2

UFRIM?AG GrenobLeINP
" ENnsimAg

4“" UNIVERSITE ’)
ce Grenoble

! Alpes

Software security, secure programming

Lecture 4: Protecting your code against software vulnerabilities ?
(overview)

Master M2 Cybersecurity

Academic Year 2025 - 2026

Preamble

Bad news
several (widely used !) programming languages are unsecure ...

» codes are likely to contain vulnerabilities
» some of them can be exploited by an attacker ...

Good news
Ther exists some protections to make attacket’s life harder !
— 3 categories of protections:

» from the programmer (and/or programming language) itself
» from the compiler / interpreter
» from the execution plateform

1/27

Outline

Programmer’s level protections

Compilers level protections

Plateform level protections

Bonus

2/27

Step 0: all the languages are not equal . ..

2 main issues:
1. how much the compiler (and not the developer) is in charge of security ?

2. what about unsecure programs ?
(exploitable vs (random) crash vs exception raised vs compiler rejected)

» unsecure languages: Assembly languages, C, C++
weakly typed, side-effects, undefined behaviors, explicit pointers, explicit
heap management, etc.
= no memory safety, no type safety ...

> reasonably secure languages: Java, C#, Ada, Python, Rust
strongly typed, no pointers, garbage collector, ~ type safety, but still
some possible unsafe primitives/libraries

» more secure languages ? : OCaml, Haskell, Python (?), etc.
strongly typed, no pointers, garbage collector, no side effects (immutable
data)

— Of course: trade-off between security, expressiveness, execution time,
code re-use, etc.

Demo: C, Ada, Java

3/27

Step 1: Know the threats . ..
Most language level vulnerabilities are well-known !

CWE (Common Weakness Enumeration) https://cwe.mitre.org/
» a community-developed list of common software security weaknesses
» common language + a measuring stick for software security tools
» a baseline for weakness identification, mitigation, and prevention efforts
Ex: CWE-131 (Incorrect Calculation of Buffer Size)

CVE (Common Vulnerabilities and Exposures) https://cve.mitre.org/

An (exhaustive ?) open list of all the publicly known soft. vulnerabilities

— provides a common name & a standardized description

Ex: CVE-2017-12705 (A Heap-Based Buffer Overflow in Advantech WebOP).

CAPEC (Common Attack Pattern Enumeration and Classification)

https://capec.mitre.org/

“A comprehensive dictionary and classification taxonomy of known attacks”

Attack scenario, the attacker perspective (means, gains), possible protections
— a “design pattern” of an attack

Ex: CAPEC-100 (Overflow Buffers)

4/27

https://cwe.mitre.org/
https://cve.mitre.org/
https://capec.mitre.org/

Step 2: and avoid the traps !

» The CERT coding standarts
https://www.securecoding.cert.org/

> covers several languages: C, C++, Java, etc.

> rules + examples of non-compliant code + examples of solutions
» undefined behaviors

> efc.

» Microsoft banned function calls

» ANSSI recommendations

» JavaSec, LaFoSec (Ocaml, F#, Scala)
> Rules for Secure C language software

» Use of secure libraries

> Strsafe.h (Microsoft)

guarantee null-termination and bound to dest size
» libsafe.h (GNU/Linux)

no overflow beyond current stack frame
> etc.

Etc. (a lot of available references about “secure coding” ...)

5/27

https://www.ssi.gouv.fr/en/guide/rules-for-secure-c-language-software-development/

CERT coding standarts - Example 1
INT30-C. Ensure that unsigned integer operations do not wrap

Example of non compliant code

void func (unsigned int ui_a, unsigned int ui_b) {
unsigned int usum = ui_a + ui_b;

/x oo %/

Example of compliant code

void func (unsigned int ui_a, unsigned int ui_b) {
unsigned int usum = ui_a + ui_b;
if (usum < ui_a) {
/+ Handle error =*/
}
J* . %/

6/27

CERT coding standarts - Example 2
ARR30-C. Do not form or use out-of-bounds pointers or array subscripts

Example of non compliant code

char *init_block(size_t block_size, size_t offset,
char xdata, size_t data_size) {
char xbuffer = malloc(block_size);
memcpy (buffer + offset, data, data_size);
return buffer;

Example of compliant code

char xinit_block(size_t block_size, size_t offset,
char xdata, size_t data_size) {
char xbuffer = malloc (block_size);
if (NULL == buffer) { /x Handle error x/ }
if (data_size > block_size || block_size - data_size < offset) {
/* Data won’t fit in buffer, handle error =/
}
memcpy (buffer + offset, data, data_size);
return buffer;

7127

Code validation
Several tools can also help to detect code vulnerabilities . ..

Dynamic code analysis

Instruments the code to detect runtime errors (beyond language semantics!)
> invalid memory access (buffer overflow, use-after-free)
> uninitialized variables
> etc.

=- No false positive, but runtime overhead (~ testing)

Tool examples: Purify, Valgrind, AddressSanitizer, etc.

Static code analysis
Infer some (over)-approximation of the program behaviour
> uninitialized variables
> value analysis (e.g., array access out of bounds)
> pointer aliasing
> etc.
=- No false negative, but sometimes “inconclusive” ...
Tool examples: Frama-C, Polyspace, CodeSonar, Fortify, etc.

8/27

Dynamic analysis tool example: AddressSanitizer
Google, open-source plugin for clang/gcc (flag -fsanitize=address)

Targets
» buffer overflows (within stack, heap, or globals)
» use-after-free (heap), use-after-return (stack)
> memory leaks, ...

Means
» code instrumentation (load/store operations)
» use of redzones around variables memory area

» custom version of malloc ()
(redzone insertion, delay re-used of free memory, collect log information)

At work

> ~ 2x slowdown (Valgrind is ~ 20x) and 1.5x-3.x memory overhead
(— ok for tests and/or fuzzing campaigns)

> # (security) bugs found in Chrome, Firefox, MySQL, gcc, etc.

Demo: AdSan

9/27

Static analysis example: Frama-C RTE
runtime error annotation pluging for the Frama-C plateform [CEA List]

Targets

potential runtime-errors and undefined behaviors
> invalid memory accesses
» arithmetic overflows on signed and unsigned integers
» invalid casts from float to int, etc.

Means
» static enhanced type checking = potential false positives
> lighweight optimizations (e.g., constant folding) to improve precision

At work
» exhibits potential RTE issues at the source level (assert annotations)
» to be discharged by hand and/or by other Frama-C plugins (Wp, Eva)

(see https://frama-c.com/rte.html) ‘ Demo: Frama-C RTE ‘

10/27

https://frama-c.com/rte.html

Outline

Compilers level protections

Compilers may help for code protection
Most compilers offer compilation options enforce security

Examples'

» stack protection

stack layout

FORTIFY (enforces the use of safe libraries, e.g., __strcpy_chk)
canaries (e.g, gcc stack protector)

shadow stack for return addresses

control-flow integrity (e.g., clang CFl, Java)

VVVYVYY

» pointer protection

» pointer encryption (PointGuard)
> smart pointers (C++)
> .

> no “undefined behavior”
e.g., enforce wrap around for unsigned int in C

(-fno-strict-overflow, —~-fwrapv)

> etc.

see also https://blog.quarkslab.com/clang-hardening-cheat-sheet.html

and E. Poll slides on the course web page)
11/27

https://blog.quarkslab.com/clang-hardening-cheat-sheet.html

Stack protection example: canaries

— gcc StackProtector, Redhat StackGuard, ProPolice, etc. o
Principle: compiler generates extra code to:

1. insert a random value on the stack above the return address
2. check it before return and stops the execution if it has changed

'y

example cade:

Bottom of memory
Top of stack

oid main () {

function1 (1, 2, 3);
bufferz
bufferl

StockGuand Corary | | nctiont) stack

Ratumn Address

a
b
c

Top of memary
Bottom of stack

Limited to stack (# heap) and return @ (# loc. variables) protection
Possibly defeated by information disclosure, non consecutive overflow, etc.
http://wiki.osdev.org/Stack_Smashing_Protector

’ Demo: -fstack-protector

12/27

http://wiki.osdev.org/Stack_Smashing_Protector

Pointer protection

— Memory safety enforcement and attack prevention
» smart pointers: ~» temporal memory safety
ADT including pointer facilities + memory management (garbage
collection)
Ex: C++ template with unique/shared/weak pointers
» fat pointers: ~ spatial memory safety
extra meta-data to store memory cells base+bounds (Ex: C SoftBound)
» ciphered pointers: ~» pointer integrity

PointGuard Pointer Dereference

Memory

13/27

https://codefinity.com/courses/v2/092c3356-af08-47f3-85ac-5ea89160bbae/de63d7bb-3db1-4d4b-bcd6-b33bc554c883/d0d16449-d242-48c1-8819-faa32a465bb5

Control-Flow Integrity (CFI)

The main idea
— Ensure that the actual pgm control-flow is the one intended by the pgmer
several means:
» pre-compute all possible flows (CFG) and insert rutime-checks in the
binary code
pb: function pointers, dynamic calls (virtual functions), etc.

» simpler version: focus only on the call graph
protect function calls and returns, possible over-approximations

» execution overhead: 20% - 40% ?

More details in Abadi et al. paper:
Control-Flow Integrity Principles, Implementations, and Applications

https://users.soe.ucsc.edu/~abadi/Papers/cfi-tissec-revised.pdf

14/27

https://users.soe.ucsc.edu/~abadi/Papers/cfi-tissec-revised.pdf

CFI: software protection (e.g,. LLVM clang)
— focus on Call Graph ...

Forward edges

— to enforce the validity of call statements
targets virtual and/or indirect function calls
Examples:

» C++ virtual functions, dynamic binding
» function pointers (int *f (void))
check at runtime that the function type is the expected one

Backward edges

— to enforce the validity of return statements use a (software) shadow stack
to save a copy of return addresses
(located at random position, and protected against overflows)

see https://blog.quarkslab.com/clang-hardening-cheat-sheet.html

15/27

https://blog.quarkslab.com/clang-hardening-cheat-sheet.html

Shadow Stack

At call time:

< store function return adress in the (regular) call stack and in a copy

(shadow stack)
At function termination:

— check that both stack pointers contains the same (return) addresses

Call stack

Return address 1

Shadow stack

Q/

Return address 1

Return address 2
(modified)

Return address 2

s

Return address 3

Return address 3

Address mismatch!

w2 (Control Protection Exception

~

Limitations:

» protect backward edges only
» the shadow stack should not be tampered with ...

16/27

Bypassing CFl ? Use data-oriented attacks !

Principle:
< hijack code execution by modifying® non-control data (CFI preserving)
Attack objectives:
— information disclosure, priviledge escalation, security checks bypass
Existing techniques:
» Direct Data Manipulation: modify a single data directly through its
address;
» Data/Block Oriented Programming (DOP/BOP): use a sequence of
“data-programming” gadgets/basic blocks to chain several data
corruptions

-
/7 Memory comution sddresses o target
wulnerabilty data and gadgets DOM: Direct data manipulation

/
\ Attack . ['s1: Triggera DOP: Data 53 Use the. Data-
payload | memory error | corrupted data oriented
attacks
':;d‘:;'x"‘;;:' 52: Manipulate non-control data,

ogram
crashorCel Requirements

—— Data space randomization Data-flow integrity
Defenses
Software compartmentalization

Monitoring and detection

Fig. 2: Stages in data-oriented attacks and mitigation in different stages

Credits:

Exploitation Techniques for Data-oriented Attacks with Existing and Potential Defense Approaches
2unsing memory errors

17/27

https://dl.acm.org/doi/fullHtml/10.1145/3462699

Outline

Plateform level protections

Some more generic protections from the execution plateform

General purposes operating systems (Linux, Windows, etc.)

» Memory layout randomization (ASLR, KASLR)
attacker needs to know precise memory addresses

» make this address random (and changing at each execution)
»> no (easy) way to guess the current layout on a remote machine ...
» randomized regions includes code, stack, heap and shared libraries

»> Non executable memory zone (NX, W & X, DEP)
basic attacks = execute code from the data zone
distinguish between:

»> memory for the code (eXecutable, not Writeable)
» memory for the data (Writable, not eXecutable)

Example: make the execution stack non executable ...

Rks:
> exists other dedicated protections for specific plateforms:
e.g., JavaCard, Android, embedded systems, ...

> exists also hardware level protections:
e.g., Intel SGC, ARM TrustZone, HW pointer protections, etc.

18/27

Defeating the ASLR ?

» some sections may not be be randomized
(requires Position Independent Executable)

» On a 32 bits machine, brute force may be effective, e.g
> heap spraying = filling the heap witth # copies of the payload
> overwritting the LSB of a pointer

» Information leaks may help to fully disclose address information

=- needs to chain several (exploitable) vulns ...

Stronger counter-measures ?

— encrypt the data stored in memory

19/27

Defeating the DEP ?

overflow|
buffer

classical BoF exploit
frame pointer shell code in the stack ...

return @]

shell code

Do not store shellcode in the stack ... use existing code instructions instead !
» return-to-libc: redirect the control-flow towards library code
» return oriented programming (ROP)
payload = sequence of return-terminated instructions (gadgets)
Gadget

Instruction
Sequence

Stack

we-(T)-+{ Return Address 1 |—@

ret

Data

3
.. Instruction
Return Address 2 é\‘})‘ Sequence

Return Address 3 q.:_;,:.,——— -
&),

ata | Instruction
- Sequence

ret

> gadget programming is “turing complete”
»> 3 tools for gagdget extraction (ROPgadget, ROPium, etc.)
» 3 ROP variants:
COP (call-oriented programming), JOP (jump-oriented programming)

Rks: may also 3 library calls allowing to make the stack executable ...
20/27

Preventing ROP, COP, JOP ?

» preventing ROP:
» count the number of RET instructions at runtime

»> use a shadow stack to duplicate return addresses

» preventing JOP and COP:
use a new machine instruction to “tag” valid jump/call destinations
e.g.: Intel CET (Control-Flow Enforcement Technology)

CALL Oxabcdef

Oxabcdef:
ENDBRANCH // tag a valid jum/call des

RET
— no (easy) way to jump in the middle of a function ...

21/27

HW protection examples: CET and PAC

Intel CET (Control-flow Enforcement Technology)

Shadow stack (not readable/writable by softare)
+
Indirect branch tracking

uses endbranch label to mark legitimate branch targets, ~ nop on old CPUs

ARM PAC (Pointer AuthentiCation)

» unused bit addresses in 64 bits architecture
— can be used to store some pointer authentication value
(assigned before writting in memory and verified before each use)

» new instructions to sign and authenticate
cryptp algo = QUARMA, 128 bit key + some “context value”

» subsumes canaries (return address is protected), enforces CFI (indirect
calls)

» Available on iOS

22/27

A comparison of three CFI protection techniques

LLVM Clang CFl vs Intel CET vs ARM PAC

Feature LLVM CFl Intel CET ARM PAC

Type Software (Compiler) Hardware (CPU) Hardware (CPU)

Protects Indirect callsfjumps Returns & indirect Pointers (returns, vtables,
branches etc)

Granularity Type-based Structure-based (IBT) Cryptographic pointer
integrity

Return Address No (needs SCS) Yes (Shadow Stack) YYes (PAC on LR register)
Protection

Performance Overhead Low-Moderate Very Low Very Low

Hardware Required No Intel Tiger Lake+ ARMvE.3+

Platform Support Cross-platform (LLVM) x86 only ARMB64 only

Used In Android, Chrome, Windows 10+, Linux i0S, macOS, Android (some
Fuchsia (opt-in) SoCs)

Credits: A Deep Dive into Control Flow Protection

23/27

https://medium.com/@nikheelvs/llvm-cfi-vs-intel-cet-vs-arm-pac-a-deep-dive-into-control-flow-protection-39fd4af2fb36

Outline

Bonus

Bonus: retrieving the stack layout

Stack layout of the following code ?

int main() {
int x;
int T[10];
char 1i;
T[i]=x;

1. print variable addresses: need to re-compile, not reliable . ..
printf ("$x", &x); printf ("%x",&i);
printf ("$x",&(T[0]);

2. use a debugger (ex: gdb): need to re-compile, not reliable ...
— set a breakpoint (b main), execute (run), print addresses (p &1)

3. disassemble the executable code (objdump -s, idaPro, Ghidra, etc.)
—get variable offset w.r.t frame pointer rpb on (x86_64)

24/27

Bonus: summary of memory-related exploits

A I L
Moditya Modifys Mody a dsta Output dora
data pointer code painter .. variabie riabie
viLe. -

| [Coae Puinter ntegeiny, [— . |
| |
L i

@ - to the address of
Figure 1. Attack model demonstrating four exploit types and policies mitigating the attacks in different stages

(from “SoK: Eternal War in Memory” Laszlo Szekeres et al., Oakland 13) 2557

Some exploits defeating ASLR + DEP using ROP

CVE ID Software Vulnerability Address leakage User scripting
CVE-2011-0609 Adobe Flash JIT type confusion Read an IEEE-754 number ActionSeript
CVE-2012-0003 Windows Multimedia Heap buffer overflow Read a string after overwriting JavaScript
Library (affecting IE) its length
CVE-2011-4130 ProFTPD Use-after-free Overwnite the “226 Transfer none
Complete” message
CVE-2012-469 Moalla Firefox Use-after-free Read a string after overwnting JavaScript
its length
CVE-2012-1889 Microsoft Windows Uninitialized pointer ~ Read as a RGB color JavaScript

XML Core Services
(affecting 1E)

CVE-2012-1876 Internet Explorer %100 Heap buffer overflow Read a string after overwriting JavaScript
(Pwn2Own 2012} its length

Table 1
EXPLOITS THAT DEFEAT BOTH DEP AND ASLR USING ROP AND INFORMATION LEAKS

(from “SoK: Eternal War in Memory” Laszlo Szekeres et al., Oakland 13)

A more recent detailed example:

Exploiting CVE-2018-5093 on Firefox 56 and 57 (part 1 and part 2)

26/27

https://ictexpertsluxembourg.lu/technical-corner/exploiting-cve-2018-5093-on-firefox-56-and-57-part1-controlling-the-instruction-pointer/
https://ictexpertsluxembourg.lu/technical-corner/exploiting-cve-2018-5093-on-firefox-56-and-57-part2-gaining-code-execution/

Conclusion

» 3 numerous protections to avoid / mitigate vulnerability exploitations

v

several protection levels
code, verification tools, compilers, plateforms

v

they allow to “(partially) mitigate” most known programming languages
weaknesses (e.g., C/C++)

v

they still require programmers skills and concerns

v

even if they make attackers life harder ...

» ...they can still be bypassed !

— an endless game between “attackers” and “defenders” !

27/27

	Programmer's level protections
	Compilers level protections
	Plateform level protections
	Bonus

