
Software security, secure programming

Lecture 4: Protecting your code against software vulnerabilities ?
(overview)

Master M2 Cybersecurity

Academic Year 2025 - 2026

Preamble

Bad news
several (widely used !) programming languages are unsecure . . .
▶ codes are likely to contain vulnerabilities
▶ some of them can be exploited by an attacker . . .

Good news
Ther exists some protections to make attacket’s life harder !
→ 3 categories of protections:
▶ from the programmer (and/or programming language) itself
▶ from the compiler / interpreter
▶ from the execution plateform

1 / 27

Outline

Programmer’s level protections

Compilers level protections

Plateform level protections

Bonus

2 / 27

Step 0: all the languages are not equal . . .

2 main issues:

1. how much the compiler (and not the developer) is in charge of security ?

2. what about unsecure programs ?
(exploitable vs (random) crash vs exception raised vs compiler rejected)

▶ unsecure languages: Assembly languages, C, C++
weakly typed, side-effects, undefined behaviors, explicit pointers, explicit
heap management, etc.
⇒ no memory safety, no type safety . . .

▶ reasonably secure languages: Java, C#, Ada, Python, Rust
strongly typed, no pointers, garbage collector, ∼ type safety, but still
some possible unsafe primitives/libraries

▶ more secure languages ? : OCaml, Haskell, Python (?), etc.
strongly typed, no pointers, garbage collector, no side effects (immutable
data)

→ Of course: trade-off between security, expressiveness, execution time,
code re-use, etc.

Demo: C, Ada, Java

3 / 27

Step 1: Know the threats . . .

Most language level vulnerabilities are well-known !

CWE (Common Weakness Enumeration) https://cwe.mitre.org/

▶ a community-developed list of common software security weaknesses
▶ common language + a measuring stick for software security tools
▶ a baseline for weakness identification, mitigation, and prevention efforts

Ex: CWE-131 (Incorrect Calculation of Buffer Size)

CVE (Common Vulnerabilities and Exposures) https://cve.mitre.org/

An (exhaustive ?) open list of all the publicly known soft. vulnerabilities
→ provides a common name & a standardized description
Ex: CVE-2017-12705 (A Heap-Based Buffer Overflow in Advantech WebOP).

CAPEC (Common Attack Pattern Enumeration and Classification)
https://capec.mitre.org/

“A comprehensive dictionary and classification taxonomy of known attacks”
Attack scenario, the attacker perspective (means, gains), possible protections

→ a “design pattern” of an attack
Ex: CAPEC-100 (Overflow Buffers)

4 / 27

https://cwe.mitre.org/
https://cve.mitre.org/
https://capec.mitre.org/

Step 2: and avoid the traps !

▶ The CERT coding standarts
https://www.securecoding.cert.org/
▶ covers several languages: C, C++, Java, etc.
▶ rules + examples of non-compliant code + examples of solutions
▶ undefined behaviors
▶ etc.

▶ Microsoft banned function calls

▶ ANSSI recommendations
▶ JavaSec, LaFoSec (Ocaml, F#, Scala)
▶ Rules for Secure C language software

▶ Use of secure libraries
▶ Strsafe.h (Microsoft)

guarantee null-termination and bound to dest size
▶ libsafe.h (GNU/Linux)

no overflow beyond current stack frame
▶ etc.

Etc. (a lot of available references about “secure coding” . . .)

5 / 27

https://www.ssi.gouv.fr/en/guide/rules-for-secure-c-language-software-development/

CERT coding standarts - Example 1

INT30-C. Ensure that unsigned integer operations do not wrap

Example of non compliant code

void func(unsigned int ui_a, unsigned int ui_b) {
unsigned int usum = ui_a + ui_b;
/* ... */

}

Example of compliant code

void func(unsigned int ui_a, unsigned int ui_b) {
unsigned int usum = ui_a + ui_b;
if (usum < ui_a) {

/* Handle error */
}
/* ... */

}

6 / 27

CERT coding standarts - Example 2

ARR30-C. Do not form or use out-of-bounds pointers or array subscripts

Example of non compliant code

char *init_block(size_t block_size, size_t offset,
char *data, size_t data_size) {

char *buffer = malloc(block_size);
memcpy(buffer + offset, data, data_size);
return buffer;

Example of compliant code

char *init_block(size_t block_size, size_t offset,
char *data, size_t data_size) {

char *buffer = malloc(block_size);
if (NULL == buffer) { /* Handle error */ }
if (data_size > block_size || block_size - data_size < offset) {
/* Data won’t fit in buffer, handle error */

}
memcpy(buffer + offset, data, data_size);
return buffer;

}

7 / 27

Code validation

Several tools can also help to detect code vulnerabilities . . .

Dynamic code analysis
Instruments the code to detect runtime errors (beyond language semantics!)
▶ invalid memory access (buffer overflow, use-after-free)
▶ uninitialized variables
▶ etc.

⇒ No false positive, but runtime overhead (∼ testing)
Tool examples: Purify, Valgrind, AddressSanitizer, etc.

Static code analysis
Infer some (over)-approximation of the program behaviour
▶ uninitialized variables
▶ value analysis (e.g., array access out of bounds)
▶ pointer aliasing
▶ etc.

⇒ No false negative, but sometimes “inconclusive” . . .
Tool examples: Frama-C, Polyspace, CodeSonar, Fortify, etc.

8 / 27

Dynamic analysis tool example: AddressSanitizer

Google, open-source plugin for clang/gcc (flag -fsanitize=address)

Targets
▶ buffer overflows (within stack, heap, or globals)
▶ use-after-free (heap), use-after-return (stack)
▶ memory leaks, . . .

Means
▶ code instrumentation (load/store operations)
▶ use of redzones around variables memory area
▶ custom version of malloc()

(redzone insertion, delay re-used of free memory, collect log information)

At work
▶ ∼ 2x slowdown (Valgrind is ∼ 20x) and 1.5x-3.x memory overhead

(→ ok for tests and/or fuzzing campaigns)
▶ # (security) bugs found in Chrome, Firefox, MySQL, gcc, etc.

Demo: AdSan
9 / 27

Static analysis example: Frama-C RTE

runtime error annotation pluging for the Frama-C plateform [CEA List]

Targets

potential runtime-errors and undefined behaviors
▶ invalid memory accesses
▶ arithmetic overflows on signed and unsigned integers
▶ invalid casts from float to int, etc.

Means
▶ static enhanced type checking ⇒ potential false positives
▶ lighweight optimizations (e.g., constant folding) to improve precision

At work
▶ exhibits potential RTE issues at the source level (assert annotations)
▶ to be discharged by hand and/or by other Frama-C plugins (Wp, Eva)

(see https://frama-c.com/rte.html) Demo: Frama-C RTE

10 / 27

https://frama-c.com/rte.html

Outline

Programmer’s level protections

Compilers level protections

Plateform level protections

Bonus

Compilers may help for code protection

Most compilers offer compilation options enforce security

Examples1

▶ stack protection
▶ stack layout
▶ FORTIFY (enforces the use of safe libraries, e.g., __strcpy_chk)
▶ canaries (e.g, gcc stack protector)
▶ shadow stack for return addresses
▶ control-flow integrity (e.g., clang CFI, Java)
▶ . . .

▶ pointer protection
▶ pointer encryption (PointGuard)
▶ smart pointers (C++)
▶ . . .

▶ no “undefined behavior”
e.g., enforce wrap around for unsigned int in C
(-fno-strict-overflow, -fwrapv)

▶ etc.

1see also https://blog.quarkslab.com/clang-hardening-cheat-sheet.html
and E. Poll slides on the course web page)

11 / 27

https://blog.quarkslab.com/clang-hardening-cheat-sheet.html

Stack protection example: canaries

↪→ gcc StackProtector, Redhat StackGuard, ProPolice, etc.
Principle: compiler generates extra code to:

1. insert a random value on the stack above the return address
2. check it before return and stops the execution if it has changed

Limited to stack (̸= heap) and return @ (̸= loc. variables) protection
Possibly defeated by information disclosure, non consecutive overflow, etc.
http://wiki.osdev.org/Stack_Smashing_Protector Demo: -fstack-protector

12 / 27

http://wiki.osdev.org/Stack_Smashing_Protector

Pointer protection

↪→ Memory safety enforcement and attack prevention
▶ smart pointers: ⇝ temporal memory safety

ADT including pointer facilities + memory management (garbage
collection)
Ex: C++ template with unique/shared/weak pointers

▶ fat pointers: ⇝ spatial memory safety
extra meta-data to store memory cells base+bounds (Ex: C SoftBound)

▶ ciphered pointers: ⇝ pointer integrity

13 / 27

https://codefinity.com/courses/v2/092c3356-af08-47f3-85ac-5ea89160bbae/de63d7bb-3db1-4d4b-bcd6-b33bc554c883/d0d16449-d242-48c1-8819-faa32a465bb5

Control-Flow Integrity (CFI)

The main idea
→ Ensure that the actual pgm control-flow is the one intended by the pgmer
several means:
▶ pre-compute all possible flows (CFG) and insert rutime-checks in the

binary code
pb: function pointers, dynamic calls (virtual functions), etc.

▶ simpler version: focus only on the call graph
protect function calls and returns, possible over-approximations

▶ execution overhead: 20% - 40% ?

More details in Abadi et al. paper:
Control-Flow Integrity Principles, Implementations, and Applications
https://users.soe.ucsc.edu/~abadi/Papers/cfi-tissec-revised.pdf

14 / 27

https://users.soe.ucsc.edu/~abadi/Papers/cfi-tissec-revised.pdf

CFI: software protection (e.g,. LLVM clang)

↪→ focus on Call Graph . . .

Forward edges
↪→ to enforce the validity of call statements
targets virtual and/or indirect function calls
Examples:
▶ C++ virtual functions, dynamic binding
▶ function pointers (int *f(void))

check at runtime that the function type is the expected one

Backward edges
↪→ to enforce the validity of return statements use a (software) shadow stack
to save a copy of return addresses
(located at random position, and protected against overflows)

see https://blog.quarkslab.com/clang-hardening-cheat-sheet.html

15 / 27

https://blog.quarkslab.com/clang-hardening-cheat-sheet.html

Shadow Stack

At call time:
↪→ store function return adress in the (regular) call stack and in a copy
(shadow stack)
At function termination:
↪→ check that both stack pointers contains the same (return) addresses

Limitations:
▶ protect backward edges only
▶ the shadow stack should not be tampered with . . .

16 / 27

Bypassing CFI ? Use data-oriented attacks !

Principle:
↪→ hijack code execution by modifying2 non-control data (CFI preserving)
Attack objectives:
↪→ information disclosure, priviledge escalation, security checks bypass
Existing techniques:
▶ Direct Data Manipulation: modify a single data directly through its

address;
▶ Data/Block Oriented Programming (DOP/BOP): use a sequence of

“data-programming” gadgets/basic blocks to chain several data
corruptions

Credits:
Exploitation Techniques for Data-oriented Attacks with Existing and Potential Defense Approaches

2unsing memory errors
17 / 27

https://dl.acm.org/doi/fullHtml/10.1145/3462699

Outline

Programmer’s level protections

Compilers level protections

Plateform level protections

Bonus

Some more generic protections from the execution plateform

General purposes operating systems (Linux, Windows, etc.)
▶ Memory layout randomization (ASLR, KASLR)

attacker needs to know precise memory addresses
▶ make this address random (and changing at each execution)
▶ no (easy) way to guess the current layout on a remote machine . . .
▶ randomized regions includes code, stack, heap and shared libraries

▶ Non executable memory zone (NX, W ⊖ X, DEP)
basic attacks ⇒ execute code from the data zone
distinguish between:
▶ memory for the code (eXecutable, not Writeable)
▶ memory for the data (Writable, not eXecutable)

Example: make the execution stack non executable . . .

Rks:
▶ exists other dedicated protections for specific plateforms:

e.g., JavaCard, Android, embedded systems, . . .
▶ exists also hardware level protections:

e.g., Intel SGC, ARM TrustZone, HW pointer protections, etc.

18 / 27

Defeating the ASLR ?

▶ some sections may not be be randomized
(requires Position Independent Executable)

▶ On a 32 bits machine, brute force may be effective, e.g
▶ heap spraying = filling the heap witth # copies of the payload
▶ overwritting the LSB of a pointer

▶ Information leaks may help to fully disclose address information

⇒ needs to chain several (exploitable) vulns . . .

Stronger counter-measures ?

→ encrypt the data stored in memory

19 / 27

Defeating the DEP ?

return @

frame pointer

buffer

shell code

overflow

classical BoF exploit
shell code in the stack ...

Do not store shellcode in the stack . . . use existing code instructions instead !
▶ return-to-libc: redirect the control-flow towards library code
▶ return oriented programming (ROP)

payload = sequence of return-terminated instructions (gadgets)

▶ gadget programming is “turing complete”
▶ ∃ tools for gagdget extraction (ROPgadget, ROPium, etc.)
▶ ∃ ROP variants:

COP (call-oriented programming), JOP (jump-oriented programming)
Rks: may also ∃ library calls allowing to make the stack executable . . .

20 / 27

Preventing ROP, COP, JOP ?

▶ preventing ROP:
▶ count the number of RET instructions at runtime

▶ use a shadow stack to duplicate return addresses

▶ preventing JOP and COP:
use a new machine instruction to “tag” valid jump/call destinations
e.g.: Intel CET (Control-Flow Enforcement Technology)

...
CALL 0xabcdef
...

0xabcdef:
ENDBRANCH // tag a valid jum/call dest
...
RET

→ no (easy) way to jump in the middle of a function . . .

21 / 27

HW protection examples: CET and PAC

Intel CET (Control-flow Enforcement Technology)

Shadow stack (not readable/writable by softare)
+

Indirect branch tracking

uses endbranch label to mark legitimate branch targets, ∼ nop on old CPUs

ARM PAC (Pointer AuthentiCation)
▶ unused bit addresses in 64 bits architecture

↪→ can be used to store some pointer authentication value
(assigned before writting in memory and verified before each use)

▶ new instructions to sign and authenticate
cryptp algo = QUARMA, 128 bit key + some “context value”

▶ subsumes canaries (return address is protected), enforces CFI (indirect
calls)

▶ Available on iOS

22 / 27

A comparison of three CFI protection techniques

LLVM Clang CFI vs Intel CET vs ARM PAC

Credits: A Deep Dive into Control Flow Protection

23 / 27

https://medium.com/@nikheelvs/llvm-cfi-vs-intel-cet-vs-arm-pac-a-deep-dive-into-control-flow-protection-39fd4af2fb36

Outline

Programmer’s level protections

Compilers level protections

Plateform level protections

Bonus

Bonus: retrieving the stack layout

Stack layout of the following code ?

int main() {
int x;
int T[10];
char i;
T[i]=x;

}

1. print variable addresses: need to re-compile, not reliable . . .
printf("%x",&x); printf("%x",&i);
printf("%x",&(T[0]);

2. use a debugger (ex: gdb): need to re-compile, not reliable . . .
↪→ set a breakpoint (b main), execute (run), print addresses (p &i)

3. disassemble the executable code (objdump -S, idaPro, Ghidra, etc.)
↪→get variable offset w.r.t frame pointer rpb on (x86_64)

24 / 27

Bonus: summary of memory-related exploits

(from “SoK: Eternal War in Memory” Laszlo Szekeres et al., Oakland 13) 25 / 27

Some exploits defeating ASLR + DEP using ROP

(from “SoK: Eternal War in Memory” Laszlo Szekeres et al., Oakland 13)

A more recent detailed example:

Exploiting CVE-2018-5093 on Firefox 56 and 57 (part 1 and part 2)

26 / 27

https://ictexpertsluxembourg.lu/technical-corner/exploiting-cve-2018-5093-on-firefox-56-and-57-part1-controlling-the-instruction-pointer/
https://ictexpertsluxembourg.lu/technical-corner/exploiting-cve-2018-5093-on-firefox-56-and-57-part2-gaining-code-execution/

Conclusion

▶ ∃ numerous protections to avoid / mitigate vulnerability exploitations

▶ several protection levels
code, verification tools, compilers, plateforms

▶ they allow to “(partially) mitigate” most known programming languages
weaknesses (e.g., C/C++)

▶ they still require programmers skills and concerns

▶ even if they make attackers life harder . . .

▶ . . . they can still be bypassed !

→ an endless game between “attackers” and “defenders” !

27 / 27

	Programmer's level protections
	Compilers level protections
	Plateform level protections
	Bonus

