIA
Confidentiality, Integrity, Availability (+ Non Repudiation + Anonymity + . . . )

▶ concerns the running software + the whole execution plateform
(other users, shared resources and data, peripherals, network, etc.)

▶ depends on an intruder model
→ there is an “external actor”1 with an attack objective in mind, and
able to elaborate a dedicated strategy to achieve it (̸= hazards)
↪→ something beyond safety and fault-tolerance

→ A possible definition:
▶ functionnal properties = what the system should do
▶ security properties = what it should not allow w.r.t the intruder model . . .

Rk: functionnal properties do matter for “security-oriented” software (firewalls, etc.)!

1could be the user, or the execution plateform itself!
8 / 22



Example 1: password authentication
Is this code “secure” ?

boolean verify (char[] input, char[] passwd , byte len) {
// No more than triesLeft attempts
if (triesLeft < 0) return false ; // no authentication
// Main comparison
for (short i=0; i <= len; i++)
if (input[i] != passwd[i]) {

triesLeft-- ;
return false ; // no authentication

}
// Comparison is successful
triesLeft = maxTries ;
return true ; // authentication is successful

}

functional property:

verify(input,passwd,len) ⇔ input[0..len] = passwd[0..len]

What do we want to protect ? Against what ?
▶ confidentiality of passwd, information leakage ?
▶ no unexpected runtime behaviour
▶ code integrity, etc.

9 / 22



Example 2: file compression

Let us consider 2 programs:
▶ Compress, to compress a file f
▶ Uncompress, to uncompress a (compressed) file c

A functional property: the one we will try to validate . . .

∀f .Uncompress(Compress(f )) = f (1)

But, what about uncompressing an arbitrary (i.e., maliciously crafted) file ?
(e.g., CVE-2010-0001 for gzip)

A security property: ∀c.Uncompress(c) ̸⇝

(uncompressing an arbitrary file should not produce unexpected crashes)

Actually (2) is much more difficult to validate than (1) . . .

(out-dated) Demo: make ‘python -c ’print "A"*5000’‘

10 / 22



Why do we need to bother about crashes ?

crash = consequence of an unexpected run-time error
▶ not foreseen by the programmer and compiler . . .
▶ . . . and not (always) accurately trapped at runtime

⇒ some part of the execution:
▶ may take place outside the program scope

(not following the regular program semantic)
▶ but can be controled/exploited by an attacker (∼ “weird machine”)

normal execution

runtime error

crash

crash
X

X

security violation !

unforeseen executions

↪→ may break all security properties ...
from simple denial-of-service to arbitrary code execution

Rk: may also happen silently (without any crash !)

11 / 22



Some (not standardized) definitions . . .

Bug: an error (or defect/flaw/failure) introduced in a SW, either
▶ at the specification / design / algorithmic level
▶ at the programming / coding level
▶ or even by the compiler (or any other pgm transformation tools) . . .

Vulnerability: a weakness (for instance a bug !) that opens a “security breach”
▶ non exploitable vulnerabilities: there is no (known !) way for an attaker

to use this bug to corrupt the system
▶ exploitable vulnerabilities: this bug can be used to elaborate an attack

(i.e., write an exploit)
▶ 0-day vulnerabilities: yet unpublished (hence not patched !)

Exploit: a concrete attacker behavior allowing to:

1. trigger a (sequence of) vulnerability(-ies)

2. leading to a security property violation

Ex: a single program input, or a complex sequence of interactions with the
target program and/or its execution environment . . .

12 / 22



Software vulnerability examples

Case 1 (not so common . . . )

Functional property not provided by a security-oriented component
▶ too weak crypto-system,
▶ no (strong enough) authentication mechanism,
▶ etc.

Case 2 (the vast majority !)

Insecure coding practice in (any !) software component/application
▶ improper input validation⇝ SQL injection, XSS, etc.
▶ insecure shared resource management (file system, network)
▶ information leakage (lack of data encapsulation, side channels)
▶ exploitable run-time error
▶ etc.

13 / 22



The intruder model

Who is the attacker ?
▶ a malicious external user, interacting via regular input sources

e.g., keyboard, network (man-in-the-middle), etc.

▶ a malicious external “observer”, interacting via side channels
(execution time, power consumption)

▶ another application running on the same plateform
interacting through shared resources like caches, processor elements, etc.

▶ the execution plateform itself (e,g., when compromised !)

What is he/she able to do ?
At low level:
▶ unexpected memory read (data or code)
▶ unexpected memory write (data or code)

⇒ powerful enough for
▶ information disclosure
▶ unexpected/arbitrary code execution
▶ priviledge elevation, etc.

14 / 22



Outline

Some practical information

What software security is (not) about ?

About software security



Some evidences regarding cyber (un)-security

So many examples of successful computer system attacks:

▶ the “famous ones”: (at least one per year !)
Morris worm, Stuxnet, Heartbleed, WannaCry, Spectre, etc.

▶ the never-ending records of “cyber-attacks” against large organizations
(private companies, public (infra-)structures)

▶ all the daily vulnerability alerts: [have a look at these sites !]
https://cve.mitre.org/
http://www.securityfocus.com
http://www.securitytracker.com

▶ etc.

Why ? Who can we blame for that ??

▶ ̸ ∃ well defined recipe to build secure cyber systems in the large
▶ permanent trade-off beetween efficiency and safety/security:

▶ HW and micro-architectures (sharing is everywhere !)
▶ operating systems
▶ programming languages and applications
▶ coding and software engineering techniques

15 / 22



But, what about software security ?

Software is greatly involved in “computer system security”:
▶ it plays a major role in enforcing security properties:

crypto, authentication protocols, intrusion detection, firewall, etc.
▶ but it is also a major source of security problems2 . . .

“90 percent of security incidents result from exploits against defects in software” ( U.S. DHS)

→ SW is clearly one of the weakest links in the security chain!

Why ???
▶ we do not no very well how to write secure SW

we do not even know how to write correct SW!
▶ behavioral properties can’t be validated on a (large) SW

impossible by hand, untractable with a machine
▶ programming languages not designed for security enforcement

most of them contain numerous traps and pitfalls
▶ programmers feel not (so much) concerned with security

security not get enough attention in programming/SE courses
▶ heterogenous and nomad applications favor unsecure SW

remote execution, mobile code, plugins, reflection, etc.

2outside security related code!
16 / 22



Some evidences regarding cyber (un)-security

A recent CVE example (sept 26th 2023):

Numbers of CVEs per year

17 / 22

https://www.cvedetails.com/browse-by-date.php


Some evidences regarding software (un)-security (ct’d)

An increasing activity in the “defender side” as well ...

▶ all the daily security patches (for OS, basic applications, etc.)

▶ companies and experts specialized in software security
code audit, search for 0days, malware detection & analysis, etc.
“bug bounties” [https://zerodium.com/program.html

▶ some important research efforts
from the main software editors (e.g., MicroSoft, Google, etc)
from the academic community (numerous dedicated conferences)
from independent “ethical hackers” (blogs, etc.)

▶ software verification tools editors start addressing security issues
e.g.: dedicated static analyser features

▶ international cooperation for vulnerability disclosure and classification
e.g.: CERT, CVE/CWE catalogue, vulnerability databases

▶ government agencies to promote & control SW security
e.g.: ANSSI, Darpa “Grand Challenge”, etc.

18 / 22

https://zerodium.com/program.html


Couter-measures and protections (examples)

Several existing mechanisms to enforce SW security

▶ at the programming level:
▶ disclosed vulnerabilities → language weaknesses databases

↪→ secure coding patterns and libraries
▶ aggressive compiler options + code instrumentation

↪→ early detection of unsecure code

▶ at the OS level:
▶ sandboxing
▶ address space randomization
▶ non executable memory zones
▶ etc.

▶ at the hardware level:
▶ Trusted Platform Modules (TPM)
▶ secure crypto-processor
▶ CPU tracking mechanims (e.g., Intel Processor Trace)
▶ etc.

19 / 22



Techniques and tools for assessing SW security

Several existing mechanisms to evaluate SW security

▶ code review . . .

▶ fuzzing:
▶ run the code with “unexpected” inputs → pgm crashes
▶ (tedious) manual check to find exploitable vulns . . .

▶ (smart) testing:
coverage-oriented pgm exploration techniques

(genetic algorithms, dynamic-symbolic executions, etc.)
+ code instrumentation to detect (low-level) vulnerabilities

▶ static analysis: approximate the code behavior to detect potential vulns
(∼ code optimization techniques)

In practice:
▶ only the binary code is always available and useful . . .
▶ combinations of all these techniques . . .
▶ exploitability analysis still challenging . . .

20 / 22



Course objectives (for the part 1)

Understand the root causes of common weaknesses in SW security
▶ at the programming language level
▶ at the execution platform level

→ helps to better choose (or deal with) a programming language

Learn some methods and techniques to build more secure SW:
▶ programming techniques:

languages, coding patterns, etc.
▶ validation techniques:

what can(not) bring existing tools ?
▶ counter-measures and protection mechanisms

21 / 22



Course agenda (part 1)
See
https://im2ag-moodle.univ-grenoble-alpes.fr/course/view.php?id=545

Credits:
▶ E. Poll (Radboud University)
▶ M. Payer (Purdue University)
▶ E. Jaeger, O. Levillain and P. Chifflier (ANSSI)

22 / 22

https://im2ag-moodle.univ-grenoble-alpes.fr/course/view.php?id=545

	Some practical information
	What software security is (not) about ?
	About software security

