UGA Grenoble INP

M2 CySEC - Software Security

Lab Session 2
Cooking a simple

buffer overflow (BoF) exploit

Part 1

classical BoF attack

A vulnerable function f and its corresponding stack frame :

0x0000
rsp (stack pointer) 7 7
aaaaaa |
Covoid f(.....) {
f frame T
char T[N]
rbp (base pointer)
bbbbbb
bbbbbb /I T is filled with user-controlled input
cccccece o XXXXXXX freturn @
dddddd
Oxffff J
rip (instruction pointer) —

when f terminates : execution resumes on the f caller’s code at address xxxxxx

Rewriting f return address to hijack the control flow :

0x0000

aaaaaa

f frame

bbbbbbl
cceece

dddddd

Oxffff

when f terminates

rsp (stack pointer)

rbp (base pointer)

bbbbbb

XXXXXX

freturn @

rip (instruction pointer)

I/ T is filled with user-controlled input

Attacker goal : rewrite address xxxxxx with a controlled shellcode address

in order to hijack the normal pgm execution ...

Building the payload (part 1)

0x0000 .
_ void f (.....) {
rsp (stack pointer)
aaaaaa
char T[N]
f frame T
rbp (base pointer)
bbbbbb }
bbbbbb
CCcCcCccC ~ dddddd freturn @
Oxttf rip (instruction pointer)
when f terminates dddddd | shell-code @
T should be filled with the following input : <dddddd>

... the attacker needs to know the ... and find a shellcode address dddddd

Solution 1 : put the shellcode below the return @ (in the caller’s frame)

0x0000

daaaaaa

f frame

bbbbbb
cceecce
dddddd

Oxffff

when f terminates

rsp (stack pointer)

T
rbp (base pointer)
bbbbbb
— dddddd freturn @
shell-code

rip (instruction pointer)

dddddd| shell-code @

T should be filled with the following input :

<dddddd> <shellcode>

Solution 2 : put the shellcode inside the target buffer (if large enough)

0x0000

daaaaaa

dddddd

f frame

bbbbbb
cceecce

Oxffff

when f terminates

T should be filled with the following input : <shellcode>

i T shell-

rsp (stack pointer)

code

rbp (base pointer)

bbbbbb

dddddd

freturn @

rip (instruction pointer)

» dddddd |
(shell-code @ = buffer @)

<dddddd>

Part 2

ROP attack

Encode the shell-code as a sequence of ROP gadgets ...

0x0000

daaaaaa

f frame

bbbbbb
cceecce

Oxffff

when f terminates

rsp (stack pointer)

T
rbp (base pointer)
bbbbbb
@91l freturn @
@g2
@g3
@g4

rip (instruction pointer)

T should be filled with the following input :

<@gl><@g2><@g3><@g4> ...

Gadget execution :

A gadgetiis:
- either a ret-terminated instruction sequence of the target program
- or some data to be processed from the stack by the following gadget

Example :
To put 42 into rax, 0 into rbx and call syscall function
Gadget sequence : Stack content :
gl : pop rax ; ret freirmm @ — » @9l
g2:42 42
g3 : xor rbx, rbx ; ret @93
g4 : syscall @g4

