:

UFR IM?AG Grenomemv
- EnsimAg U
UNIVERSITE

N
Se Grenoble
! Alpes

Software security, secure programming

Information Flow, Non Interference, Sandboxing . ..

Master M2 Cybersecurity

Academic Year 2025 - 2026



Back to password/PIN authentication

#define SIZE 4 // public PIN size
#define MAX_TRIES // maximal tries number

char secretPin[SIZE] = {...} ; // secret PIN value
unsigned int triesLeft = MAX_TRIES ; // tries counter

boolean checkPIN (char[] inputPin) {
// No more than triesLeft attempts
if (triesLeft < 0) return false ; // no authentication
// Main comparison
for (short i=0; 1 < SIZE; i++)
if (inputPin[i] != secretPin[i]) {
trieslLeft—— ;
return false ; // no authentication
}
// Comparison is successful
triesLeft = maxTries ;
return true ; // authentication is successful

}

functional property:

checkPIN(inputPIN) < inputPin[0..SIZE — 1] = secretPin[0..SIZE — 1]
What about confidentiality of the secret PIN ?

» should be protected against reverse-engineering

» should be protected against (side-channel) information leakage

2/15



Information levels

Several information levels “coexist” inside an execution platform:

» from different users (including root/adminy...)

» from different processes/threads/applets (e.g., web browser)

» from different input sources (trusted/untrusted, confidential/public)

> etc.

= a lattice, with lower and higher information level values

— Avoid unexpected interferences between cross level information flows ?

3/15



Security properties to preserve/enforce

confidentiality:
— no information leakage from higher to lower data

” o«

“no write down”, “no read up”

integrity:
— no information rewritting from lower to higher data

“no write up”, “no read down”

Examples:
» sensitive shared plateform level data (e.g., caches, etc.)
» sensitive OS level data (e.g., passwords, resource management, etc.)
» external data, owned by other users/threads
» sensitive internal application data (e.g., crypto keys, nonces, etc.)

» sensitive program execution level memory locations
(e.g., canaries, return adresses, etc.)

4/15



Attacker model

» knows the code (executable — assembly, source ?)
> observe outputs + low variables+ part of the execution plateform .. .
» controls inputs + low variables
» may observe other side-channels
=- may direct program execution through controled inputs
» to produce/increase leakage of higher values

» to break integrity (of higher data, of code execution, etc).

Rk: could even elaborate interactive/adaptive multi-steps attack strategies !

5/15



How information may flow ?

» Inside a single-threaded application, use/def variable dependencies

> data-flow (direct/explicit) through assigments
» control-flow (indirect/implicit) through if, while, . .. statements, exceptions,
etc.

» Through side channels

> execution time, termination

> power consumption

> micro-architecture level (shared) resources: caches, intruction pipelines,
branch prediction, etc.

others ?

v

» Between concurent/remote processes/threads

> sockets, remote calls
» shared resources (and race conditions !)

6/15



Protection against (unwanted) information flows

» Hardware mechanisms (enclaves, etc.)

v

OS primitives and access control mechanisms, Virtual Machines

v

Language level facilities and libraries (crypto, etc.)

v

Coding rules (input sanitization, constant-time programming)

v

Compiler options (to enforce protection at the executable code level)

» some tools ...

> static analysis: type systems ~~ fix-point computations
— not decidable, (over-)-approximation, not complete

> runtime instrumentation/monitoring techniques (taint tags, extra checks)
— not sound (may miss existing flows)

But:
protection mechanisms always rely on a TCB (Trusted Computing Base)

7/15



Non Interference: a general definition (1/4)

— check information flow partitions inside a program

> more precisely:
no influence of variable/statement of one class to another
influence = read and/or write and/or execute

» numerous applications in security:

confidentiality/integrity

taint analysis (e.g., user-controled vulnerability exploitability)
side-channels through shared resources (execution time, cache, ...)
no use of unitialized variables (undefined behavior)

etc.

VVYYVY

8/15



Non Interference: confidentiality (2/4)

No influence from data/statement of class H to data/statement of class L
Given:

» a variable partition in 2 classes H and L

» memory states M1=(L1, H1) and M2=(L2, H2) s.t. L1 = L2 and H1 # H2

Then, any executions from M1 and M2 lead to
memory states M'1=(L1, H'1) and M’'2=(L2, H'2) s.t. L1 = L2

HI L1 H2 L2
« Il B I -
execution 1 { { execution 2

HI® LI’ HY’ L2
« [l B B B -

Rk:
» do not take termination into account (see later)

» hyper property
(models are sets of execution sequences, not single ones ...)

9/15



Non Interference: integrity (3/4)

No influence from data/statement of class L to data/statement of class H

Given:
» a variable partition in 2 classes H and L

> memory states M1=(L1, H1) and M2=(L2, H2) s.t. H1 = H2 and L1 # L2

Then, any executions from M1 and M2 lead to
memory states M’1=(L1, H’1) and M'2=(L2, H'2) s.t. H'1 = H’2

L1 H1 L2 H2

« B I -

execution 1 { { execution 2

L1” HI’ L2 H2
Bl OB B B

Rk:
» do not take termination into account (see later)
» hyper property

(models are sets of execution sequences, not single ones ...

10/15



Non Interference: taint (4/4)
A variable/statement is tainted at a program location if its value/execution is influenced

by a user input
> taint source = “user input channel” (keyboard, network, filesystem, etc.)

> taint sink = (unwanted) user-controled vulnerable variable/statement
— no influence from taint source (L) to taint sink (H) = integrity property

Given:
> some variables/statements labelled as TSo (taint source) or TSi (taint sink)

» M1=(TSo1, TSi1) and M2=(TSo02, TSi2) s.t. TSi1 = TSi2 and TSo1 # TSo02
Then, any executions from M1 and M2 lead to
M’'1=(TSo’1, TSi'1) and M'2=(TS0’2, TSi'2) s.t. TSi'"1 = TSi'2

TSol TSil TSo2 TSi2

« Il B I B -
execution 2

execution 1 l j
TSol” TSil” TSo2" TSi2”
N N N N
Rk:
> not need to take non-termination into account . ..

> hyper property
(models are sets of execution sequences, not single ones ...)

11/15



In the following ...

1. Information flow within single-threaded applications (see E. Poll’ slides)

2. Side channels (next slides below)

3. Sandboxing and access control (see E. Poll’ slides)

12/15



Information leakage through side channels

Are these programs secure?

In both cases,

> some additional information about the secret is leaked by the time or the
instruction cache

» by interacting iteratively with the application, the adversary is able to
improve his knowledge

void compare(int 1, int s){

if (s<1)

{write_log(‘‘too large’’);} // 1 sec.
else

{some_computation();} // 2 sec.

» Attacker can binary search on s using | and the leaked output

int pwdCheck(char *1, char* pud){
unsigned i;
for (i=0; i<B_Size; i++)
if (1[i]!'=pwd[il)
{return 0;}
return 1;

» Segment Oracle Attack : Attacker can brute-force individual characters

13/15



Side channels

Information leakage through:
» (implicit) shared resources: caches, hidden registers, etc.
» physical observations: time, power consuption, etc.

A same cause: the use of high variables to control
> (global) memory accesses (e.g, arrays) ~» data cache attacks
» execution control flow ~ instruction cache or branch prediction attacks
> time-dependent (assembly level) instructions

constant-time' programming:
a set of coding rules to protect against such attacks ...

See for instance:
» A beginner’s guide to constant-time cryptography
» (Intel) Guidelines for Mitigating Timing Side Channels Against Cryptographic Implementations
» Some Cryptocoding rules

"not in the sense of time complexity!

14/15


https://www.chosenplaintext.ca/articles/beginners-guide-constant-time-cryptography.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/secure-coding/mitigate-timing-side-channel-crypto-implementation.html
https://github.com/veorq/cryptocoding

Some research directions regarding side channels

» Quantifying the information leakage (Quantitative Information Flow)
is always leaking one single (same!) bit of a crypto key less critical
than leaking only once the whole key?

» Quantifying the “control level” of an attacker
how much can she/he influence the execution, at which cost ?

» Distinguish regular vs unwanted outputs when computing the leakage
e.g., password checking may (at least!) return a boolean value

> Improve automatic detection of side channel information flows
(hyper-property checking)

» Automatic code transformation to constant time mode, dedicated
programming languages, etc.

15/15



