
Software security, secure programming

Reverse-engineering from binary code

Master M2 Cybersecurity

Academic Year 2024 - 2025

Outline

Introduction

Low-level code representations

Disassembling

Application to BoF exploitation

Retrieving source-level information

Some Tools . . .

Software = several knowledge/information levels

▶ (formal) models: overall architecture, component behaviors
▶ specifications, algorithms, abstract data structures
▶ source code

objects, variables, types, functions, control and data flows
▶ possible intermediate representations: Java bytecode, LLVM IR, etc.
▶ assembly
▶ binary code (relocatable / shared object / executable)

Some reverse-engineering settings:
▶ source level→ model level . . .
▶ de-compiling: binary→ source level
▶ disassembling: binary→ assembly level
▶ etc.

2 / 39

Why and when bothering with binary code ? (1)

→ when the source code is not/no longer available

▶ updating/maintaining legacy code

▶ “off-the-shell” components (COST), external libraries

▶ dynamically loaded code (applets, plugins, mobile apps)

▶ pieces of assembly code in the source

▶ suspicious files (malware, etc.)

3 / 39

Why and when bothering with binary code ? (2)

→ when the source code is not sufficient

“What You See Is Not What You Execute” [T. Reps]

▶ untrusted compilation chain

▶ low-level bugs, at the HW/SW interface

▶ security analysis
going beyond standard programming language semantics
(optimization, memory layout, undefined behavior, protections, etc.)

Beware ! Reverse-engineering is restricted by the law
(“Intellectual Property”, e.g. Art. L122-6-1 du Code de la Propriété Intellectuelle)

4 / 39

Outline

Introduction

Low-level code representations

Disassembling

Application to BoF exploitation

Retrieving source-level information

Some Tools . . .

Example 1: Java ByteCode (stack machine)1

public static int main() {
int x, r;
x=42 ; r=1 ;
while (x>0) {

r = r*x;
x = x-1;

} ;
return r ;
}

public static int main(java.lang.String[]);
Code:

0: bipush 42
2: istore_1
3: iconst_1
4: istore_2
5: iload_1
6: ifle 20
9: iload_2
10: iload_1
11: imul
12: istore_2
13: iload_1
14: iconst_1
15: isub
16: istore_1
17: goto 5
20: iload_2
21: ireturn

1use javap -c to produce the bytecode
5 / 39

Example 2: LLVM IR (register based machine)

int main() {
int x, r;
x=42 ; r=1 ;
while (x>0) {

r = r*x;
x = x-1;

} ;
return r ;
}

CFG for 'main' function

%0:
 %1 = alloca i32, align 4
 %x = alloca i32, align 4
 %r = alloca i32, align 4
 store i32 0, i32* %1
 store i32 42, i32* %x, align 4
 store i32 1, i32* %r, align 4
 br label %2

%2:

 %3 = load i32* %x, align 4
 %4 = icmp sgt i32 %3, 0
 br i1 %4, label %5, label %11

T F

%5:

 %6 = load i32* %r, align 4
 %7 = load i32* %x, align 4
 %8 = mul nsw i32 %6, %7
 store i32 %8, i32* %r, align 4
 %9 = load i32* %x, align 4
 %10 = sub nsw i32 %9, 1
 store i32 %10, i32* %x, align 4
 br label %2

%11:

 %12 = load i32* %r, align 4
 ret i32 %12

6 / 39

Example 3: assembly code (x86-64)2

int main() {
int x, r;
x=42 ; r=1 ;
while (x>0) {

r = r*x;
x = x-1;

} ;
return r ;
}

main:
push rbp
mov rbp, rsp
mov DWORD PTR [rbp-4], 42
mov DWORD PTR [rbp-8], 1
jmp .L2

.L3:
mov eax, DWORD PTR [rbp-8]
imul eax, DWORD PTR [rbp-4]
mov DWORD PTR [rbp-8], eax
sub DWORD PTR [rbp-4], 1

.L2:
cmp DWORD PTR [rbp-4], 0
jg .L3
mov eax, DWORD PTR [rbp-8]
pop rbp
ret

2see https://godbolt.org/
7 / 39

Memory layout at runtime (simplified)

Executable code = (binary) file produced by the compiler
→ need to be loaded in memory to be executed (using a loader)

However:
▶ no abolute addresses are stored in the executable code
→ decided at “load time”

▶ not all the executable code is stored in the executable file
(e.g., dynamic libraries)
→ lazy binding using relocation tables (e.g., GOT and PLT)

▶ data memory can be dynamically allocated
▶ data can become code (and conversely . . .)
▶ etc.

→ the executable file should contain all the information required . . .

∃ standards executable formats: ELF (Linux), PE (Windows), etc.
▶ header
▶ sections: text, initialized/unitialized data, symbol tables, relocation

tables, etc.

Rks: stripped (no symbol table) vs verbose (debug info) executables . . .

8 / 39

Example 1: Linux Elf

Demo: memory layout at runtime: more /proc/xxxx/maps

9 / 39

Example 2: Windows PE

10 / 39

x86_64 assembly language in one slide

Registers: (64 bits)
▶ stack pointer (RSP), frame pointer (RBP), program counter (RIP)
▶ general purpose: RAX, RBX, RCX, RDX, RSI, RDI
▶ flags

Instructions:
▶ data transfer (MOV), arithmetic (ADD, etc.)
▶ logic (AND, TEST, etc.)
▶ control transfer (JUMP, CALL, RET, etc)

Adressing modes (AT&T syntax):
▶ register: movl %rax, %rbx // rbx← rax
▶ immediate: movl $1, %rax // rax← 1
▶ direct memory: movl %rax, -0x10(%rbp) // Mem[rbp-16]← rax

11 / 39

x86_64 integer registers

Each register can be accessed as 8, 16, 32 or 64 (least significant) bits, e.g.:

12 / 39

Stack layout for the x86 64-bits architecture (1)

13 / 39

Stack layout for the x86 64-bits architecture (2)

Rk: note that stack addresses are 6 bytes (24 bits) long . . .

14 / 39

ABI (Application Binary Interface)

to “standardize” how processor resources should be used
⇒ required to ensure compatibilities at binary level

▶ sizes, layouts, and alignments of basic data types
▶ calling conventions

argument & return value passing, saved registers, etc.
▶ system calls to the operating system

Figure: calling conventions examples
(x86) Figure: x86_64 fastcall

System V AMD64 calling convention (Linux) :
Integer/Pointer Arguments 1-6 transmitted on RDI, RSI, RDX, RCX, R8, R9

15 / 39

Outline

Introduction

Low-level code representations

Disassembling

Application to BoF exploitation

Retrieving source-level information

Some Tools . . .

Understanding and analysing binary code ?

Disassembling !

statically:
disassemble the whole file content without executing it . . .

dynamically: disassemble the current instruction path during
execution/emulation . . .

16 / 39

Static Disassembling (1)

Assume “reasonnable” (stripped) code only
→ no obfuscation, no packing, no auto-modification, . . .

Enough pitfalls to make it undecidable . . .
main issue: distinguishing code vs data . . .
▶ interleavings between code and data segments
▶ dynamic jumps (jmp <register>)
▶ possible variable-length instruction encoding, # addressing modes, . . .

e.g, > 1000 distinct x86 instructions
1.5 year to fix the semantics of x86 shift instruction at CMU

→ much worse when considering self-modifying code, packers, etc.

Example: x86 instruction format

17 / 39

Static Disassembling (2)

Classical static disassembling techniques
▶ linear sweep: follows increasing addresses (ex: objdump)

↪→ pb with interleaved code/data ?
▶ recursive disassembly: control-flow driven (ex: IDAPro)

↪→ pb with dynamic jumps ?
▶ hybrid: combines both to better detect errors ...

Some existing tools
▶ Disassemblers/Decompilers:

▶ IDA Pro [HexRays]
▶ Ghidra [NSA, open-source]

▶ On Linux plateforms (for ELF formats):
▶ objdump (-S for code disassembling)
▶ readelf

▶ and many others (Capstone, Miasm, Radare2, Triton, etc.)
▶ . . . + a huge number of utility tools

(hexadecimal operations, executable dissectors, etc.)

18 / 39

Static disassembly (cont’d)

See some Emmanuel Fleury slides . . .

19 / 39

Indirect Jumps

BRANCH Ri

(branch address computed at runtime and stored inside register Ri)

⇒ A critical issue for static disassemblers/analysers . . .

Occurs when compiling:
▶ some swicth statements
▶ high-order functions (with function as parameters and/or return values)
▶ pointers to functions
▶ dynamic method binding in OO-languages, virtual calls
▶ etc.

20 / 39

Example of Indirect Jump (borrowed from E. Fleury)

Source code example:
enum {DIGIT, AT, BANG, MINUS}
f (char c) {
switch(c) {
case ’0’: case ’1’: case ’2’: case ’3’: case ’4’:
case ’5’: case ’6’: case ’7’: case ’8’: case ’9’: return DIGIT ;
case ’@’: return AT ;
case ’!’: return BANG ;
case ’-’: return MINUS ;
}
}

Code produced with x86-64 gcc8.23

f:
push rbp
mov rbp, rsp
mov eax, edi
mov BYTE PTR [rbp-4], al
movsx eax, BYTE PTR [rbp-4]
sub eax, 33 ; Ascii for ’!’
cmp eax, 31 ; 64 is Ascii for ’@’
ja .L2 ; out of bounds ...
mov eax, eax
mov rax, QWORD PTR .L4[0+rax*8] ; offset in a jump table
jmp rax

3See https://godbolt.org/
21 / 39

Dynamic disassembly

Main advantage: disassembling process guided by the execution
▶ ensures that instructions only are disassembled
▶ the whole execution context is available (registers, flags, addresses, etc.)
▶ dynamic jump destinations are resolved
▶ dymanic libraries are handled
▶ etc.

However:
▶ only a (small) part of the executable is disassembled
▶ need some suitable execution plateform, e.g.:

▶ emulation environment
▶ binary level code instrumentation
▶ (scriptable) debugger
▶ etc.

22 / 39

Outline

Introduction

Low-level code representations

Disassembling

Application to BoF exploitation

Retrieving source-level information

Some Tools . . .

Reminder

A classical buffer overflow sitation . . .
▶ the content of the target buffer is attacker controlled
▶ the return address can be overwritten (no protections)
▶ the control-flow can be re-directed to a shell code

saved EBP

return address

target buffer

Remaining questions:
▶ where to put the shell-code ?
▶ which “input value” should be provided by the attacker ?

23 / 39

Writting the shell-code in the stack (1)

Solution 1: put the shell-code below the return address
(i.e., in the caller’s stack frame)

target buffer

saved EBP

return address

shell−code
shellAddr

shellAddr

attacker input = padding + shellAddr + shell-code

24 / 39

Writting the shell-code in the stack (2)

Solution 2: put the shell-code inside the target buffer
(i.e., in the current stack frame)

return address

saved EBP

target buffer
shell−code

shellAddr

shellAddr

(= buffAdr)

attacker input = shell-code + padding + shellAddr

25 / 39

When the stack segment is not executable ?

Do not store shellcode in the stack . . . use existing code instructions instead !

▶ return-to-libc: redirect the control-flow towards library code
▶ return oriented programming (ROP)

payload = sequence of return-terminated instructions (gadgets)

▶ gadget programming is “turing complete”
▶ ∃ tools for gagdget extraction (ROPgadget, Ropper, ROPium, etc.)
▶ ∃ ROP variants:

COP (call-oriented programming), JOP (jump-oriented programming)

Rks: may also ∃ library calls allowing to make the stack executable . . .

26 / 39

Outline

Introduction

Low-level code representations

Disassembling

Application to BoF exploitation

Retrieving source-level information

Some Tools . . .

Objectives

When the code has been (partially !) disassembled . . .

. . . how to retrieve useful source-level information ?
(e.g.: variables, types, functions, control and data-flow relations, etc.)

Challenges
Still a gap between assembly and source-level code . . .
▶ basic source elements lost in translation:

functions, variables, types, (conditionnal) expressions, . . .
▶ pervasive address computations (addresses = values)
▶ etc.

Rk: ̸= between code produced by a compiler and written by hand
(structural patterns, calling conventions, . . .)

Again, ∃ static and dynamic approaches . . .

27 / 39

Function identification

Retrieve functions boundaries in a stripped binary code ?

Why is it difficult ?
▶ not always clean call/ret patterns:

optimizations, multiple entry points, inlining, etc.
▶ not always clean code segment layout:

extra bytes (̸∈ any function), non-contiguous functions, etc.

Possible solution . . .
▶ from pattern-matching on (manually generated) binary signatures

▶ simple ones (push [ebp]) or advanced heuristics as in [IDAPro]
▶ standart library function signature database (FLIRT)

▶ . . .
▶ to supervised machine learning classification . . .

→ no “sound and complete” solutions . . .

28 / 39

Variable and type recovery

2 main issues
▶ retrieve the memory layout (stack frames, heap structure, etc.)
▶ infer size and (basic) type of each accessed memory location

Memory Layout
“addresses” of global/local variables, parameters, allocated chunks
▶ static basic access paterns (epb+offset) [IDAPro]
▶ Value-Set-Analysis (VSA)

Types
▶ dynamic analysis:

type chunks (library calls) + loop pattern analysis (arrays)
▶ static analysis: VSA + Abstract Structure Identification
▶ Proof-based decompilation relation inference

type system + program witness [POPL 2016]

29 / 39

Static variable recovery

Retrieve the address (and size) of each program “variable” ?

Difficult because:
▶ addresses and other values are not distinguishable
▶ address↔ variable is not one-to-one
▶ address arithmetic is pervasive
▶ both direct and indirect memory adresssing

Memory regions + abstract locations
A memory model with 3 distinct regions:
▶ Global: global variables
▶ Local: local variables + parameters (1 per proc.)
▶ Dynamic: dynamically allocated chunks
▶ Registers

↪→ associates a relative address to each variable (a-loc)

30 / 39

The so-called “naive” approach (IDAPro)

Heuristic
Adresses used for direct variable accesses are:
▶ absolute (for globals + dynamic)
▶ relative w.r.t frame/stack pointer (for globals)

→ can be statically retrieved with simple patterns . . .

Limitations
▶ variables indirectly accessed (e.g., [eax]) are not retrieved

(e.g., structure fields)
▶ array = (large) contiguous block of data

⇒ Fast recovery technique, can be used as a bootstrap
But coarse-grained information, may hamper further analyses . . .

31 / 39

Example

typedef struct
{int i ; char c ;} S ;

int main() {
S x, a[10] ;
char *p1 ; int *p2 ;
p1 = &(a[9].c) ;
p2 = &(x.i) ;
return 0 ;

}

p1

p2

x.i

a −60

−10

−8

−4

var_60= byte ptr -60h
var_10= byte ptr -10h
var_8= dword ptr -8
var_4= dword ptr -4

push ebp
mov ebp, esp
sub esp, 60h
lea eax, [ebp+var_60]
add eax, 4Ch
mov [ebp+var_4], eax
lea eax, [ebp+var_10]
mov [ebp+var_8], eax
mov eax, 0
leave
retn
main endp

32 / 39

Going beyond: Value Set Analysis (VSA)

Compute the contents of each a-loc at each program location . . .

. . . as an over-approximation of:
▶ the set of (integer) values of each data at each prog. loc.
▶ the addresses of “new” a-locs (indirectly accessed)

→ combines simultaneously numeric and pointer-analysis
Rk: should be also combined with CFG-recovery . . .

⇒ Can be expressed as a forward data-flow analysis . . .

A building block for many other static analysis . . .
▶ function “signature” (size and number of parameters)
▶ data-flow dependencies, taint analysis
▶ alias analysis
▶ type recovery, abstract structure identification
▶ etc.

33 / 39

Example: data-flow analysis

Does the value of y depend from x ?

int x, *p, y;
x = 3 ;
p = &x ;
...
y = *p + 4 ; // data-flow from x to y ?

At assembly level:
1. needs to retrieve x address
2. needs to follow memory transfers from x address . . .

mov [ebp-4], 3 /* x=3 ; */
lea eax, [ebp-4]
mov [ebp-8], eax /* p = &x ;*/
mov eax, [ebp-8]

... /* follow operations on eax ...

mov eax, [eax] /* y = *p+4 ; ??? */
add eax, 4
mov [ebp-12], eax

34 / 39

CFG construction

Main issue
handling dynamic jumps (e.g., jmp eax) due to:
▶ switch statements (“jump table”)
▶ function pointers, trampoline, object-oriented source code, . . .

Some existing solutions
▶ heuristic-based approach (“simple” switch statements) [IDA]
▶ abstract interpretation: interleaving between VSA and CFG expansion

▶ use of dedicated abstract domains
▶ use of under-approximations . . .

Rk: may create many program “entry points”⇒ many CFGs . . .

35 / 39

Outline

Introduction

Low-level code representations

Disassembling

Application to BoF exploitation

Retrieving source-level information

Some Tools . . .

IDA Pro [HexRays]

▶ Commercial disassembler and debugger
▶ Supports 50+ processors (intel, ARM, .NET, PowerPC, MIPS, etc.)
▶ Recognizes library functions FLIRT (C/C++ only)
▶ Builds call graphs and CFGs
▶ Tags arguments/local variables
▶ Rename labels (variables names etc.)
▶ Provides scripting environment (IDC, Python) and debugging facilities

36 / 39

Script example

#include <idc.idc>
/* this IDA pro script enumerate all funtions and prints info about them */
static main()
{
auto addr, end, args, locals, frame, firstArg, name, ret;
addr=0;
for (addr=NextFunction(addr); addr != BADADDR; addr=NextFunction(addr))
{
name=Name(addr);
end= GetFunctionAttr(addr,FUNCATTR_END);
locals=GetFunctionAttr(addr,FUNCATTR_FRSIZE);
frame=GetFunctionAttr(aiddr,FUNCATTR_FRAME);
ret=GetMemberOffset(frame, " r");
if (ret == -1) continue;
firstArg=ret +4;
args=GetStrucSize(frame) -firstArg;
Message("function %s start at %x, end at %x\n",name, addr, end);
Message("Local variables size is %d bytes\n",locals);
Message("arguments size %d (%d arguments)\n",args, args/4);

}
}

37 / 39

PIN [Intel]

A dynamic code instrumentation framework
▶ run time instrumentation on the binary files
▶ provides APIs to define insertion points and callbacks

(e.g., after specific inst., at each function entry point, etc.)
▶ Free for non-commercial use, works on Linux and windows

38 / 39

Example: instruction counting

#include "pin.h"
UINT64 icount = 0;
void docount() { icount++; }

void Instruction(INS ins, void *v)
{
INS_InsertCall(ins, IPOINT_BEFORE, (AFUNPTR)docount, IARG_END);
}

void Fini(INT32 code, void *v)
{ std::cerr << "Count " << icount << endl; }

int main(int argc, char * argv[])
{
PIN_Init(argc, argv);
INS_AddInstrumentFunction(Instruction, 0);
PIN_AddFiniFunction(Fini, 0);
PIN_StartProgram();
return 0;
}

39 / 39

	Introduction
	Low-level code representations
	Disassembling
	Application to BoF exploitation
	Retrieving source-level information
	Some Tools …

