
Université Grenoble Alpes Grenoble INP
UFR IM2AG ENSIMAG

Master 2 CyberSecurity
Software Security and Secure Programming

Exercices on Access Control and Information Flow

Exercise 1

Let consider the following code, where security classes are ordered S > C > U
(constant values being in class U):

x : integer class S;
y,z : integer class C;
t : integer class U;

y := 2; z:= 3;

 x := y+z ;
 if (y<5) then

t := 4;
 else

t := 3;

We require that a user of given security class should not get access to
information belonging to a higher class.

Q1. Is this program correct for a user of class C ?

Q2. And for a user of class U ?

Answers

Q1. We want to check that there is no information-flow from S values to C or U data.

In this code, variable x (of class S) is never used, so it never flows to a
variable of lower class.

Q1. We want to check that there is no information-flow from S or C values to U data.

In this code, variable y (of class C) is used in the condition of the if
statement. Hence its value implicitely flows to variable t (of class U)
conditionally assigned. Confidentiality of C values is therefore not guaranteed
with respect to U users.

Exercise 2

Assuming parameters n and k are "high" (confidential), is this function potentially leaking
information ? And if yes, where and how ?

int crypto_secretbox_open
 (unsigned char *m, const unsigned char *c,

unsigned long long clen,
 const unsigned char *n, const unsigned char *k)
{
 int i;
 unsigned char subkey [32];

 if (clen < 32) return -1;

 subkey = crypto_stream_salsa20(32,n,k);

 if (crypto_auth_hmacsha512_verify(c,c+32,clen -32, subkey)!=0)
 return -1;
 crypto_stream_salsa20_xor(m,c,clen ,n,k);

 for (i = 0;i < 32;++i)
 m[i] = 0;

 return 0;
}

Answers

Assuming we want to keep confidential the values *n and *k

int crypto_secretbox_open
 (unsigned char *m, const unsigned char *c,

unsigned long long clen,
 const unsigned char *n, const unsigned char *k)
{
 int i;
 unsigned char subkey [32];

 if (clen < 32) return -1; // clen is low, NO PROBLEM ...

 subkey = crypto_stream_salsa20(32,n,k); // subkey may become HIGH ...

 if (crypto_auth_hmacsha512_verify(c,c+32,clen -32, subkey)!=0)
 return -1; // PB ! (gives info about subkey)

 crypto_stream_salsa20_xor(m,c,clen ,n,k); // *m may become HIGH

 for (i = 0;i < 32;++i)
 m[i] = 0; // PB ! (out-of-bound access -> size of m)

 return 0;
}

Exercise 3

We consider the following function:

1 void buildfname (char *gecos , char *login , char * buf)
2 {
3 char *p;
4 char *bp = buf ;
5
6 for (p = gecos ; *p != '\0 ' && *p != ',' && *p != ';' && *p != '%'; p ++){
7 if (*p == '&') {
9 strcpy (bp , login);
10 *bp = toupper (* bp);
11 while (* bp != '\0 ')
12 bp ++;
13 } else {
14 bp ++;
15 *bp = *p;
16 }
17 }
18 *bp = '\0 ';
19 }

The objective is to identify vulnerable statement able to write untrusted (i.e. user controlled)
values into memory. We use the following notation:

• a value is said tainted (T) if it depends on a user input;
• it is said untainted (U) otherwise.

Q0. Explain why/how this taint analysis problem is related to non-interference ?

Q1. Which instructions perform memory write operations (i.e, are potentially vulnerable) ?

Q2. Assuming both parameters gecos and login are tainted, how does this
taint propagate to potentially vulnerable instructions ?

Q3. Same question if only gecos is tainted

Q4. Same question if only login is tainted

Answer

Q0.
 Taint analysis aims to track if input (attacker-controlled) values may flow to vulnerable
statements . In non-interference we want to check whether low and high data are used
consistently with respect to confidentiality or integrity properties.

Both analyis are based on tracking data and control-flow dependencies, but :
 - in non-interference, variables labels (low/high) are fixed
 - in taint analysis, taint labels are propagated through assigments :

Both analysis can be performed using similar (static or dynamic) techniques.

Q1. lines 9, 10, 15, 18 corespond to memory writes.

Q2. function buildfname uses 3 buffers : gecos, login and buf. Only buffer buf is concerned by
write accesses, through pointer bp. We want to check when such a write access may become
vulnerable (i.e, potentially leading to an invalid memory write) in a way which is controlled
by the user (i.e., through a tainted data). This situation may occur either if bp becomes too
large or negative, or if login is too long. In the codes below taint propagation is shown in blue.

case 1 : both gecos and login are tainted.

1 void buildfname (char *gecos , char *login , char * buf)
2 {
3 char *p;
4 char *bp = buf ;
5
6 for (p = gecos ; *p != '\0 ' && *p != ',' && *p != ';' && *p != '%'; p ++){
7 if (*p == '&') {
9 strcpy (bp , login); // BAD: potential buffer overflow
10 *bp = toupper (*bp); // BAD: potential buffer overflow
11 while (*bp != '\0 ')
12 bp++;
13 } else {
14 bp++;
15 *bp = *p; // BAD: potential buffer overflow
16 }
17 }
18 *bp = '\0 '; // BAD: potential buffer overflow

19 }

Q3. case 2 : only gecos is tainted

1 void buildfname (char *gecos , char *login , char * buf)
2 {
3 char *p;
4 char *bp = buf ;
5
6 for (p = gecos ; *p != '\0 ' && *p != ',' && *p != ';' && *p != '%'; p ++){
7 if (*p == '&') {
9 strcpy (bp , login); // BAD
10 *bp = toupper (*bp);
11 while (*bp != '\0 ')
12 bp++;
13 } else {
14 bp++;
15 *bp = *p; // BAD
16 }
17 }
18 *bp = '\0 '; // BAD

19 }

Q4. case 3: only login is tainted

1 void buildfname (char *gecos , char *login , char * buf)
2 {
3 char *p;
4 char *bp = buf ;
5
6 for (p = gecos ; *p != '\0 ' && *p != ',' && *p != ';' && *p != '%'; p ++){
7 if (*p == '&') {
9 strcpy (bp , login);//BAD: potential BoF if login is too long
10 *bp = toupper (*bp);
11 while (*bp != '\0 ')
12 bp++;
13 } else {
14 bp++;
15 *bp = *p;
16 }
17 }
18 *bp = '\0 ';

19 }

Exercise 4

We consider the following piece of code, assuming that variable x0 is a tainted data and f() is
a “dangerous” function which should not be called with a tainted argument.

while (i < 10) {
 x3 = x2 ;
 x2 = x1 ;
 x1 = x0 ;
 i = i+1 ;
} ;
f (x3)

Discuss for which initial values of i this code is dangerous or not …

Answers

while (i < 10) {
 x3 = x2 ;
 x2 = x1 ;
 x1 = x0 ;
 i = i+1 ;
} ;
f (x3)

 on 1 iteration, x1 becomes tainted by x0
 on 2 iterations, x2 becomes tainted by x1
 on 3 iterations, x3 becomes tainted by x2, hence calling f() become dangerous.
Consequently this function is insecure when the initial value of i is less or equal than 7 ...

