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These lecture notes discuss language-based security, which is the term loosely used for
the collection of features and mechanisms that a programming language can provide
to help in building secure applications.

These features include: memory safety and typing, as offered by so-called safe pro-
gramming languages; language mechanisms to enforce various forms of access con-
trol (such as sandboxing), similar to access control traditionally offered by operating
systems; mechanisms that go beyond what typical operating systems do, such as
information flow control.
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Chapter 1

Introduction

Software is at the root of many security problems in IT systems. In fact, with the possible
exception of the human factor, software is the most important cause of security problems. The
various types of malware that plague our computers typically enter systems and then escalate
their privileges by exploiting security defects in software, or simply by using ‘features’ in software
that turn out to have nasty consequences.

Insecure software can be written in any programming language. Still, the programming
language can make a big difference here, by the language features it provides — or omits —, and
by the programmer support it offers, in the form of type checkers, compilers, run-time execution
engines (like the Java Virtual Machine), and APIs. This may allow some desired and security-
relevant properties to be enforced and guaranteed by the language or ‘the platform’. It may
also make the programs more amenable to various forms of program analysis. This is what
language-based security is about.

The prime example of how programming language features can be a major source of insecurity
is of course memory corruption. Memory corruption errors can arise if a programming language
does not check array bounds, allows pointer arithmetic, or makes programmers responsible for
doing their own memory management. Unfortunately some of the most popular programming
languages around, notably C and C++4, suffer from this. In so-called ‘safe’ programming lan-
guages, as discussed in Chapter 3, this category of security flaws can be largely or even entirely
ruled out. Programming languages can offer other forms of safety. For instance, the type system
of a programming language can enforce some safety guarantees. Here type systems can offer
different levels of expressivity and they can provide different levels of rigour when it comes to
catching typing mistakes.

Programming languages not only differ in safety guarantees they provide, they also differ in
features and building blocks for implementing security functionality, such as APIs or language
features for access control, cryptography, etc. Sandboxing to control the access of untrusted —
or less trusted — code, as used in Java and discussed in Chapter 4, is a well-known example of a
programming language mechanism specifically designed for security.

The notion of information flow, explored in Chapter 5, provides another way to specify and
enforce security policies of programs, which goes beyond more traditional forms of access control
or type systems can achieve.

There are many more forms of program analysis than discussed in these lecture notes that
can help to combat certain categories of security flaws. Static analysis tools aka source code
analysers do such analyses at or before compile time, i.e. statically. Such analysis tools can
exists for any programming language, but some programming languages will be easier to analyse



than others. The analyses can be integrated into IDEs (Integrated Development Environments)
or compilers, though compilers typically perform static analysis in order to produce more efficient
code, so efficiency rather than security is the primary motivation here. The term SAST (Static
Application Security Testing) is sometimes used for static analysis tools specifically aimed at
looking for security flaws. The term DAST (Dynamic Application Security Testing) is then used
for dynamic analysis tools for security, i.e. for security testing tools'.

Powerful forms of program analysis that go beyond type checking include symbolic execu-
tion, where a program is executed with symbolic values for inputs instead of concrete values
[5], and program wverification, where mathematical proofs are used to guarantee properties of a
program, which can then include very expressive properties. Such mathematical proofs can even
be embedded into the program code, resulting in Proof-Carrying Code (PCC) [21].

Overview

Chapter 2 notes briefly reviews the main security mechanisms provided by the operating system,
namely (i) compartmentalisation and access control built around the notion of process, and,
more fundamentally, (ii) the abstractions (incl. the notion of process) on which programming
languages have to build. Chapter 3 then looks at how ‘safe’ programming languages can support
writing secure programs. Chapter 4 discusses language-based access control, where the program-
ming language provides a sandboxing mechanism to provide more fine-grained access control in
which different parts of a program are subject to different security policies. Chapter 5 explores
the notion of information flow, which allows even more fine-grained access control, taking into
account the source where data comes from and/or the destination where it may flow to.

Implementation bugs versus design flaws

When discussing security vulnerabilities in software, it is common to distinguish implementa-
tion bugs and design flaws. Implementation bugs, also called coding defects, are low-level
implementation defects in the code — effectively, mistakes introduced by the programmer who
wrote the code. Design flaws are more fundamental problems, that exist prior to any line of code
being produced and irrespective of the precise way it has been implemented. In practice, it may
be hard to draw a precise border between these categories. For example, broken access control
in an implementation may be due to a simple programming mistake in the coding phase that
resulted in an access control check which is incorrect or accidentally omitted in the code. How-
ever, the way in which access control is organised in an application — and possibly supported by
the programming language — can make such bugs more or less likely. For instance, having access
control decisions scattered throughout the code in an ad-hoc matter makes problems much more
likely, and this could be considered a design flaw. Access control problems can also be introduced
at a very high design level, by completely overlooking the need for any access control.

1The term ‘testing’ is normally used to refer to dynamic techniques, so purists are right to complain that the
‘T” in SAST is incorrect and the ‘D’ in DAST is superfluous.



Common security vulnerabilities and design flaws

There are various lists of common security vulnerabilities in software, for example

e the OWASP TOP 10 (https://www.owasp.org/index.php/Category:0WASP_Top_Ten_
Project);

e the book ‘The 24 Deadly Sins of Software Security’ [15], which includes a nice systematic
overview of which programs may be affected and how each sin can be spotted in a code
review or by testing, and

e the CWE/SANS TOP 25 Most Dangerous Software Errors (http://cwe.mitre.org/
top25).

There have also been attempts to come up with lists of common higher level design flaws,
as opposed to more concrete coding mistakes. One example is the Top Ten Software Security
Design Flaws [2].

Checklists like the ones above are very useful, but don’t ever be tempted in thinking that such
lists are complete and cover everything that can go wrong. The categorisation of flaws attempted
in MITRE’s CWE (Common Weakness Enumeration, http://cwe.mitre.org), as a companion
to the better-known CVE list of concrete instances of security flaws, has been growing steadily
over the years and now includes over 800 weaknesses and categories of weaknesses. This is clearly
way more than any person can remember and way more than might be practical as a checklist
to use when programming.

Secure functionality versus security functionality

Note there is a difference between secure functionality and security functionality. The security
functionality of an application concerns security-related features such as access control, authen-
tication, logging, etc. Some applications, such as TLS implementations, firewalls, anti-virus
solutions, have as primary aim to provide security functionality. But any functionality an ap-
plication provides may contain security vulnerabilities that an attacker can exploit: so not only
does the security functionality need to be correct, but all the functionality needs to be secure.

In the end, security should be understood as an emergent property of the code as a whole,
and not as some collection of features. Beware of anyone that claims the code is secure ‘because’
it uses encryption, ‘because’ it is written in programming language X, or ‘because’ it uses role-
based access control, etc. When it comes to software security — or indeed, security in general —
there are no silver bullets.
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https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
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Chapter 2

Operating system based security

Before we consider what role the programming language can play in providing security, it is
useful to take a step back and consider the role an operating system (OS) traditionally plays in
providing security, and look at

e the security mechanisms that operating systems traditionally provide, through separation
and various forms of access control;

e what the basis for this access control is;

e the role that abstractions play here.

2.1 Operating system abstractions and access control

The operating system provides an interface between the hardware and programs executing on
this hardware, and also an interface to the human user (see figure 2.1). Here the hardware
includes the CPU and the memory, plus a range of other I/O devices, typically including a hard
disk, a keyboard, a display, and a network connection.

The operating system provides useful abstractions to hide a lot of the underlying complexity.
For example, the operating system uses segmentation and page tables to provide virtual memory,
and programs can then use a virtual address space for storing data without having to worry about
where in memory or where on the hard disk the data actually resides (see figure 2.2). Another
example is that the operating system provides a file system to programs and users, which hides
the details of how the files are stored over various sectors of the hard disk.

The central abstraction that the operating system provides is that of a process. Each pro-
gram in execution gives rise to a process, and the operating system tries to create the illusion
that this process has exclusive access to the CPU (through time slicing) and to the computer’s
memory, and typically to far more memory than is physically available as RAM (through seg-
mentation and paging).

As part of this abstraction, the operating system tries to ensure separation between the
different processes, so that programs cannot interfere with each other. The prime example here
is that processes have their own address space that others cannot touch, which is obviously
crucial for security. A process that tries to access memory outside its address space will crash with
a so-called segmentation fault. This way the operating system provides some encapsulation of
processes. Processes can still interfere with each other when competing for the shared resources
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Figure 2.1: The infrastructure on which programs are built.
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Figure 2.3: Classical operating system security controls: separation between pro-
cesses and access control of system resources.

of the computer: e.g., a program that claims a lot of memory or a lot of CPU time could interfere
with the progress that another process can make.

The operating system also provides security by enforcing access control for many of the
abstractions it introduces!. The prime example here is the file system, where different users —
and the programs they start — have different access rights for reading or writing certain files.
Traditionally, access control provided by the operating system is organised by user and by process,
where processes typically inherit the access rights of the user that started them, although modern
operating systems will offer some ways to tweak this.

Figure 2.3 illustrates the security mechanisms discussed above.

The abstractions provided by the operating system play a crucial role in any access control
for them: if someone gets access to the raw bits on the hard drive, any access control provided by
the file system is gone. Access to the data that is used to provide these abstractions needs to be
tightly controlled: if someone can modify page tables, all guarantees about memory separation
between processes by the operating system can be broken. This means that the code responsible
for creating and maintaining these abstractions has a special responsibility when it comes to
security. Such code needs special privileges, to get low-level access that other code does not
have. Any bugs in this code can lead to serious security vulnerabilities; this code has to be
trusted, and hopefully it is trustworthy. This has led to the distinction between user mode
and kernel mode, which most operating systems provide. Part of the code that belongs to
the operating system is executed in kernel mode, giving it complete and unrestricted access to
the underlying hardware. So the access rights of a process do not only depend on the user that
started that process, but also on whether the process is executing kernel or user code, which may

1Of course, the memory separation between processes can also be regarded as a form of access control.



vary in time.

2.2 Imperfections in abstractions

The abstractions that the operating system provides — and the illusion of each process having
exclusively access to its own CPU and memory that it tries to provide — are not perfect. Such
imperfections may lead to security vulnerabilities.

For example, a process may be able to detect that some of its memory is in fact swapped
out to disk, based on the response time of certain operations. This property was used to break
password security of the TENEX, an operating system developed in the early 1970s: depending
on the response time of some incorrect password guess, it was possible to work out if the first n
characters of the password guess were correct, by making sure only these first n characters were
in main memory, and the rest were swapped to disk.

Another example is that by observing the contents of freshly allocated memory, a process can
observe the contents of memory that used to belong to other processes. This is a classic way of
snooping on other users in multi-user systems.

An example given in [13] shows the unexpected ways in which these imperfections can lead
to security problems. In 1993 it was observed that every tarball?> produced on UNIX Solaris 2.0
contained a fragment of the password file — /etc/passwd on UNIX systems — at the very end.
The way that this happened was as follows:

1. To find out the owner and group permissions for the tar file to be created, the password
file was consulted. (The password file tells which group a user belongs to.) This meant
this file was read from disk, and stored in RAM. This RAM was then released.

2. Then the tar file was created. For this RAM memory was allocated. Because of the way
memory allocation worked, this memory included the memory that had just before been
used for the password file. And because memory is not wiped on allocation or de-allocation,
this memory still contained contents of the password file.

3. The size of a tar file is always a multiple of a fixed block size. Unless the actual contents
size is precisely a multiple of this block size, the block at the end will not be completely
filled. The remainder of this block still contained data from the password file.

As tar files are typically used to share files over the internet the security implications are clear.
Fortunately, in Solaris 2.0 the file /etc/passwd no longer contained hashed and salted passwords,
these were in a separate file (the shadow password file).

A quick fix to the problem is replacing a call to malloc (which allocates memory) in the code
of tar by a call to calloc (which allocates memory and zeroes it out). That only fixes this
particular instance of the problem, and people always use malloc by default rather than calloc
because it is faster. One can think about more fundamental solutions to this kind of problem,
e.g., always zeroing out memory on allocation, or always zeroing out memory upon de-allocation
if the memory contained sensitive data.

2.3 What goes wrong

The way that security vulnerabilities normally arise in operating systems is more mundane than
the tarball example above. It typically happens due to

2A tarball is a file produced by the tar utility for archiving and compressing directories, similar to zip.
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e software bugs

Especially buffer overflow weaknesses in high priority library calls by the operating system
are notorious examples of software bugs.

Modern operating systems come with very large APIs for user applications to use. Many
of the system calls in this interface run with very high privileges. The standard example is
the login function: login is invoked by a user who has not been authenticated yet, and
who should therefore not be trusted and only be given minimal permission; however, the
login procedure needs access to the password file to check if the given password guess is
correct, so needs very high privileges. A buffer overflow weakness in login can possibly be
exploited by an attacker to do other things with these privileges.

e complexity

Even if the operating system API was implemented without any bugs, the sheer complexity
of modern operating systems means that users will get things wrong or run into unforeseen
and unwanted feature interaction, where interplay of various options introduces security
vulnerabilities.

E.g, introductory textbooks on operating systems typically illustrate the idea of operating
system access control with read, write, and execute permissions, with users organised in
groups, and one super-user or root who has permissions to do anything; but real-life modern
operating systems offer dozens of permissions and all sorts of user groups with different
privilege levels. The advantage is that this enables very fine-grained access control, the
disadvantage is that people get it wrong and grant unwanted access right. See [12] for an
interesting account of how major software vendors got Windows access control wrong.

Note that here there is this a fundamental tension between the Principle of Least Privilege,
and the more general KISS principle, Keep it Simple, Stupid. (Good reading material on
these and other design principles for security is available at https://buildsecurityin.
us-cert.gov/bsi/articles/knowledge/principles/358-BSI.html.) The Principle of
Least Privilege says only the minimal privileges needed should be given; the more fine-
grained access control is, the better this principle can be followed. But the downside is
that the more fine-grained access control becomes, the more complex it becomes, and the
more likely it becomes that people make mistakes. In line with the KISS principle, access
control is easier to get right if it involves large-coarse chunks of all-or-nothing access, also
known as compartmentalisation.

One can try to combine these design principles by including several layers of access control,
in line with the design principle of Defense in Depth, where different layers provide simple
and coarse compartments or more fine-grained access control within such a compartment.

11
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Chapter 3

Safe programming languages

A fundamental way in which a programming language can help in writing secure programs is by
being ‘safe’. This chapter investigates what safety means here, and discusses the various flavours
of safety, such as memory safety, type safety, and thread safety.

Precisely pinning down what safety means is tricky, and people have different opinions on
precisely what constitutes a safe programming language. Usually, by a safe programming lan-
guage people mean one that provides memory safety and type safety, but there are other forms
of safety, as we will see. Safe programming languages provide some guarantees about the pos-
sible behaviour of programs, which can protect against security vulnerabilities due to unwanted
behaviour. In essence, the central idea is:

In a safe programming language, you can trust the abstractions provided by the
language.

An alternative characterisation, which is a bit more concrete, is:

In a safe programming language, programs always have a precise and well-defined
semantics.

An important goal of safety is that safety makes it possible to reason about programs in a
modular way: i.e., to make it possible to make guarantees about the behaviour of certain ‘parts’
of a program without knowing the rest of it. Here, depending on the programming languages,
these ‘parts’ can be functions and procedures, objects, classes, packages, or some other notion of
module.

In a safe programming language, it is possible to understand the behaviour of a
program in a modular way, and to make guarantees about part of a program by
inspecting only that part and not the entire program.

The following sections will explain these general ideas in more detail, and give more specific
examples. We begin by considering the issue of undefinedness, before turning to the more specific
notions of memory safety and type safety.

Undefinedness & fuzzing

Leaving the meaning of some language constructs undefined under some circumstances is a

12



potential cause of security problems. More generally, leaving things undefined in the specification
of any system is a potential cause of trouble. Indeed, a standard technique to find security
loopholes is to try out how a system behaves under the circumstances where the specification
does not say how it should. The system might just crash, which might cause a Denial-of-Service
(DoS) vulnerability (though under some circumstances crashing might be the safe thing to do).
But you may discover all sorts of surprising — and possible insecure — behaviour.

The test technique of fuzzing is based on this idea. In fuzzing, software is tested by sending
invalid, unexpected, or simply random inputs to an application in the hope of detecting security
or robustness problems. Fuzzing with very large input strings can be used to hunt for buffer
overflows: if an application crashes with a segmentation fault on some very long, but completely
random, input string, you have found a potential security vulnerability.

Fuzzing is a very effective technique, especially if a program accepts some complex input
format, for instance a complex file format (say, HTML, PDF, .docx, JPEG, MPEG, MP3, X.509,

..) or a complex protocol anywhere in the protocol stack (say, TCP/IP, HTTP, SMB/CIFS
aka Samba, Bluetooth, Wifi, GSM, 4G/LTE, 5G, ...).

Note that just about any program supports some complex input language or format, and
often more than one. The complexity of these input languages is an important underlying root
cause — if not the ultimate root cause — of security vulnerabilities. To make matters worse,
there are many of these complex input languages, protocols, and formats and their specifications
are often unclear. All this results in bugs in the (typically hand-written) code for parsing and
processing these languages, bugs that go on to cause security problems. These security problems
are by their very nature easy to trigger for an attacker, as they arise in code responsible for
input handling. This observation had led to LangSec (Language-theoretic Security) approach
(http://langsec.org, [22, 4]) that tries improve security by adressing these root causes.

3.1 Safety & (un)definedness

Many program statements only make sense under certain circumstances. For example, the state-
ment

al[i]l = (float) x;

only makes sense if in the current execution state a is an array in which we can store floats, i has
an integer value within the array bounds, and x can sensibly be converted into a float value. If
one of these conditions is not met, then it is unclear what the semantics of this statement should
be.

There are roughly two approaches that programming languages can take here:

1. One approach is to accept that a program statement may be executed when it does not
really make sense. The semantics of the statement is undefined in these cases: essentially,
anything may happen.

It is then the obligation of the programmer to ensure that statements are only ever executed
in situations where they make sense.

What actually will happen in the undefined cases is down to the compiler and the platform
responsible for the actual execution. This platform is the raw hardware (i.e., the CPU) in
the case the compiler produces native code. It can also be the (software) execution engine
used to execute programs in some intermediate language (e.g., a VM executing bytecode)
and the hardware on top of which this engine runs.

13
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2. The other approach is that the language ensures that a statement is only ever executed
when it makes sense, or, when it does not, signals some error in a precisely defined manner,
for example by throwing an exception.

It is now the obligation of the language to somehow prevent or detect the execution of
statements when this does not make sense. This can be through measures at compile-time
(e.g., type checking), at run-time (by some execution engine that monitors for these condi-
tions, or by the compiler including some checks in the code it produces), or a combination
of the two.

The first approach leads to an unsafe programming language. The second approach leads to a
safe programming language.

In safe languages, the semantics of a program — or any program fragment — is always precisely
defined; even in cases where it does not make sense, it is precisely defined what error will be
reported.

C and C++ are the prime examples of unsafe languages. Java and C# are meant to be
safe, but still have some unsafe features. For instance, the Java Native Interface (JNI) allows
Java programs to call native machine code, and pointer arithmetic is allowed in C# in code
blocks that are marked as unsafe. So Java and C# programs are only safe if these features
are not used. Most functional programming languages, such as Haskell, ML, or LISP, are safe,
as are most logic programming languages, such as Prolog. There is a clear trend towards safer
programming languages, with for instance in JavaScript, Scala, PHP, Python, Ruby, and Go.
Even the newer languages aimed at low-level system programming, such as Rust and Swift, are
designed with safety in mind, even though such languages typically sacrifice safety for speed.

The main advantage of the unsafe approach is speed. Execution of a safe language typically
involves some run-time monitoring that slows execution down.

An important disadvantage is security. If the programmer is not very careful and just one
program statement is executed in a state where it does not make sense, we have no way of knowing
what may happen: it may re-format the hard disk, sent all your private email correspondence to
wikileaks, etc. This means we can no longer make any security guarantees about the program.

Conflicts between security and some practical consideration such as speed (or ‘convenience’)
are common. Almost always people sacrifice security in favour of the short-term practical ad-
vantage, and then live to regret the consequences in the long term. Four decades after the
introduction of C — and the decision not to do bounds checking in C — people are still fixing
buffer overflows in C programs on a daily basis, even though ALGOL 60 introduced bounds
checking as mechanism to prevent this problem over half a century ago.

3.1.1 Safety and security

It is possible to write insecure programs in any programming language. But without safety,
writing secure programs gets a lot harder.

Consider a procedure login(uname,passwd) written in some unsafe programming language.
Only if this procedure is very carefully written to check for any of the error conditions that would
lead to undefined behaviour, we can make some guarantees about it (for instance to return true
iff it is given a matching username and password).

If not, then we need to know the precise circumstances in which the procedure is called in
order to make any guarantees. In the best case, this is a lot of work: we have to check all the
places in the code where login is called, and check that these calls cannot trigger any undefined
behaviour. When doing this, we should be careful not to make any assumptions on user input
that the program may receive. For non-trivial programs this quickly becomes infeasible to check.

14



Note that this reveals a fundamental problem with unsafe languages, apart from any security
issues: we cannot always understand code in a modular fashion. E.g., we may not be able to
know what the procedure login will do without knowing the precise context in which it is called.

Things get worse if the procedure is part of some library that may be called from many places,
or if login is an operating system call that may be called by any application program. In these
cases we do not know the specific circumstances of calls to login, so we cannot rely on these to
avoid running into undefined behaviour.

3.2 Memory safety

One important form of safety is memory safety. A programming language is memory-safe if
programs are guaranteed to only access memory locations that they are permitted to access.
Language features that break memory safety — or some forms of memory safety — include

e lack of in-built array bounds checks — this are the classic buffer overflows;
e pointer arithmetic;
e lack of in-built checks for null pointers;

e programmer-controlled de-allocation, with e.g. free() in C(+), as this allows dangling
pointers to memory that has been de-allocated, because of use-after-free or double
free bugs;

e lack of mandatory or default initialisation of newly allocated memory (e.g. the use of
malloc() rather than calloc() in C(++)

e unconstrained casting (e.g., casting a floating-point number to an array).

Bugs that arise because of these issues are commonly called memory corruption bugs. Strictly
speaking, this term is not quite correct, as only bugs that involve writing to memory cause
memory corruption; bugs in reading from memory do not corrupt memory, so the term illegal
memory access is more accurate. An illegal memory access can happen because of a spatial
error, for instance accessing outside array bounds, or a temporal error, for instance dereferencing
a dangling pointer. A good overview of how attacks exploiting memory corruption and some
defenses against them have evolved over the past decades is given in the SoK (Systematisation-
of-Knowledge) paper by Szekeres et al. [29].

3.2.1 Ensuring memory safety

Obvious ways to prevent memory problems include doing array bounds checks, checking for null
pointers, dis-allowing pointer arithmetic and unsafe cases. Checks on array bounds and checks
for (non)nullness could be compiled into the code or performed by a virtual machine. In theory
such checks could even be performed by the hardware — i.e. the physical as opposed to a virtual
machine — but in practice the repertoire of checks that hardware performs will be very limited.
The typical way to prevent problems with memory management — more specifically programmer-
controlled memory de-allocation with free statements — is to automate memory management
using a garbage collector (GC). The garbage collector then takes care of de-allocation of un-
used memory automatically. (NB this does not solve all memory management-related issues: it is
still possible to have memory leaks.) Garbage collection was first used with LISP in the early 60s
and then used by functional programming languages and by SmallTalk. It became ‘mainstream’
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with its use in Java. Most modern programming languages nowadays rely on garbage collection,
e.g. JavaScript, Ruby, Python, PHP, C#, and Go.

A downside of garbage collection is the additional overhead: the process of garbage collection
requires memory space and time. Moreover, a program can temporarily become unresponsive
when the garbage collector — periodically and at unpredictable moments — kicks in. Especially
for real-time applications such behaviour is problematic. However, there are techniques to do
real-time garbage collection, where the overhead of garbage collection becomes predictable (e.g.
25)).

There are other techniques to automate memory management besides having a garbage collec-
tor, which are used for instance in Rust! and Swift?. These languages are intended for low-level
system programming and here one would like to avoid the overhead of automated garbage col-
lection.?

3.2.2 Memory safety and undefinedness

Memory safety is a special case of the notion of safety as discussed in section 3.1: accessing a
memory location that you should not be accessing will not have a well-defined semantics and can
break any abstractions the language provides.

Memory unsafety makes it hard — if not impossible — to understand programs in a modular
fashion. Consider a program consisting of two modules, P and Q, written in a language that is not
memory safe. Code belonging to module  can makes changes anywhere in memory, including
data belonging to module P. So code belonging to module Q could corrupt data that module P
relies on, for instance breaking data invariants. This means we cannot make guarantees about
P just by looking at P, we also have to make sure Q does not interfere with P. Note that this
means we cannot make guarantees about extensible programs, as any extension could corrupt
existing behaviour.

If a language is memory-safe then programs can never crash with a segmentation fault. One
might even consider it safe to switch off the checks the operating system performs on memory
access for these programs. However, the execution of the memory-safe program might rely on
some interpreter or execution engine that is written in an unsafe language, which could still cause
out-of-bounds memory access. Also, memory safety might rely on the correctness of compilers
and type checkers, which may contain bugs. So, in line with the security principle of Defence
in Depth, keeping the memory access control performed by the operating system switched on
is always a wise thing to do.

3.2.3 Stronger notions of memory safety

A stronger notion of memory safety also guarantees that programs never read uninitialised
memory. For the earlier definition of memory safety — programs are guaranteed to only ac-
cess memory locations that they are permitted to access — one can argue whether accessing
uninitialised memory should also count as access that is not ‘permitted’.

One consequence of this is that programs cannot observe the old content of physical memory
that other processes used previously. So it rules out the possibility of spying on other programs
discussed in Chapter 2.

Thttps://doc.rust-lang.org/book/

*https://swift.org

3Rust uses a notion of object ownership, which allows the compiler to insert calls to de-allocate object at
compile time. Swift uses reference counting, more specifically Automatic Reference Counting or ARC, to decide
at runtime when object can be de-allocated. So unlike Rust’s approach this does involve some runtime overhead
in the bookkeeping of reference counts.
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unsigned int tun_chr_poll(struct file *file, poll_table *wait){
struct tun_file *tfile = file->private_data;
struct tun_struct *tun = __tun_get(tfile);
struct sock *sk = tun->sk;
if (!tun) return POLLERR;

O W N

}

Figure 3.1: A classic example of how undefinedness, or rather the compiler optimali-
sations allowed by undefinedness, can unexpectedly cause security problems [32]. In
line 4 tun is de-referenced: If tun is NULL, this leads to undefined behaviour. Line
5 returns with an error message if tun is NULL. However, because the behaviour of
the code is undefined if tun is NULL, the compiled code may exhibit any behaviour
in that case. In particular, a compiler may choose to remove line 5: after all, any
behaviour is acceptable if tun is NULL, so there is no need to return with the error
specified in line 5 if that case. Modern compilers such as gcc and Clang will actually
remove line 5 as an optimisation. This code is from the Linux kernel, and removal
of line 5 by the compiler led to a security vulnerability [CVE-2009-1897]. With the
compiler flag ~-fno-strict-overflow such optimisations can now be turned off in
gcc.

A more interesting consequence is that programs behave more deterministically. A program
that reads uninitialised memory can behave differently every time it is started. This can for
instance make programs hard to debug, as errors might be very hard to reproduce.

3.3 Type safety

Another important form of safety is type safety.

As discussed earlier, safety involves avoiding erroneous conditions under which programs be-
come meaningless. Type systems impose some restrictions on the programmer that avoid mean-
ingless programs. It is therefore not surprising that many safe languages are typed. However,
not all safe languages are typed. For example, LISP is a safe, but untyped language.

Type soundness, also called type safety or strong typing, is the guarantee that executing
well-typed programs can never result in type errors. This means that in a type-safe language we
can rely on the abstractions offered by the type system.

C, C++, and Pascal are examples of languages that are typed, but not type-safe. Here
programs can easily undermine any guarantees of the type system. Java, C#, Modula, Scheme,
ML, and Haskell are type-safe.

Type checking is the process of verifying that a program is well typed. This can be done at
compile-time, in which case we talk of static type checking, or at run-time, in which case we talk
of dynamic type checking.

Static type checking has the obvious advantage of catching problems earlier. It also offers
advantage in speed: if we can rule out some type errors statically, we can omit run-time checks,
making programs run faster. (Of course, only in a type-safe language it is safe to do this.)

Most type-safe languages rely on a combination of static and dynamic checks. Typically,
array bounds and certain cast operations will be checked at run-time.

It is often claimed that “well-typed programs cannot go wrong”, but this is of course wildly
overstated. At best well-typed programs are less likely to go wrong, and only if the type system
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is sound we can guarantee that certain types of things cannot go wrong.

3.3.1 Expressivity

Many programming languages use type systems that have roughly similar expressivity, and have
a similar division between checks done at compile-time and checks done at run-time. However,
still important choices can be made here, and we may well see languages with different, possibly
more expressive type systems in the future.

For example, most imperative programming languages check for nullness of references at run-
time. Their types allow null values, and problems with accessing null references are only detected
at run-time. Using a more expressive type system, there is no fundamental reason why some or
even all problems with null references could not be detected at compile time?. For this we have
to distinguish between types that include null reference and those that don’t. E.g., the Spec#
dialect of C# [3] distinguishes between class types A and A?, for all classes A, where only values
of A7 are allowed to be null. Values of type A can be implicitly promoted to type A7, but using
a value of type A? where a non-value of type A is expected requires an explicit cast, which will
result in a check for nullness at run-time. Of course, this does introduce some extra work for the
programmer: he has to specify which references are and which are not allowed to be null. But
note that a good programmer has to think about this anyway, so we are only providing notation
to document this in the code — notation which is backed up by tool support in the compiler or
type checker. In casting from A? to A null-pointer exceptions can of course still arise, but these
can then be limited to specific — and hopefully few - points in the programs.

3.3.2 Breaking type safety

Safe type systems can provide strong guarantees about data, but type safety is a very fragile
property. A tiny loophole in a type system can be fatal — and usually is, undermining the whole
type system and destroying all the guarantees that it meant to provide. A loophole can be a flaw
in the type system, in which case the type system is not safe, or a bug in the implementation of
the type checker.

To exploit a loophole in a type system, one usually tries to create type confusion, where one
creates references to the same location in memory which the type system thinks have different,
and incompatible, types. Here it is important to realise that in the end all values, irrespective
of their types, are just blobs of memory, sequences of bytes or words in RAM or on disk. And
any blob of memory of the right length can be interpreted as a value of any type.

For an example, in some object-oriented language, suppose we have types A and B,

class A { int i 7};
class B { Object o };

and suppose we have variables a and b of type A and B, respectively. If through some flaw in the
type system we can get a and b to point to the same location, then by changing the value of a.i
we can change the value of b.o; effectively this means we can do pointer arithmetic.

If we can do the same with a reference of type C, where

class C { final int x };

then by changing the value of a.i we can change c.x, even though the type C indicates that the
field x is final and should therefore be unchangeable. So all guarantees that a language provides

4Indeed, most functional programming languages already do this.
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(e.g., those discussed later in Section 3.5), can also be broken by exploiting loopholes in the type
system.

An classic example of a loophole in the implementation of the type checker of Navigator 3.0
was discovered by Drew Dean. Here type confusion could be created by defining a class with the
name A and a class with the name A[]. The latter should not be allowed, as [ and ] are illegal
characters to use in class names! The type checker then did not distinguish between arrays of
A and objects of type A[], providing an easy loophole to exploit. This attack is discussed in
Section 5.7 in [17].

In some implementations of Java Card, a dialect of Java for programming smartcards, bugs
have also been found where exploiting some strange interactions between the normal object
allocation mechanism of Java(Card) and smartcard-specific mechanisms in the Java Card API
could lead to type confusion ([18, Sect. 3.3]).

3.3.3 Ensuring type safety

To prevent fundamental flaws in a type system one can try to mathematically prove the correct-
ness of type systems. This can be done as a pencil-and-paper exercise, typically for an interesting
subset of the language which captures the essential features. It can also be done using a the-
orem prover, a software program that assists in logical reasoning in the same way as Maple
or Mathematica assist in mathematical analysis. This provides a higher degree of confidence,
especially as larger subsets of a real programming language are considered. For example, Java
has 205 bytecode instructions; in a pencil-and-paper proof with 205 cases it is easy to overlook
a mistake. Safety of various subsets of the Java language has been formally verified using such
theorem provers (e.g., see [16]).

It is not so easy to define what it means for a type system to be safe, be it informally or
formally. A formal definition is needed for any mathematical correctness proof.

One way is to define an operational semantics of the language in two ways: a ‘typed
(defensive) semantics’ where all values are explicitly tagged with type information and where
run-time checks are performed for every execution step, and an ‘untyped semantics’ which only
performs those type checks which would normally happen at run-time (e.g., for array indices,
nullness, or type casts), and then prove that for any program that passes the type checker the
two semantics are equivalent.

Another way is to prove representation independence. The idea behind this is that a
type system is safe if the abstractions it provides cannot be broken. For example, in a type-safe
language it should be impossible to find out if the boolean value true is represented as 1 (or
maybe a 32- or 64-bits word ending with a 1) and false as 0, or the other way around. If we
define two semantics of a type-safe language, one where true is represented as 1 and false as 0
and one where true is represented as 0 and false as 1, we should be able to prove that for any
well-typed program the semantics are equivalent regardless of which of these two representations
is used.

3.4 Other notions of safety
When people talk about safe programming languages, they usually mean memory safety and
type safety as in modern object-oriented languages such as Java. Still, there are other notions of

safety than the ones discussed so far. There is no black-and-white distinction between safe and
unsafe. Languages can be more or less safe to different degrees, and in different respects.
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3.4.1 Safety concerns in low-level languages

For lower-level language there are the additional safety notions about issues we take for granted
in higher-level languages, such as

e Control-flow safety, the guarantee that programs only transfer control to correct program
points. Programs should not jump to some random location.

e Stack safety, the guarantee that the run-time stack is preserved across procedure calls,
i.e., that procedures only make changes at the top frame of the stack, and leave lower
frames on the stack, of the callers, untouched.

For high-level languages one typically takes such guarantees for granted. E.g., in a high-level
language it is usually only possible to jump to entry points of functions and procedures, and
when these are completed execution will return to the point where they were called, providing
control-flow safety. Of course, such a guarantee is fundamental to being able to understand how
programs can behave. Only if the compiler is buggy could such safety properties be broken.
However, an attacker may be able to break such guarantees: for instance ROP (Return-Oriented
Programming) attacks [23] exploit the possibility to jump to arbitrary points in the code.

For lower-level languages one might also consider whether procedures (or subroutines) are
always called with the right number of arguments. A language like C is not quite safe in this
respect: a C compiler typically will complain if a procedure is called with the wrong number of
arguments, but format string attacks demonstrate that the compiler does not catch all problems
here and that it is possible for compiled code to call procedures with too few arguments, resulting
in weird behaviour that can be exploitable for an attacker.

3.4.2 Safe arithmetic

Even for something as basic as arithmetic questions about safety arise. For example, consider
the statement

i = i+1;

This statement makes sense if i is an integer, but what if computing i+1 results in an integer
overflow? Does this make ‘sense’?

In C, a signed integer overflow is undefined behaviour, so C is not safe in this respect®. In
Java the semantics is precisely defined: overflows behave the way one would expect in two’s
complement arithmetic (so adding 1 to 232 — 1 becomes —232), and such overflows are silent,
meaning that execution continues and no exception is thrown. C# goes one step further: a code
block or an expression can be marked as checked, in which case integer overflow will result in a
run-time exception.

In some situations — say, in software for a bank — integer overflow can be a serious concern.
One could consider a language where integer overflow results in an exception to be safer than
a language with silent integer overflow, even if both are safe in the sense that the semantics is
precisely defined.

By the way, integer overflows are a well-known cause of security vulnerabilities, usually in
combination with buffer overflows: here the integer overflow leads to the incorrect buffer size.

One of the more expensive software failures ever was due to a problem with arithmetic. The
Ariane V rocket was lost due to a software error, where a large numeric value caused an overflow

50ne might think that ‘undefined behaviour’ here just means that i ends up with an unknown value, but the
official C standard, C99, literally allows any behaviour when integer overflow happens, including say reformatting
the hard drive.
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char *buf = ...; // pointer to start of a buffer
char *buf_end = ...; // pointer to the end of a buffer
unsigned int len = ...;
if (buf + len >= buf_end)

return; /* len too large */
if (buf + len < buf)

return; /* overflow, buf+len wrapped around */
/* write to buf[0..len-1] */

00 ~NO O WN -

Figure 3.2: A classic example of how undefined behaviour caused by integer overflow
allows compilers to introduce security vulnerabilities. The code above performs
a standard check to see if is safe to write in range buf [0..len-1]. In line 6
the programmer assumes that if the integer expression buf + len overflows this
will produce a negative number. However, integer overflow results in undefined
behaviour according to the C standard []. This means that a compiler may assume
that x + y < x can never be true for a positive number y; In case an overflow
happens the expression might evaluate to true, but in that case the compiled code
is allowed to exhibit any behaviour anyway so the compiler is free to do anything
it wants. Modern compilers such as gcc and Clang do conclude that an overflow
check such as buf + len < buf cannot be true for an unsigned and hence positive
integer len, so they will remove line 6 and 7 as an optimisation.

that triggered a (hardware) exception — an exception that was not caught and which first crashed
the program, and next the rocket. In this case ignoring the overflow would have been better,
especially since — ironically — the piece of software causing the problem was not doing anything
meaningful after the launch of the rocket. (The report by the Flight 501 Enquiry Board makes
interesting reading, especially the list of recommendations in Section 4 [10], which is a sensible
list for security-critical software just as well as safety-critical software.)

3.4.3 Thread safety

Thread safety concerns the execution of multi-threaded or concurrent programs. With multi-
threading cores and multi-core CPUs becoming more common, thread safety will become more
of an issue. Indeed, concurrency is widely predicted to become a more important source of
software problems (for more discussion, read [28]), and it will then also become a major source
of security flaws. In fact, there already is a well-known category of security vulnerabilities when
there is concurrent access to some resource, namely so-called TOCTOU (Time-of-Check,
Time-of-Use) errors, also known as ‘Non-Atomic Check and Use’.

A procedure, function, method — or generally, some piece of code — is called thread-safe if it
can be safely invoked by multiple threads at the same time. In an object-oriented language, a
class is called thread-safe if multiple execution threads can simultaneously invoke methods on
the same instance of that class.

In line with earlier characterisations of safety, one could define a programming language to be
thread-safe if its semantics is well-defined in the presence of multi-threading. Even a supposedly
safe programming language such as Java is inherently unsafe when it comes to concurrency: if a
Java program contains data races, it may exhibit very strange behaviour, and one cannot make
any guarantees about the semantics whatsoever. (A program contains a data race if two threads
may simultaneously access the same variable, where one of these accesses is a write.)
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For example, suppose initially x and y have the value 0 and we execute the following two
threads:

Thread 1 Thread 2
rl = x; r2 = y;
y =1; X = 2;

One would expect either r1 or r2 to have the value 0 at the end of the execution. However, it is
possible that in the end r1 == 2 and r2 == 1. The reason for this is that a compiler is allowed
to swap the order of two assignments in a thread if, within that single thread, the order of these
assignments does not matter. (Such re-orderings can make a program more efficient, if say a
value held in a register can be reused.) So a compiler could reorder the statements in thread 1.

In fact, things can get a lot weirder still. Some language definitions do not even exclude
the possibility of so-called out-of-thin-air values, where a concurrent program which only swaps
values around between various variables can result in a variable receiving some arbitrary value,
say 42, even though initially all the variables were zero [1].

The natural mental model of how a multi-threading program works, namely that all threads
simply read and write values in the same shared memory — a so-called strong memory model — is
fundamentally incorrect. Instead, we can only assume a relaxed or weak memory model, which
accounts for the fact that individual threads keep shadow copies of parts of the shared memory
in local caches, and where compiler optimisations like the one discussed above are possible. This
affects both the possible behaviour of programs, and their efficiency. (For more on this read
19].)

Of course, functional programming languages have an easier job in ensuring thread safety, as
they avoid side-effects — and hence data races — altogether. The same goes for other declarative
programming languages, for instance logic programming languages such as Prolog.

One of the most interesting programming languages when it comes to thread-safety is Rust ©.
Rust was designed as a language for low-level system programming, i.e. as a direct competitor of
C and C++4, but with safety, including memory- and thread-safety, in mind. To ensure thread-
safety, data structures in Rust are tmmutable by default. For mutable data structures, Rust
then using the concept of ownership to ensure that only one owner can access it at the same
time. Apart from the focus on thread-safety, Rust is also very interesting in the way it provides
memory-safety without relying on a garbage collector for memory management.

3.5 Other language-level guarantees

Apart from typing information, a programming language can allow programmers to express other
kinds of properties and also enforce these.

3.5.1 Visibility

One such property is visibility. In object-oriented languages the programmer can specify if
fields and methods are private or public, or something in between. For example C++ has three
levels of visibility: public, protected, and private. Java has four levels, as it also has a (default)
package visibility. This provides some form of access control or information hiding. (We will
stick to the term visibility because access control can already mean lots of different things.)

6For an intro, see https://doc.rust-lang.org/book.
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Beware that the meaning of protected in Java and C++ is different.” More importantly, the
guarantees that Java and C++ provide for visibility are very different. The absence of memory
and type safety in C++ means that any visibility restrictions in C++ can be broken. In contrast,
in safe languages such as Java and C# the visibility declarations are rigorously enforced by the
programming language: e.g., if you define a field as private, you are guaranteed that no-one else
can touch it.

The language guarantees provided by visibility are of course also useful from a software
engineering point of view, as it rigorously enforces well-defined interfaces. This is also useful for
security. E.g., an interface can provide a small choke point for all data to pass through, which
can then be the place to perform input validation. In a language that is not type-safe one can
never guarantee that such an interface cannot be by-passed. This becomes especially important
in a setting where we have some untrusted code, i.e., if we trust some parts of the code more
than others, typically because part of the code base is mobile code that we downloaded say over
the internet, as is for instance the case with a Java applet in a web page. As we will discuss
later, in Chapter 4, visibility is not enough here, and mechanism for enforcing more expressive
policies than possible with visibility are needed.

Note that in Java protected is less restrictive in default package visibility: protected fields are
accessible in all subclasses and in the package. This means that, from a security point of view,
protected fields are not really that protected, and neither are package-visible fields: any code
in the same package can access them. In a setting where we have untrusted, possibly malicious
code, an attacker can get access to protected fields simply by declaring his attack code to be in
the same package.

To defend against this, sealed packages were introduced in Java 1.4. By declaring a package
as sealed, you effectively close the package, disallowing further extensions in other files. The
package java.lang has always been a sealed package, since the very first release of Java, because
it contains security-critical functionality that attackers should not be able to mess with by getting
access to protected fields or methods.

If a class B is in a sealed package, and an attacker wants to get access to protected fields of
objects of class B, instead of declaring a malicious class X in the same package as B, the attacker
can also try to get creating a malicious subclass X of B in a different package: in this subclass
the protected fields of B are visible. (Here it is important to realise that a subclass can be
in a different package than its parent class, which may be surprising. Nnote that the way the
visibility rules of Java work may not be so intuitive in these cases.) To prevent this, a class has
to be declared as final.

All this means that protected is maybe a bit of a misnomer, as for fields it effectively only
means

protected-but-only-in-a-final-class-in-a-sealed-package.

3.5.2 Constant values and immutable data structures

Another property commonly supported at programming language level is that of something being
a constant or immutable, by declaring it const in C or C++, final in Java, or readonly in
CH#.

Although Java is a safe language, final fields are not quite constants: final fields are given
their values during object initialisation (or during class initialisation, in case of static fields). So
there is a (hopefully brief) period of time prior to this, when they still have their default initial
value. Final instance fields cannot be read before they are initialised, so they really do behave

7In Java, protected methods are accessible in subclasses; in C++, protected methods are also accessible in
so-called friend classes and functions.
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as constants. However, final static fields can be read before they are initialised, namely in case
there are circularities in the class initialisation.
For example, consider the two Java classes

class A {

final static int x = B.y+1;
3
class B {

final static int y = A.x+1;
}

Here one of the static fields, A.x or B.y — will have to be read before it is initialised (when it
still has its default initial value zero), namely in order to initialise the other one. Depending on
the order in which these classes are loaded A.x will be one and B.y two, or vice versa®.

The example above shows that final static fields are not quite compile-time constants. In
general, apparently simple notions such as being constant can be surprisingly tricky if you look
closely at the semantics of a programming language. For instance, the precise semantics of const

in C and C++ can be quite confusing.

Apart from having constant values for primitives types such as integers, one may also want
more complex data structures to be constant or immutable. For example, in an object-oriented
language one could want certain objects to be immutable, meaning that their state cannot be
modified after they have been created.

The classic example of immutable objects are strings in Java. Once an object of type String
has been created, it cannot be modified, so we can think of a Java string as a constant value.
The fact that strings are immutable is in fact crucial for the security in Java, as we shall see
when we discuss Java sandboxing. More generally, any object that you share with untrusted
code should better be immutable, if you do not want that object to be modified by that code.
One of the classic security loopholes in an early release of Java was due to mutability.

In fact, making objects immutable is a recommended programming practice. As Goetz puts
it: ‘immutable objects can greatly simplify your life’ [11]°. You do not have to worry about
aliasing or about data races, and things become conceptually simpler.

Immutability of objects is a property that could be expressible and enforced by (the type
system of) a programming language. The language Scalal®, which combines the object-oriented
features of Java with aspects of functional programming languages, does so: Scala makes an
explicit distinction between mutable and immutable data structures, both for primitives types
and objects. As mentioned in Section 3.4.3, Rust also supports the notion of immutability of
data structures, in order to achieve thread-safety.

Functionality versus security for visibility

Visibility provides another illustration of how security and functionality can be at odds with each
other. Doug Lea’s coding guidelines for Javall suggest that you should use protected rather
than private:

8 (Clearly, such circularities in the initialisation are something you want to avoid! The code analysis tool
FindBugs for Java includes a check to detect such circularities. Findbugs is free to download from http://
findbugs.sourceforge.net and very easy to get working. If you have never used FindBugs or some other static
analysis tool, download it and give it a go!

9Mttp://www-106.ibm.com/developerworks/java/library/j-jtp02183.html

Ohttps://wuw.scala-lang.org
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“Generally prefer protected to private.

Rationale: Unless you have good reason for sealing-in a particular strategy for using
a variable or method, you might as well plan for change via subclassing. On the
other hand, this almost always entails more work. Basing other code in a base class
around protected variables and methods is harder, since you have to either loosen or
check assumptions about their properties. (Note that in Java, protected methods are
also accessible from unrelated classes in the same package. There is hardly ever any
reason to exploit this though.)”

But Gary McGraw and Edward Felten’s security guidelines for Java'? suggests the opposite, as

these include
“Make all variables private. If you want to allow outside code to access variables in

an object, this should be done via get and set methods.”
and warn against using package-level visibility (and hence also protected, as this is less restric-
tive):
“Rule 4: Don’t depend on package scope
Classes, methods, and variables that aren’t explicitly labelled as public, private, or
protected are accessible within the same package. Don’t rely on this for security. Java
classes aren’t closed [i.e., sealed], so an attacker could introduce a new class into your
package and use this new class to access the things you thought you were hiding. ...

Package scope makes a lot of sense from a software engineering standpoint, since it
prevents innocent, accidental access to things you want to hide. But don’t depend

on it for security.”
The final sentence here recognises the possible conflict between a software engineering standpoint
— extensibility is good — and security standpoint — extensibility is evil, or at least a potential

source of problems.
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Chapter 4

Language-based access control

When the operating system performs access control for a program in execution, as discussed in
Chapter 2, it equally does so for all program code: the operating system has one access policy
for the program as a whole, so all the code in it executes with the same permissions’.

In contrast, language-based access control does not treat all parts of the program in the
same way. Here the language provides a sandboxing mechanism to provide more fine-grained
access control, where different parts of the program — which we will call components®~ can be
subject to different policies.

4.1 Language platforms

Programming language platforms (or ‘frameworks’), such as Java or .NET, provide
1. an execution engine aka virtual machine that is responsible for executing code, and

2. an API that provides functionality (or services) of the platform itself and of the underlying
operating system.

For the Java platform, officially called the Java Runtime Environment (JRE) and commonly
referred to as ‘the Java runtime’, the execution engine is the Java Virtual Machine (JVM). The
Java compiler compiles source code to byte code (aka class files) that the JVM can execute.
The Java API provides basic building blocks for programs (for example, java.lang.0bject)
and an interface to services of underlying operating system (for example System.out.println).
It also encompasses some components responsible for the security functionality of the platform:

e the class loader, which is responsible for loading additional code at runtime;

e the bytecode verifier (bev), which is invoked by the class loader to make sure this code is
well-typed; the type checking by the bytecode verifier together with the runtime checks
and memory management by the JVM ensue memory safety.

1One exception here are system calls: when a program invokes an operating system call, this system call is
executed with higher privileges, for which the operating system will do a context switch for user mode into kernel
mode.

2The notion of component was popularised by Szyperski [30], as a term for a reusable piece of software. We
use the term rather loosely here, but components in the more precise sense of Szyperski could certainly be used
as the components we consider.
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Figure 4.1: Security controls at programming platform level: separation between
components and access control per component.

e the (optional) security manager, which is responsible for enforcing the additional sandbox-
ing discussed in this chapter.

With this sandboxing the platform performs access control where it treats different parts of the
code — different components) differently, as illustrated in Figure 4.1. There are then two layers
of access control, one by the language platform and one by the underlying operating system

The access control that can be done by at the level of the programming platform is more
fine-grained than at the level of the operating system. So this allows a more rigorous adherence
to the security principle of ‘least privilege’ [24].

Having these two layers could be regarded as an instance of the security principle of ‘defence
in depth’ [24]. In principle, one could get rid of the whole operating system, ‘hiding’ it under
— or inside — the language platform, so that the language platform is the only interface to the
underlying hardware for application programs; this is for example what is done on JavaCard
smartcards.

4.2 Why do language-based access control?

Why would you want to do fine-grained access control which enforces different policies for different
parts of the code? The fundamental reason is that different parts of the code may come from
different sources that are not all equally trustworthy. Especially mobile code — downloaded
over the internet to extend an application ‘on the fly’ — should be treated with suspicion.

The security features of Java were designed to make it possible to securely run mobile code,
downloaded over the internet at runtime. The original idea was that Java applications, so-called
applets, could be launched from a web-browser. Clearly you might not want to execute this

27



code with all the access rights of the user, or even the access rights of the web browser. For
example, your web browser can access the hard disk, but you don’t want to give some applet on
any web page that right. The sandboxing mechanism in Java (aka language-based access control,
stack-based access control or stack walking) discussed in this chapter was designed to make it
possible to execute untrusted code — or, more generally, less trusted code — with precisely tuned
permissions.

This sandboxing mechanism is not just useful in the scenario where mobile code downloaded
and executed client-side. Another envisioned use case for Java was at the server side, where a
web server could run multiple web application (so-called servlets) and keeping the sandboxing
mechanism to separate them and control their access rights.

Much more generally, sandboxing can be used in any large application to restrict access to
some security-critical functionality to only small part of the code base. In the rest of the code
bugs then become less of a worry, as the impact of such bugs is restricted. Measures to improve
the quality of the code, or provide higher assurance about the quality, can be concentrated on
the security-critical parts that have more privileges, reducing costs and efforts and improving
cost-effectiveness: for instance, the best programmers can be used to develop the high-privilege
parts of the code, those parts could be tested more thoroughly, or even subjected to code reviews.
It can also offer protection against supply chain attacks. Supply chain attacks, where attackers
try to compromise or backdoor a library to then attack applications that use this library, have
been becoming much more popular as attack vector in the late 2010’s. By restricting access to
security-sensitive functionality to only part of the code base, the impact of supply chain attacks
can be limited.

Mobile code executed client-side in web browsers has become huge success: nearly every
modern website involves mobile code. However, JavaScript has completely eclipsed Java (and
other client-side programming languages such Adobe Flash and Microsoft Silverlight) as the
programming language that is used for this: nearly all webpages nowadays do contain mobile
code, but in mainly the form of JavaScript® (See [27] for some statistics on this.)

In the past decade the term ‘mobile code’ has quickly turned into a pleonasm: most code is
downloaded or regularly updated over the internet, including the operating system itself. Many
of these forms of mobile code are much more dangerous than applets, as there are no sandboxing
mechanisms in place to constrain them. For example, if you download a browser plugin to your
web browser, the code of this plugin can probably be executed with the same rights as the
browser itself.

When thinking about mobile code, also be aware of the fact that the distinction between data
and code is often very blurred. Much of what we think of as data — e.g., Office documents and
spreadsheets, PDF or postscript files, etc — can in reality contain executable content. So much
of the ‘data’ we email around or download is in fact mobile code.

Trust, trustworthiness, and the TCB

The notion of trust is important in security. It is also a source of confusion, especially if people
are sloppy in their terminology, and do not distinguish between trust and trustworthiness.

3NB Despite the similarity in name, JavaScript has nothing to with Java! Java is an general purpose object-
oriented programming language, which could be used for downloading and launching applications over the internet.
JavaScript is a scripting language specifically for use in web pages. They have some basic notation in common,
both use syntax inspired by C (i.e., lots of curly brackets), and they unfortunately have similar names. It is
somewhat ironic that JavaScript has eclipsed Java as the programming language for mobile code: the name
JavaScript was originally chosen to suggest a relation with Java and benefit from the publicity and hype around
Java.
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Depending on your point of view, trust can be something good and desirable, or something
bad and undesirable. Trust between parties is good in that it enables easy interaction and good
collaboration between them. However, trust is bad in that trust in another party means that
party can do damage to you, if it turns out not to be trustworthy. For example, if you give
someone your bankcard and tell them your PIN code, you trust them; this can be useful, for
instance if you want them to do some shopping for you, but is clearly also potentially dangerous.

Note that if a party is not trustworthy, then it may be so unintentionally (because it is careless
or, in the case of software, riddled with security vulnerabilities) or intentionally (because it is
downright malicious).

When considering a system that is meant to meet some security objectives, it is important
to consider which parts of that system are trusted in order to meet that objective. This is called
the Trusted Computing Base or TCB.

Ideally, the TCB should be as small as possible. The smaller the TCB, the less likely that
it contains security vulnerabilities. (Still, you should never underestimates people’s stupidity —
or an attacker’s creativity — to introduce security vulnerabilities in even the smallest piece of
software.) Also, the smaller the TCB, the less effort it takes to get some confidence that it is
trustworthy, for example, in the case of software, by doing a code review or by performing some
(penetration) testing.

4.3 Language-based access control and safety

Obviously, language-based access control is impossible in a programming language that is not
memory safe. Without memory safety, there is no way to guarantee separation of memory used
by different program components. For example, in Fig. 4.1, code in component A should be
prevented from accessing data belonging to component B. Stronger still, it should be prevented
from accessing data of the underlying language platform since any data used in enforcing the
access control by the language platform could be corrupted.

It is also hard to envisage how one could achieve language-based access control without type
safety. Access control between components inside a program (as suggested by the horizontal
arrow in Figure 4.1) relies on the visibility declarations to define e.g., public versus private
interfaces, as discussed in Section 3.5.1. Without type safety any restrictions on visibility can be
accidentally or deliberately broken. Also, without type safety one has to be extremely careful
with data passed between components as arguments or results of procedures and method calls, as
this data can be malformed. This also applies to data shared between components via aliasing,
as discussed in more detail in Section 4.5.2.

In the case of Java, the security of the sandboxing mechanism discussed in Section 4.4 below
crucially relies only many of the notions of safety discussed in Chapter 3: memory safety, type
safety, visibility restrictions, and also immutability of objects of some core Java classes, notably
String objects, to avoid security problems due to aliasing.

In light of the discussion above, one could even define a language as being safe iff it is possible
to securely provide sandboxing at the language level.

4.4 How to do language-based access control?

Any kind of access control level, involves policies to specify access rights, a policy language
to express these in, and a mechanism to enforce them.
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4.4.1 Policies for language-based access control in Java

Sandboxing at the language level involves policies that assign permissions to program compo-
nents. The basis for assigning permissions is typically the origin of this code, which can be the
physical origin of the code (did it come from the hard disk — and, if so, from which directory—
instead of being downloaded over the internet) or digitally signatures on the code that prove its
provenance.

The permissions that are given are rights to perform all kinds of actions, e.g., accessing the file
system, the network, the screen, etc. Some permissions are provided by the language platform,
and used to control access to functionality that the platform provides. In Java the standard
permissions include

e java.io.FilePermission for the file system access
e java.net.SocketPermission, java.net.NetPermission for network access, and
e java.awt.AWTPermission for user interface access.

For specific platforms there may be other permissions. For example the MIDP platform for
Java-enabled mobile phones distinguishes permissions for components? to dial phone numbers or
send SMS text messages®.

An example policy in Java is

grant signedBy "Radboud"
{ permission
java.io.FilePermission "/home/ds/erik","read";
};
grant codebase "file:/home/usr/*"
{ permission
java.io.FilePermission "/home/ds/erik","read";

}

which grants all code signed by ‘Radboud’ and all code in /home/usr on the file system read-
permission in the specified directory. Here ‘Radboud’ is an alias for which the corresponding
public key has to be defined in the keystore.

4.4.2 Stack walking

Program components can invoke each other’s functionality by method calls. This complicates
the precise meaning of policies: if a component A uses functionality of another component B,
should it run with its own permissions or that of the other component?

Assume that a method good() is in a component Trusted that has permission to reformat
the hard disk, and a method evil() is in a less-trusted component Evil that does not have this
permission.

If the method good () invokes the method evil(), should evil() have permission to reformat
the hard disk? After all, it is acting ‘on behalf of” good (). The obvious answer is that it should
not: if so, it would be easy for some untrusted code to create havoc.

4The Java components here are called midlets rather than applets.

5Here the MIDP access control is very fine-grained. For example, a midlet can be given the right to send
text messages or use internet access, but there may then still be a security pop-up where the user is asked for
permission. Depending on how far the midlet is trusted, permission may then be granted to the midlet for its
entire lifetime, only for the current session, or it may be a one-shot permission, e.g., for sending a single SMS.
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The opposite situation is more tricky: if evil() invokes good(), should good () still use its
permission to reformat the hard disk? Clearly there are dangers. But it is unavoidable that
trusted components have to carry out requests by untrusted components. In fact, this is an
important role for trusted components.

For an analogy in the physical world, assume you walk into the branch office of your bank
and ask a cashier for some money from your bank account. From the perspective of the bank,
you are the untrusted party here and the cashier is trusted: the cashier has access to the money
and you don’t. There may even be some bullet proof glass between you and the cashier to help
enforce this access control. The software equivalent would be an untrusted Client component
invoking the withdraw_cash method of some BankEmployee component. When carrying out your
request, the cashier will be using his privileges to get to the money. Carrying it out with only
your permissions is clearly impossible. Of course, the cashier should be very careful, and e.g.,
verify your identity and check your bank balance, before handing over any cash. Unfortunately
(or fortunately, depending on the point of view) human cashiers are not susceptible to buffer
overflow attacks, where a client giving a carefully chosen and ridiculously long name will be given
piles of cash without any checks.

A standard way to handle this is by stack inspection aka stack walking. Stack inspection
was first implemented in Netscape 4.0, then adopted by Internet Explorer, Java, and .NET.
The basic idea here is that

whenever a thread T tries to access a resource, access is only allowed if all components
on the call stack have the right to access the resource.

So the rights of a thread are the intersection of the rights of all outstanding method calls. The
rationale for this is that if there is a method evil on the call stack that does not have some
permission, there is the risk that this method is abusing the functionality. If the evil method
is on top of the stack, it may try to do something unwanted itself; if the evil method is not on
top of the stack, then it might be trying to trick some other code (namely the method higher on
the stack that is invoked by evil) to do something unwanted.

As the example of the cashier at the bank suggests, this basic idea is too restrictive. A
component can therefore override this and allow to use some of its privileges that a component
lower on the call stack does not have. To do this, that component has to explicitly enable usage
of this privilege, to reduce the chance that privileged functionality is exposed accidentally. In
Java enabling a privilege is done using the method enablePrivilege. The decision to enable a
privilege can also be revoked, by calling the method disablePrivilege.

Doing access control when some permission is used, now involves inspecting the frames on the
call stack in a top-down manner — i.e., from the most recent method call down to the method call
that started execution (e.g., a main method in some class). If a stack frame is encountered that
does not have a privilege, access will be denied. If a stack frame is encountered that does have
the permission and has it enabled, the walk down the stack is stopped and access is granted. If
the stack inspection reaches the bottom of the call stack, which can only happen if all frames
have the permission but none of them have explicitly enabled it, permission will be granted.

For a detailed description of stack inspection in Java, see Chapter 3 of [17]. The code in
Figure 4.2 illustrates how code for the cashier example discussed above might look like.

Elevating privileges

The need for trusted code (or trusted processes) to make available some of its privileges to
untrusted code (or untrusted processes) is quite common.
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// Untrusted BankCustomer, without CashWithdrawalPermission
class BankCustomer {

public Cash getCash(Bank bank, integer amount){
walkIntoBank(b) ;
Cashier cashier = b.getCashier();
return cashier.cashWithdrawal(this, amount);

¥
}

// Trusted Cashier, with CashWithdrawalPermission
class Cashier {

public Cash cashWithdrawal (Customer c, integer amount){
// perform security checks,
// eg, authenticate customer & check his balance
enablePrivilege (CashWithdrawalPermission) ;
cash = teller.withdraw(amount);
// update customer’s bank balance

return cash;

Figure 4.2: Sample code for the banking example. A more secure implementation of
cashWithdrawal would disable its CashWithdrawalPermission straight away after
getting the cash, to avoid the risk of accidentally using this permission in the rest
of the method.
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As mentioned in the footnote on page 26, one place in which this happens in traditional
operating systems is in system calls: when a program invokes an operating system call, this
system call is executed with higher privileges.

Another way this happens on UNIX systems is through setuid executables. These executa-
bles run with the access rights of the owner of the executable rather than the access rights of
the user that invokes the program. Often setuid executables are owned by root, giving them
maximal rights. Windows operating systems offer so-called Local System Services to do roughly
the same thing.

The classic example to illustrate the inevitable need for such temporary Elevation of Privilege
is a log-in operation: for an unauthenticated user to log in with a username and password, access
to the password file is needed. So a high privilege (access to the password file) is needed by some
action executed on behalf of a user who is at that point still completely untrusted.

Mechanisms that offer temporary Elevation of Privilege are notorious sources of security
vulnerabilities: if they contain security vulnerabilities then the higher privileges allow an attacker
to do greater damage.

4.5 Things that can go wrong

As discussed in Section 4.3, the TCB for language-based access control is quite large. Even if
this this TCB is correct (and hence trustworthy), which means that

e the type system is sound, and
e the implementation of the type checker is correct, and

e the language platform (including the virtual machine and the API classes responsible for
the language-based access control) are implemented correctly, and

e all the API classes that these implementations rely on are implemented correctly, and

there are still things that can go wrong.

4.5.1 The need for defensive programming

A particular Java class may still be vulnerable to attacks by untrusted code if it is not pro-
grammed defensively, even if there are no mistakes in the policy file and the keystore does not
contain incorrect data.

For example, a component could be careless and expose public fields, allowing an attacker to
do damage by changing these, or a component might allow a class to be sub-classed, allowing an
attacker to create a sub-class whose instances have malicious behaviour.

To prevent such vulnerabilities, the programmer has to keep security in mind and program
defensively. Defensive programming guidelines for Java are discussed in Chapter 7.1 of [17] or
[31]. Secure coding guidelines for Java are also published by CERT® and Oracle”.

Of course, when implementing any components that are in the TCB for the language-based
access control platform itself, such defensive programming guidelines should also be followed.
This code not only has to be correct, but it also has to be secure against possible attacks by
malicious code running on the same VM.

Shttps://www.securecoding.cert.org/confluence/display/java/The+CERT+0racle+Secure+Coding+
Standard+for+Java
"http://www.oracle.com/technetwork/java/seccodeguide-139067.html
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4.5.2 Aliasing as cause of security trouble

One notorious loophole in enforcing separation between trusted and untrusted code is aliasing;:
if a trusted and untrusted component both have a reference to the same object this may be a way
for the untrusted code to mess up the behaviour of the trusted code. As illustrated in Fig 4.3,
aliasing can bypass any access control enforced by the language. A classic example of this is
with private reference field: the language prevents access to private fields by ‘outsiders’, but
the object that a private field points to can be accessed by anyone that has an alias to it.

Aliasing is harmless if the object in question is immutable. If a trusted and untrusted
component share a reference to a String object in Java, then, because strings are immutable,
there is no way the untrusted component can modify the shared reference. (Note that to ensure
that String objects are immutable in the presence of untrusted code, it is crucial, amongst other
things, that the class java.lang.String is final, to rule out malicious subclasses which allow
mutable strings.)

The classic example of how aliasing of mutable data can be a security hole is the ‘HotJava
1.0 Signature Bug’®. The problem was caused by the implementation of the getSigners method
in java.lang.Class, a method which returns an array of the signers of a class. The signers
associated with a class are an important basis of language-based access control, as policies can
associate certain permissions with signers.

The code was something like

package java.lang;
public class Class {
private String[] signers;

/** Obtain list of signers of given class */
public Stringl[] getSigners() {
return signers;

}

The problem with the code above is that the public method getSigners returns an alias to the
private array signers. Because arrays in Java are always mutable, this allows untrusted code
to obtain a reference to this array and then, change the content by including a reputable signer
such as sun.java.com in the hope of getting high privileges.

The solution to the problem is for getSigners to return a copy of the array signers rather
than an alias.

Note that this example illustrates that private fields are not necessarily that private: private
fields that are references may be widely accessible due to aliasing.

Alias control to prevent aliasing bugs

Unwanted aliasing is a not just a notorious source of security holes, but it is a notorious source of
bugs in general. There has been a lot of research into type systems for programming languages
which enforce some alias control to rule out unwanted aliasing. Especially in an object-oriented
language it is required to make some hard guarantees about encapsulation of objects. E.g., one
could consider adding a modifier private_and unaliased to Java to declare reference fields as
being ‘really private’, which are then not allowed to be aliased from outside the class.

8For this and more examples of security holes in early versions of Java, see http://sip.cs.princeton.edu/
history/index.php.
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Figure 4.3: Referencing as notorious loophole in language-level access control, by-
passing language-level access control.

How to restrict aliasing is still an active topic of research. An example of a language platform
that enforces restrictions on aliasing is Java Card; on Java Card smartcards it is not possible for
applications in different packages to share references across package boundaries.

Because sharing mutable data is dangerous, one countermeasure is to only share immutable
data. If this is not possible, an alternative is to make copies of objects — by cloning them
— when passing them to untrusted code, or after receiving them from untrusted code. For
example, in the Class example above, the method getSigners should not return signers, but
signers.clone().

One has to be careful here to make a sufficiently deep copy of the data. In Java cloning an
array returns a shallow copy, so the elements of signers and signers.clone() are aliased.
Because the array contains immutable strings, it would be secure in getSigners to return
signers.clone(). If strings were mutable, this would still not be secure, and a deep clone
of the signers array would be needed, where all the elements of the array are cloned as well.

A way a programming language could help here is in offering some heuristics — or better still,
guarantees — about how deep a clone method is. For example, the object-oriented programming
language Eiffel distinguishes clone and deep_clone operations, where the former is a shallow
clone. In other languages such as Java or C# it can be unclear how deep a copy the clone
method returns, which may lead to mistakes.

4.5.3 The security promise and failure of Java

Security was a key consideration in the design of Java. When Java was introduced in the 1990s,
it came with big promises and hopes to improve security.’

9Java was introduced by the Sun Microsystems, which was acquired by Oracle in 2010. After Sun intro-
duced Java, Microsoft introduced C# (pronounced C-sharp), an almost identical programming language with an
associated execution platform, the .NET platform.
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As discussed earlier, the security features of Java were designed to make it possible to se-
curely run mobile code downloaded over the internet at runtime. The original idea was that
Java applications, so-called applets, could be launched from a web-browser. Later on Sun also
introduced Java Web Start as a way to download and run Java applications from the internet
without the use of a browser.

The security features of Java include memory-safety, type-safety, information hiding (or visi-
bility ), immutable objects, all discussed in the previous chapter, and language-based access control,
also known as stackwalking or stack based access control, discussed in this chapter.

In the end, the Java platform ended up with quite a bad security reputation, especially in its
use for mobile code executed via a browser plugin. In the early 2010’s Java was widely reported
to be the main source of security vulnerabilities, beating even Adobe Flash. For a historical
impression of Java security woes, Brian Krebbs’ website is a good source!?. There are also some
good, more technical studies of Java’s security problems [14, 8].

Several factors played a role in Java’s security problems, some of them very specific to tech-
nical internals of Java, other much more generic:

e One important factor is the complexity of Java’s sandboxing mechanism, which involves
multiple components, including for instance the ClassLoader and the SecurityManager.
This means a sizeable chunk of the Java API code is in the TCB for the sandboxing
mechanism, and this code is quite complex. Obviously, the chances of bugs in the TCB
increases with the size and the complexity of the code. The evolution of Java language
and its APIs over time, with the original developers leaving and new programmers joining,
meant that the code base grew and new bugs were introduced over time.

e A related issue is that part of the security mechanisms for the sandbox (for instance
ClassLoader and the SecurityManager) are — at least partly — implemented in Java.
This highly trusted code then runs alongside any downloaded Java code on the same VM.
This presents a huge attack surface for a attacker who uses malicious code as attack vec-
tor: all the features of the Java languages and any functionality in the Java libraries can
be (ab)used to attack the trusted code. Particular features that are very powerful and
which have turned out to be especially dangerous here include the reflection API, the
MethodHandles API, and the deserialisation, as discussed in detail by Holzinger et al. [14].

Reflection allows code to inspect itself: code in a class can use it to obtain references to its
own class, to other classes, and then to fields and methods of these classes, and possibly
by-pass visibility restrictions to accessing private fields.

Deserialisation of potentially malicious input is not just a security worry in Java, but is
a much more general problem. Deserialisation was even added to the OWASP Top Ten
in 2017. One issue is that deserialisation of some malicious input may result in an object
that is malformed, and in a state that should not exists; such an object may then behave
in weird ways that an attacker can exploit. Another issue is that deserialisation triggers
code execution: deserialising an object of some class will typically trigger the execution
of constructors of that class to create the deserialised object. This may be a way for an
attacker to trigger code execution. (though in the scenario of malicious code as attack
vector the attacker already has this capability).

Other factors contributing to the security problems with Java are not so much about Java’s
internal workings, but more about the functionality provided and the way this functionality is
integrated into other systems, notably web-browsers:

Ohttps://krebsonsecurity.com/tag/java
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e The simple fact that downloading remote code is a built-in feature of Java, and it may
even be a feature that is on by default in some browser plugins, obviously makes it an
interesting place to attack and one that is easy to reach. It is no coincidence that Adobe
Flash, another technology notorious a prime source of security vulnerabilities, also provides
a powerful execution engine reachable via browser plugins.

e The widespread deployment of Java meant is was an interesting target for attackers, with
the added advantage that it potentially works cross-platform on Windows, Apple and Linux
machines.

e The fact that Java (like Flash) is third-party code on most systems does not help with
getting updates rolled out.

Additionally, Java’s update mechanism has also come in for criticism because when in-
stalling new versions it might leave the older version behind. Obviously users having up
with multiple version of Java on their computer, and possibly needing multiple versions
to run old applications, does not help with keeping things up to date. Microsoft update
mechanism for .NET worked in the same way.

Only in 2012, did Java 7 introduce the ability to disable any Java application from running
in the browser by simply unchecking a tick-box in a control panel'!, which is obviously a
sensible precaution if you do not intend to use this feature. Turning off Java in modern
browsers is something you no longer have to worry about. In 2015 Chrome dropped support
for the cross-platform plugin architecture NPAPI, which disabled Java (and also Microsoft’s
Silverlight). In 2018 the last version of Firefox still supporting NPAPI dropped it.

Code-based versus process-based access control

The nature of access control in language-based access control is different from access control
in standard operating systems: the former is based on origin of the code and the associated
visibility restrictions, the latter is based on the process identity. The examples below illustrate
this.

Suppose on an operating system you start the same program twice. This results in two
different processes. (Sometimes when a user tries to start a program twice, instead of starting
a second process, the first process will simply spawn a new window. Indeed, when clicking an
icon to start a program it not always clear if this starts a second process or if the first process
simply creates a second window. You can find out by checking which processes are running
on the operating system. Another way to find out is when one of the windows crashes: if the
other window also crashes then it probably belonged to the same process. From a security point
of view, it is preferable to have separate processes.) Although these two processes execute the
same code, the operating system will enforce separation of the address spaces of these programs.
That the processes execute the same code does not make any difference (except maybe that the
processes might try to use the same files).

Now suppose that within a process that executes a Java program you start up two threads,
for instance by opening two windows.

If these threads execute different code, say one is started by new.SomeThread () .start () and
the other by new.AnotherThread () .start (), then the visibility restrictions of the programming
language can prevent the first thread from accessing some data belonging to the second thread.

Mhttps://www.oracle.com/technetwork/java/javase/7ul0-relnotes-1880995.html
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For example, private fields in the SomeThread class will not be visible — and hence not accessible
— in the AnotherThread class. If the classes are in different packages, they will not be able to
access each other’s package-visible fields.

But if both threads execute the same code, say they are both started by
new.SomeThread () .start (), they can access each others private, protected, and package-visible
fields. (Note that in Java a private field is not only accessible in the object it belongs to, but by
all objects of that class.)

Even if the threads execute different code, the visibility restrictions between them are rather
fragile. We do not have hard and simple encapsulation boundaries between these threads
like we have between different processes on the operating system. For example, suppose one
threads executes new.SomeThread() .start() and the other new.AnotherThread() .start(),
where SomeThread and AnotherThread are in different packages. There is then some separation
between the threads since they only touch each other’s public fields. However, the two threads
might share references to some common object, due to aliasing, which might be a way for one
execution to influence the other in unintended ways.

One prominent example where separation between different objects of the same class would
be useful, are the different tabs of a window or a web browser.

For example, suppose you look at different web pages simultaneously with your web browser,
either in different windows or in different tabs in the same window, and in one of these you are
logged in to your gmail account. If you visit a website with malicious content in another web
page, you might be exposed to all sort of security vulnerabilities, such as cross-site scripting,
session fixation, session hijacking, cross-site request forgery, or click jacking. The root cause of
all these attacks is the same: the other window executes with the same permissions as your gmail
window.

If you would start up new processes instead of starting new windows or tabs within the same
process to look at different web pages, many of these attack vectors would disappear. Of course,
for this to work cookies should not be stored on disk and shared between these processes, but
should be in main memory to benefit from the memory separation enforced by the operating
system.
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Chapter 5

Information flow

Information flow is about a more expressive category of security properties than traditionally
used in access control. It is more expressive than access control at the level of the operating
system discussed in Chapter 2 or at the level of the programming platform discussed in Chapter 4.
This chapter discusses what information flow properties mean, both informally and formally, how
they can be specified, and how they can be enforced.

Traditional access control restricts what data you can read (or write), but not what you can
do with this data after you have read it. Information flow does take into account what you are
allowed to do with data that you have read, and where this information is allowed to flow —
hence the name. For write access, it not only controls which locations you can write to, but also
controls where the value that you write might have come from.

As an example, consider someone using his smart phone to first locate the nearest hotel by
say using Google maps, and then book a room there via the hotel’s website with his credit card.
Maybe he even called some HotelBooker app on his phone that does all these actions for him.
The sensitive information involved includes the location information and the credit card details.
The location data will have to be given to Google, to let it find the nearest hotel. The credit card
information will have to be given to the hotel to book a room. So an access control policy for a
HotelBooker app would have to allow access to both location data and the credit card number.
There is no need to pass the credit card information to Google, or to pass the current location
data to the hotel; especially the former would be very undesirable. Hence an information flow
policy for a HotelBooker app might say that location data may only be leaked to Google and the
credit card may only be leaked to the hotel. Note that such an information flow policy specifies
more precise restrictions than access control can, and involves the way information flows inside
the application.

Integrity versus Confidentiality

Information flow properties can be about confidentiality, as in the example above, or about
integrity. For confidentiality we are worried about where some data that has been read might
end up. For integrity we are worried about where some data that is written might have come
from. The former can violate the confidentiality of the data, the latter can violate the integrity
of the data.

As an example, suppose an application receives untrusted, and potentially malicious, input
over the internet. Such untrusted data is usually called tainted data. You might not want this
input to be used in sensitive actions, say as the argument of system(), the standard C operation
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to pass a raw command to the underlying operating system.

Lack of input validation is a major source of security vulnerabilities; these all involve unwanted
information flows where some untrusted (i.e., low integrity) data ends up in a sensitive place
(where only high integrity data should be used). Such problems can be detected and prevented
to some degree by information flow control using a policy for integrity. This is also called taint
checking.

Integrity and confidentiality are duals. This means that for every property of confidentiality
there is a similar but somehow opposite property for integrity. We will see some more examples
of this duality later: for every way to specify or enforce information flow for confidentiality, there
is a corresponding — dual — approach for integrity.

Integrity versus confidentiality

The duality between confidentiality and integrity shows up in many places. E.g., asymmetric
cryptography can be used to encrypt data (ensuring confidentiality) or to sign data (ensuring
integrity).

When you think about security, often your first instinct is to worry about confidentiality.
Indeed, some people think that security is all about secrecy. But in many (most?) situations
integrity is a far greater worry than confidentiality. After all, for data for which confidentiality
is important, such as your medical records, your criminal record, or information about your
finances, integrity is usually also important — and often much more. You may find it annoying
if other people can find out how much money you have in your bank account, but if they can
change this number it is a more serious security concern!

Moreover, many security problems in software are caused by malicious input and insufficient
input validation — i.e., insufficient integrity checks. Malware tries to destroy the integrity of the
systems we use, even if the goal is to then steal confidential information.

5.1 Principles for information flow

The work on information flow dates back to the seminal work of Denning & Denning [7]. Infor-
mation flow properties, be it for integrity or confidentiality, involve a lattice to classify data.
The simplest possible lattice for confidentiality just distinguishes public and secret data:

Secret

Public

Much more complicated lattices are possible, for instance to classify data at different secrecy
levels or on different topics, as illustrated in Figure 5.1.

The lattice on the right in Fig. 5.1 shows that secrecy levels do not have to be a total ordering:
someone with clearance to read confidential information about the Netherlands is not necessarily
cleared to read confidential information about Belgium, or vice versa. Still, given incomparable
secrecy levels there is always a least upper bound — in this case ‘Conf. Benelux’.

A lattice for integrity nearly always just considers two categories, which distinguishes tainted
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Secret Benelux

Cosmic Top Secret / \\
‘ Secret Belgium Secret Netherlands Secret Luxembourg
Secret, Conf. Benelux
Confidential / \
‘ Conf. Belgium Conf. Netherlands Conf. Luxembourg
Restricted \ //
Unclassified Unclassified

Figure 5.1: Lattices for confidentiality: on the left the official NATO classifica-
tion (which does really include the level ‘Cosmic’!), on the right some imaginary
classification of sensitive information about the Benelux countries.

data — typically untrusted input — from the rest:

Untainted

Tainted

These lattices provide an ordering on the different categories: data has a higher degree of con-
fidentiality or integrity if you go up in the lattice. There is also an implicit ‘inclusion’ in one
direction. For example, it is safe to treat some public data as if it were secret, but not the other
way around. Similarly, it is safe to treat some untainted data as if it were tainted.

Information flow properties involve sources where information come from and sinks where
information end up in. In the discussion and examples below we will often use program variables
as both sources and sinks. In addition to this, input mechanisms give rise to sources and output
mechanisms to sinks.

5.1.1 Implicit and explicit flows

In information flow we distinguish explicit and implicit flows.

An explicit (or direct) information flow happens when we do an assignment of a value to a
variable:

X =Y;

is an explicit flow from y to x.

If a variable 1o holds public data and a variable hi holds secret data, then the assignment
lo = hi; breaks confidentiality, whereas hi = lo; does not.

Dually, if a variable 1o holds untrusted, tainted data and a variable hi holds untainted data,
then hi = lo; breaks integrity, whereas 1o = hi; does not.

Implicit (or indirect) flows are trickier. Suppose that program variable 1o holds public
data and variable hi holds secret data. The statement

if (hi > 0) { 1o = 99; }
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does not leak the exact value of hi to lo, but it does leak some information about the value of
hi to lo. Someone observing lo could tell whether hi is negative or not.

In the worst case, an implicit flow is just as bad as an explicit one. For example, for boolean
variables b1l and b2, the (implicit) information flow in

if (bl) then b2 = true else b2 = false;
is equivalent to the (explicit) information flow in

bl = b2;

Implicit flows can become quite tricky. Suppose we have two arrays, priv and pub, where
priv contains secret data and pub contains public data. The assignments below are then not
problematic

pub[3] = lo;
priv[4] = hi;

But what about the statements below?

pub[hi] = 23;
priv[hi] = 24;
priv[lo] = 25;

The assignment pub[hi] = 23; does leak confidential information, because someone observing
the content of pub could learn something about the value of hi. More subtle is the problem with
priv[hi] = 24; this may look harmless, but it may leak information: e.g., if hi is negative, the
statement will throw an exception because of a negative array index; if an attacker can observe
this, he can tell that hi was negative.

Finally, priv[lo] = 25 will throw an exception if lo is negative or if lo larger than the
length of the array priv; if the length of the array priv is considered confidential, then in the
second case some confidential information is leaked.

Information can not only be leaked by throwing exceptions, but also by the execution time of
a program, or by the fact that a program terminates or not. For example, consider the program
fragment below

for (i = 0; i < hi; i++) { ... };

If after this for-loop there is some event that an attacker can observe, then the timing of this event
leaks some information about the value of hi. This is also the case if there is some observable
event inside the loop.

The program fragment

for (i = 0; i < 10; i=i+hi) { ... 3};

will not terminate if hi is zero, so this program fragment not only leaks information by the time
it takes to complete, but also by the fact whether it terminates at all. This may be easier to
observe by an attacker.
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Hidden channels

In the examples above, the throwing of an exception, the timing, and the termination of a
program is used as so-called covert or hidden channel.

Especially when implementing cryptographic algorithms timing is a notorious covert channel.
For instance, a naive implementation of RSA will leak information about the key through time,
as the time it takes will increase with the numbers of 1’s in the secret key. There are all sorts
of covert channels that might leak sensitive information: such as power usage, memory usage,
electromagnetic radiation, etc. One of the most powerful attacks on smartcards to retrieve
secret cryptographic keys nowadays is through power analysis, where the power consumption of
a smartcard is closely monitored and statistically analysed to retrieve cryptographic keys.

The notion of covert channels is about observing data, rather than influencing it, so it is
an issue for confidentiality, but less so (not at all?) for integrity. So here the duality between
confidentiality and integrity appears to break down.

5.2 Information flow in practice
There are different ways to use the notion of information flow to improve security:

e One way is through type systems which take levels of confidentiality or integrity into
account. Breaches of information flow policies can then be detected at compile-time by
means of type checking. (Of course, breaches could also be detected at runtime.) Section 5.3
describes this possibility in more detail. An early realisation of such a type system for a
real programming language is the Jif extension of Java, which is based on JFlow [20].

With the extension of the Java annotation system to allow annotations on types (JSR 308),
information about security levels can be added to Java code without the need to extend the
language. The SPARTA project uses to make compile-time information flow guarantees
for Android apps [9].

e Many source code analysis tools perform some form of information flow analysis. Source
code analysis tools, also known as code scanning or static analysis tools, analyse code at
compile time to look for possible security flaws. The capabilities of source code analysis
tools can vary greatly: the simplest versions just do a simple syntactic check (i.e., a CTRL-
F or grep) to look for dangerous expressions, more advanced versions do a deeper analysis
of the code, possible including information flow analysis.

Information flow analyses by code analysis tools focus on integrity rather than confiden-
tiality, and is also called taint checking. Some sources of data are considered as tainted
(for example, arguments of HTTP POST or GET requests in web applications) and the
tool will try to trace how tainted data is passed through the application and flag a warning
if tainted data ends up in dangerous places (for example, arguments to SQL commands)
without passing through input validation routines.

So the tool has to know (or be told) which routines should be treated as input validation
routines, i.e., which routines take tainted data as input and produce untainted data as
output. Also, the tool will have to know which API calls give rise to information flows.
For example, if a Java string s is tainted, then

s.toLowerCase ()
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probably has to be considered as tainted too, but
org.apache.commons.lang.StringEscapeUtils.escapeHtml (s)

can be considered as untainted. (Or maybe the last expression should then only be con-
sidered as untainted when used as HTML, and still be treated as tainted when used in say
an SQL query...)

Taken to its extreme, such an information flow analysis would be equivalent to having a
type system. However, most source code analysis tools take a more pragmatic and ad-hoc
approach, and cut some corners to keep the analysis tractable without too much program-
mer guidance (in the form of type annotations), without too much computation (e.g., tools
may refrain from doing a whole program analysis and only look for unwanted information
flow within a single procedure), and without generating too many false positives. So in
the end the analysis will often not be sound (i.e., it will produce some false negatives) or
complete (i.e., it will produce some false positives).

Instead of the static approaches above, one can also do a dynamic taint propagation.
Here tainted data is tagged at runtime, and during execution of the program these tags
are propagated, and execution is halted if data that is tagged as tainted ends up in dan-
gerous places, such as arguments to security-sensitive API calls. The idea of dynamic taint
propagation was popularised by Perl’s taint mode.

Compared to a static analysis (either by a type system or a source code analysis tool),
such a dynamic approach has the advantage of being simpler and being more precise. The
obvious disadvantage is that it will only detect potential problems at the very last moment.

Dynamic taint propagation can also be used to detect certain buffer overflow exploits, and
combat the worms that plague operating systems. The basic idea is the same: untrusted
input is tagged as tainted, these tags are propagated, and the system flags a warning if
tainted data ends up in the program counter, is used as an instruction, or ends up in a
critical argument of a security-sensitive system call [6]. Unlike a traditional signature-
based approach to detect known exploits, this can even detect zero-day exploits. Such a
dynamic taint propagation could even be pushed down to the hardware level, on a 65-bits
machine where 1 bit is used to track tainting information, and the remaining bits are used
for regular 64-bit data values. Unfortunately, there are limits to the type of exploits that
can be stopped in this way [26].

Run-time monitoring for information flow

Information flow properties are harder to enforce by run-time monitoring than access control
properties. Access control for some application can be enforced by run-time monitoring of its
(input and output) behaviour and then intervening to stop any disallowed actions. For informa-
tion flow this is not possible. For example, consider a run-time monitor for the HotelBooker app
above, which tries to ensure that my credit card number is not leaked to anyone except the hotel.
Let’s assume my credit card number is 1234 5678 9012 3456. If the monitor sees this number
appear, say as parameter in an http-request to mafia.org, the monitor could spot it and stop
the request. But would a monitor also spot and stop such a request with the parameter ”6543
2109 8765 4321”7 Worse, still, if the monitor spots the number 1 being communicated over the
network, how can it possibly know if this is not leaking the first digit of my credit card number?
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The only way a run-time monitor could know this is by tracking values passed around inside
the application, and this is what the dynamic techniques for enforcing information flow policies
mentioned above do.

5.3 Typing for information flow

This section discusses how information flow policies can be enforced by typing, for a toy lan-
guage, in a sound way — more specifically, sound with respect to the formal characterisation of
information flow using non-interference.

For simplicity, we just consider a lattice with two levels of secrecy: H(igh) and L(ow).

H

L

All program variables will have to be assigned a level (type). We will write the level of a program
variable as a subscript, so for example we write x; to mean that program variable x has level t.
For a real programming language, the levels of program variables would have to be declared, for
instance as part of the type declarations.

The type system involves typing judgements for expressions and for programs. A typing
judgement for an expression is of the form e : ¢, that expression e has security level ¢. For
expressions we have the following type derivation rules’

(variable) Y
. . ot it . . .
(binary operations) % where @ is any binary operation.
1Dex:
. . itot<t
(subtyping for expressions) %

In the subtyping rule, < is the ordering on types induced by the lattice. For the simple lattice we
consider, we just have L < H. This rule allows us to increase the secrecy level of any expression.
Instead of having a separate subtyping rule for increasing the secrecy level, as we have above,
this could also be built into the other rules. For example, an alternative rule for binary operation
would be
€1 . tl €9 tQ
e1®es:ty Uty

where t; U t5 is the least upper bound of ¢; and t5 in the lattice. For example, for the lattice
in Fig 5.1, ‘Secret Belgium LI Secret Netherlands’ would be ‘Secret Benelux’. Note that this
alternative rule is derivable from the rules for binary operations and subtyping given above.
This alternative rule makes it clear that if we combine data from different secrecy levels, the
combination gets the highest secrecy level of all the components. For example, a document
which contains secret information about Belgium and about the Netherlands would have to be
classified ‘Secret Benelux’.

1These rules are given in the standard format for type derivation rules. In this format premises of a rule
are listed above the horizontal line, and the conclusion below it. It can be read as an implication or an if-then
statement: if the typing judgements above the line hold then we may conclude the typing judgement below it.

45



To rule out explicit information flows, we clearly want to disallow assignment of H-expressions
to L-variables. For a typing judgement for programs of the form p : ok, meaning that program
p does not leak information, the type derivation rule for assignment would have to be

e:t
Ty = e : ok
In combination with the subtyping rule for expressions given above, this rule also allows expres-

sions e with a lower classification level than ¢ to be assigned to a program variable x; of level
t.

If our programming language would include some output mechanism, say some print-statement,
the type derivation rule might be
e: L
print(e) : ok

so that only non-confidential information, i.e., information of level L, can be printed.

The type system should also rule out implicit flows, as in a program fragment
if e; thenz; = e9

where x; is a low variable and e; : H; just requiring that e has level L is not good enough for
this.

In order to rule out implicit flows, the type system for programs should keep track of the
levels of the variables that are assigned to in programs: typing judgements for programs, of the
form p : ok ¢, will mean that

p does not leak information and does not assign to variables of levels lower than t.
The type derivation rules are then as follows

. e:t
(aSSIgnment) m
e:t pp:okt pg:okt

if e then p; else po : okt

(if-then-else)

p1:okt po:okt
p1;p2 s okt
e:t p:okt
while (e){p} : okt
p:okt t'<t
p:okt

(composition)

(while)

(subtyping for commands)

The rule for assignment says that we can only assign values e of level ¢t to variables z; of level
t; using the subtyping rule for expressions we can also store values of lower levels than ¢ in a
variable of level ¢.

Note that here the rule for if-then-else ensures that the level of variables assigned to in
the then- or else-branch is equal to the level of the guard e. (In fact, it can also be higher, as we
can use the subtyping rule for expressions to increase the level of the guard e; see Exercise 5.3.1
below.) This rules out unwanted implicit flows: assigning to a variable of a lower level than
the guard would be an unwanted implicit information flow. Similarly, the rule for while forbids
assignments to variables that have a lower level than the guard.
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Also note that the subtyping rule for commands goes in the opposite direction as the one for

expressions?.

Important questions for the type system above, as for any type system, are:

e Is the type system sound? In other words: are well-typed programs guaranteed not to
contain unwanted information flows?

e Is the type system complete? In other words: are all programs that do not contain
unwanted information flows guaranteed to be typable?

The type system is not complete. Simple examples can show this: for example, suppose epign
is a high expression, and z;,, is a low variable, then the following program lines are not well
typed

Llow = €high — €high;
if epigh then xyp, = 7 else Tjpy = T;
even though they clearly do not leak information.

The type system above is sound. To prove this, we need some formal definition of what it
means for a program not to contain unwanted information flows. The standard way to do this
is by means of non-interference, which defines interference (or dependencies) between values
of program values. For this we have to consider program states, which are vectors that assign a
value to every program variable. For program states we can consider if they agree on the values
for the low variables:

Definition 5.3.1 For program states p and v, we write u =, v iff 4 and v agree on low
variables.

The idea behind this definition is that u &, ¥ means that an observer who is only allowed to
read low variables cannot tell the difference between states p and v.

Semantically, a program can be seen as a function that takes an initial program state as input
and produces a final program state as output. Given the notion of =, we can now define the
absence if information flow as follow:

Definition 5.3.2 (Non-interference) A program p does not leak information if, for all possi-
ble start states u and v such that p /., v, whenever executing p in p terminates and results in
1’ and executing p in v terminates and results in v/, then u' ~u, V.

The idea is that if in an initial state p we change the values of one or more of the high (secret)
variables then, after executing p, we cannot see any difference in the outcome as far as the low
(public) variables are concerned. In other words, the values of high variables do not interfere
with the execution as far as low variables are concerned. This means an observer who is only
allowed to observe low variables cannot learn anything about the values of high values.

For this characterisation of (absence of) unwanted information flows we can now prove:

Theorem 5.3.1 (Soundness) If p : okt then p is non-interferent, i.e., does not leak information
from higher to lower levels.

The typing rules that rule out potential implicit flows are overly restrictive, in that they
disallow many programs that do not leak. In other words, the type checker will produce a lot of
false warnings. A practical way out here, used in the SPARTA approach [9], is to rely on manual
analysis for these cases: the type system then only generates a warning for potential implicit
flows, and these warnings have to be manually checked by a human auditor.

2People familiar with the Bell-LaPadula system for mandatory access control with multiple levels of access can
recognise the ‘no read up’ and the ‘no write down’ rules in the subtyping rules for expressions and commands,
respectively.
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Exercises on typing for information flow and non-interference

Exercise 5.3.1 (Alternative rules) Fill in the ...below to give an alternative rule for if-then-
else, which can be derived from the rule for if-then-else and the subtyping rule for expressions

e:t py:okt’ po:okt
if ethenp; elsepy: ...

Now fill in the ...below to give an even more general rule, which can be derived if we also use
the subtyping rule for commands

e:t pp:okty po:oktsy
if ethenp; elsepy: ...

Hint: here it is useful to use the notation M for greatest lower bound.

Exercise 5.3.2 (Typing for integrity) As an exercise to see if you understand the idea of the
type system above, define a type system for integrity instead of confidentiality.
For simplicity, we just consider a lattice with two levels of integrity: U(ntainted) and T (ainted).

U

T

Assume that all program variables x; are labelled with an integrity level ¢.

First define rules for expressions e for judgements of the form e : ¢, which mean that expression
e has integrity level ¢ or higher.

Then define rules for programs p for judgements of the form p : okt, which mean that program
p does not violate integrity (i.e., does not store tainted information in a variable of level U), and
only stores information in variables of level ¢ or lower.

Exercise 5.3.3 (Non-interference for integrity) As an exercise to see if you understand the
idea of non-interference, define a notion of non-interference for integrity instead of confidentiality.

As part of this you will have to think about the appropriate notion of equivalence ~ on
program states that you need to express this.

Termination-sensitive information flow

The typing derivation rules above do not take non-termination into account as a hidden channel.
For termination-sensitive information flow, the rules for if-then-else and while have to be
more restrictive, namely:

e:L pp:okt py:okt

if e then p; elseps : okt
e:L p:okt

while (e){p} : okt

(if-then-else)

(while)

The rule for while here excludes the possibility of a high (secret) condition e, as this may
leak information. For example, the program while(b){ skip } will leak the value of b in the
termination behaviour. Similarly, the rule for if-then-else excludes the possibility of a high
(secret) guard, because this may leak information — namely in case p; terminates but ps does
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not, or vice versa. Note that these rules are very restrictive! It means it is impossible to branch
on any conditions that involve high information.

With these rules the type system will again not be complete. To prove soundness, we now
need a different characterisation of what it means for a program not to leak, which takes non-
termination into account as a hidden channel:

Definition 5.3.3 (Termination-sensitive Non-interference) A program p is termination-
sensitive non-interferent (i.e., does not leak information, not even through its termination be-
haviour) if, for all u =,, v, whenever executing p in p terminates and results in p’, then
executing p in v also terminates and results in a state v’ for which p' =, V.

For the more restrictive rules for if-then-else and while we can now prove soundness.

Theorem 5.3.2 (Soundness) If p : ok ¢ then p is termination-sensitive non-interferent, i.e.,
does not leak information from higher to lower levels, even through its termination behaviour.

More complicated notions of non-interference can be given to account for execution time
as a hidden channel, or to define what unwanted information flow means for non-deterministic
programs.

Growing suspicions

Looking back at the evolution of computing, we can see a steady increase in complexity in ever
more fine-grained access control, in response to a steady decline in trust.

e Initially, software ran on the bare hardware, free to do anything it wanted.

e Then operating systems (and hardware) introduced a distinction between kernel and user
mode, and began to enforce access control per user.

e At first all processes started by a user were trusted equally, and trusted as much as the
user himself, so ran with all the user’s privileges. Gradually options appeared to reduce
privileges of individual processes, to face the fact that some applications should be trusted
less than others, even when executed by one and the same user.

e Language-based access control is a next step in the evolution: different parts of a single
program are trusted to a different degree, and hence executed with different permissions,
as for instance enforced by the Java sandbox.

e The notion of information flow suggest a possible next step in the evolution: our trust in
a process running on some computer might not only depend on (i) the user who started
the process and (ii) the origin of the different parts of the code, but also on the origin of
the input that we feed to it: the same piece of code, executed by the same user, should be
trusted less when acting on untrusted input (say input obtained over the web) than when
acting on trusted input (say input typed on the user’s keyboard). It remains to be seen if
such forms of access control will ever become mainstream.

Note that Windows Office already does this: Word or Excel files that are downloaded
over the internet or received as email attachments are opened Protected View, meaning
that macros in these documents are disabled. This measure has been introduced because
macros in such files are a notorious and simple way for attackers to gain access to systems.
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