
Software security, secure programming

Information Flow, Non Interference, Sandboxing . . .

Master M2 Cybersecurity

Academic Year 2025 - 2026



Back to password/PIN authentication

#define SIZE 4 // public PIN size
#define MAX_TRIES // maximal tries number

char secretPin[SIZE] = {...} ; // secret PIN value
unsigned int triesLeft = MAX_TRIES ; // tries counter

boolean checkPIN (char[] inputPin) {
// No more than triesLeft attempts
if (triesLeft < 0) return false ; // no authentication
// Main comparison
for (short i=0; i < SIZE; i++)
if (inputPin[i] != secretPin[i]) {

triesLeft-- ;
return false ; // no authentication

}
// Comparison is successful
triesLeft = maxTries ;
return true ; // authentication is successful

}

functional property:

checkPIN(inputPIN) ⇔ inputPin[0..SIZE− 1] = secretPin[0..SIZE− 1]

What about confidentiality of the secret PIN ?
▶ should be protected against reverse-engineering
▶ should be protected against (side-channel) information leakage

2 / 15



Information levels

Several information levels “coexist” inside an execution platform:

▶ from different users (including root/admin/...)

▶ from different processes/threads/applets (e.g., web browser)

▶ from different input sources (trusted/untrusted, confidential/public)

▶ etc.

⇒ a lattice, with lower and higher information level values

↪→ Avoid unexpected interferences between cross level information flows ?

3 / 15



Security properties to preserve/enforce

confidentiality:
↪→ no information leakage from higher to lower data

“no write down”, “no read up”

integrity:
↪→ no information rewritting from lower to higher data

“no write up”, “no read down”

Examples:

▶ sensitive shared plateform level data (e.g., caches, etc.)

▶ sensitive OS level data (e.g., passwords, resource management, etc.)

▶ external data, owned by other users/threads

▶ sensitive internal application data (e.g., crypto keys, nonces, etc.)

▶ sensitive program execution level memory locations
(e.g., canaries, return adresses, etc.)

4 / 15



Attacker model

▶ knows the code (executable → assembly, source ?)

▶ observe outputs + low variables+ part of the execution plateform . . .

▶ controls inputs + low variables

▶ may observe other side-channels

⇒ may direct program execution through controled inputs
▶ to produce/increase leakage of higher values
▶ to break integrity (of higher data, of code execution, etc).

Rk: could even elaborate interactive/adaptive multi-steps attack strategies !

5 / 15



How information may flow ?

▶ Inside a single-threaded application, use/def variable dependencies
▶ data-flow (direct/explicit) through assigments
▶ control-flow (indirect/implicit) through if, while, . . . statements, exceptions,

etc.

▶ Through side channels
▶ execution time, termination
▶ power consumption
▶ micro-architecture level (shared) resources: caches, intruction pipelines,

branch prediction, etc.
▶ others ?

▶ Between concurent/remote processes/threads
▶ sockets, remote calls
▶ shared resources (and race conditions !)

6 / 15



Protection against (unwanted) information flows

▶ Hardware mechanisms (enclaves, etc.)

▶ OS primitives and access control mechanisms, Virtual Machines

▶ Language level facilities and libraries (crypto, etc.)

▶ Coding rules (input sanitization, constant-time programming)

▶ Compiler options (to enforce protection at the executable code level)

▶ some tools ...
▶ static analysis: type systems⇝ fix-point computations

→ not decidable, (over-)-approximation, not complete
▶ runtime instrumentation/monitoring techniques (taint tags, extra checks)

→ not sound (may miss existing flows)

But:
protection mechanisms always rely on a TCB (Trusted Computing Base)

7 / 15



Non Interference: a general definition (1/4)

↪→ check information flow partitions inside a program

▶ more precisely:
no influence of variable/statement of one class to another
influence = read and/or write and/or execute

▶ numerous applications in security:
▶ confidentiality/integrity
▶ taint analysis (e.g., user-controled vulnerability exploitability)
▶ side-channels through shared resources (execution time, cache, . . . )
▶ no use of unitialized variables (undefined behavior)
▶ etc.

8 / 15



Non Interference: confidentiality (2/4)

No influence from data/statement of class H to data/statement of class L
Given:
▶ a variable partition in 2 classes H and L
▶ memory states M1=(L1, H1) and M2=(L2, H2) s.t. L1 ≡ L2 and H1 ̸= H2

Then, any executions from M1 and M2 lead to
memory states M’1=(L’1, H’1) and M’2=(L’2, H’2) s.t. L’1 ≡ L’2

execution 2execution 1

M1 M2

M’2M’1

L1H1 L2H2

H1’ L1’ L2’H2’

Rk:
▶ do not take termination into account (see later)
▶ hyper property

(models are sets of execution sequences, not single ones . . . )

9 / 15



Non Interference: integrity (3/4)

No influence from data/statement of class L to data/statement of class H
Given:
▶ a variable partition in 2 classes H and L
▶ memory states M1=(L1, H1) and M2=(L2, H2) s.t. H1 ≡ H2 and L1 ̸= L2

Then, any executions from M1 and M2 lead to
memory states M’1=(L’1, H’1) and M’2=(L’2, H’2) s.t. H’1 ≡ H’2

L2 H2

L2’ H2’

L1 H1

L1’ H1’

execution 2execution 1

M1 M2

M’2M’1

Rk:
▶ do not take termination into account (see later)
▶ hyper property

(models are sets of execution sequences, not single ones . . . )

10 / 15



Non Interference: taint (4/4)
A variable/statement is tainted at a program location if its value/execution is influenced
by a user input
▶ taint source = “user input channel” (keyboard, network, filesystem, etc.)
▶ taint sink = (unwanted) user-controled vulnerable variable/statement

↪→ no influence from taint source (L) to taint sink (H) ≡ integrity property

Given:
▶ some variables/statements labelled as TSo (taint source) or TSi (taint sink)
▶ M1=(TSo1, TSi1) and M2=(TSo2, TSi2) s.t. TSi1 ≡ TSi2 and TSo1 ̸= TSo2

Then, any executions from M1 and M2 lead to
M’1=(TSo’1, TSi’1) and M’2=(TSo’2, TSi’2) s.t. TSi’1 ≡ TSi’2

TSo2 TSi2

TSo2’ TSi2’

TSo1 TSi1

TSo1’ TSi1’

execution 2execution 1

M1 M2

M’2M’1

Rk:
▶ not need to take non-termination into account . . .
▶ hyper property

(models are sets of execution sequences, not single ones . . . )
11 / 15



In the following . . .

1. Information flow within single-threaded applications (see E. Poll’ slides)

2. Side channels (next slides below)

3. Sandboxing and access control (see E. Poll’ slides)

12 / 15



Information leakage through side channels

13 / 15



Side channels

Information leakage through:
▶ (implicit) shared resources: caches, hidden registers, etc.
▶ physical observations: time, power consuption, etc.

A same cause: the use of high variables to control
▶ (global) memory accesses (e.g, arrays)⇝ data cache attacks
▶ execution control flow⇝ instruction cache or branch prediction attacks
▶ time-dependent (assembly level) instructions

constant-time1 programming:
a set of coding rules to protect against such attacks . . .

See for instance:
▶ A beginner’s guide to constant-time cryptography
▶ (Intel) Guidelines for Mitigating Timing Side Channels Against Cryptographic Implementations
▶ Some Cryptocoding rules

1not in the sense of time complexity!
14 / 15

https://www.chosenplaintext.ca/articles/beginners-guide-constant-time-cryptography.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/secure-coding/mitigate-timing-side-channel-crypto-implementation.html
https://github.com/veorq/cryptocoding


Some research directions regarding side channels

▶ Quantifying the information leakage (Quantitative Information Flow)
is always leaking one single (same!) bit of a crypto key less critical
than leaking only once the whole key?

▶ Quantifying the “control level” of an attacker
how much can she/he influence the execution, at which cost ?

▶ Distinguish regular vs unwanted outputs when computing the leakage
e.g., password checking may (at least!) return a boolean value

▶ Improve automatic detection of side channel information flows
(hyper-property checking)

▶ Automatic code transformation to constant time mode, dedicated
programming languages, etc.

15 / 15


