
Software security, secure programming

Access Control in a Nutshell . . .

Master M2 Cybersecurity

Academic Year 2024 - 2025



Access Control

Given a set of

subjects: (human) users,
SW/HW entities (process, application, “tab”, device, etc.)

objects: SW entities (file, application, data base, software component,
method)
HW entities (device, peripheral, memory area, etc.)

Specify and enforce an access contyrol policy telling
which actions a subject can perform over an object

Where

action: an access primitive (open, close, read, write, execute), a
more specific operation (method call, etc.), etc.

Access Control implies/encompasses
▶ identification + authentication (recognize and proof subject identity)
▶ audit logs, accountability (keep tracks of access granted/refused)

1 / 14



Access Control

Given a set of

subjects: (human) users,
SW/HW entities (process, application, “tab”, device, etc.)

objects: SW entities (file, application, data base, software component,
method)
HW entities (device, peripheral, memory area, etc.)

Specify and enforce an access contyrol policy telling
which actions a subject can perform over an object

Where

action: an access primitive (open, close, read, write, execute), a
more specific operation (method call, etc.), etc.

Access Control implies/encompasses
▶ identification + authentication (recognize and proof subject identity)
▶ audit logs, accountability (keep tracks of access granted/refused)

1 / 14



Access Control (AC) vs Non-Interference (NI)

NI : how information flows within an object (once its access has been
granted to a subject)

AC : which operations are granted to an object from a subject (consider
only the borders of the objects)

AC

NI

subject

request

high data

low data

side channel

output

deny

grant

object

log

2 / 14



Reference Monitor

An abstract mechanism to enforce an access control policy:
allows/deny subjects to perform operations on objects

Expected key properties
▶ non bypassable by an attacker
▶ evaluable w.r.t. soundness and completeness
▶ always invoked
▶ tamper-proof (cannot be hijacked)

Rk: assumes a reliable authentication system . . .

3 / 14



Some related notions

Trusted Computing Base (TCB)
Any AC enforcement mechanisms should rely on a trusted subset of
hardware/code/data . . . the TCB

A good design practice:
Keep the TCB as small as possible!

Principle of Least Priviledge
Every program and every privileged user of the system should oper-
ate using the least amount of privilege necessary to complete the
job. [J Saltzer, 1974]

Sandboxing
A tightly controlled set of resources for guest programs to run in.

▶ an effective AC mechanism . . .
▶ rather coarse-grained (the object is the sandbox)
▶ not well-adaptaded for sharing (limited) sets of permissions over

multiples objects . . .

4 / 14



Some related notions

Trusted Computing Base (TCB)
Any AC enforcement mechanisms should rely on a trusted subset of
hardware/code/data . . . the TCB

A good design practice:
Keep the TCB as small as possible!

Principle of Least Priviledge
Every program and every privileged user of the system should oper-
ate using the least amount of privilege necessary to complete the
job. [J Saltzer, 1974]

Sandboxing
A tightly controlled set of resources for guest programs to run in.

▶ an effective AC mechanism . . .
▶ rather coarse-grained (the object is the sandbox)
▶ not well-adaptaded for sharing (limited) sets of permissions over

multiples objects . . .

4 / 14



Some related notions

Trusted Computing Base (TCB)
Any AC enforcement mechanisms should rely on a trusted subset of
hardware/code/data . . . the TCB

A good design practice:
Keep the TCB as small as possible!

Principle of Least Priviledge
Every program and every privileged user of the system should oper-
ate using the least amount of privilege necessary to complete the
job. [J Saltzer, 1974]

Sandboxing
A tightly controlled set of resources for guest programs to run in.

▶ an effective AC mechanism . . .
▶ rather coarse-grained (the object is the sandbox)
▶ not well-adaptaded for sharing (limited) sets of permissions over

multiples objects . . .

4 / 14



Access Control Matrix

A classical model to specify rights and permissions

Remark: users can be gathered to form groups . . .

5 / 14



Access Control Lists (ACLs)

Break down the AC matrix by columns:
▶ each objet gets a set of (user, right) pairs
▶ ex: object A = {(bob, r/w), (alice,w)}

Properties
▶ well adapted for numerous applications (e.g, filesystems)
▶ lists may become large in practive
▶ does not easily support delegation and sharing . . .

6 / 14



Capabilities

Break down the AC matrix by rows:
▶ each user gets a set of (object, right) pairs
▶ ex: Alice = {(A, r/w), (B,w), (C, r)}

Properties
▶ capability = communicable “token” associated to objects (∼ handler )
▶ well adapted for delegation: rights are associated to objects

Remark: subjects should be prevented to forge capabilities
▶ store them in a protected address space
▶ use special tags or HW supports
▶ ciphering/hashing with crypto primitives
▶ etc.

7 / 14



Capabilities

Break down the AC matrix by rows:
▶ each user gets a set of (object, right) pairs
▶ ex: Alice = {(A, r/w), (B,w), (C, r)}

Properties
▶ capability = communicable “token” associated to objects (∼ handler )
▶ well adapted for delegation: rights are associated to objects

Remark: subjects should be prevented to forge capabilities
▶ store them in a protected address space
▶ use special tags or HW supports
▶ ciphering/hashing with crypto primitives
▶ etc.

7 / 14



ID-based vs capability based access control?

Capabilities
Owning a “ticket” allows to perform some action on an objet
▶ The owner’s id is not relevant
▶ tickets can be transfered for delegation
▶ tickets must be unforgeable

IDs
Having an authorized ID allows to perform some action on an objet
▶ A list of “per ID” authorization is available and maintened
▶ IDs must be unspoofable

8 / 14



Discretionary Access Control (DAC)

No central authority to grant/deny access rights

▶ permissions are “owned” by users
▶ users are able to transfer permissions to each others

Rarely implemented as a whole . . . (quite often combined with MAC)

9 / 14



Mandatory Access Control (MAC)

∃ a central security policy controller

▶ only the central authority may transfer/modify permissions
▶ well adapted to multi-level security rules (lattice of information domains)

Numerous implementations within operating systems . . .
(sometimes combined with DAC)
▶ Unix: user rights (DAC) + su mode (MAC)
▶ SELinux, AppArmor (Ubuntu), Microsoft MIC, TrustBSD (BSD, MacOS),

etc.

10 / 14



Role-base Access Control (RBAC)

∃ Define the access control policy based on (subject) roles

1. roles can be assigned to subjects, according to some authorizations

2. object accesses (i.e., permissions) are granted to roles

3. a subject can exercise a permission only if is granted to its active role

▶ can be extended with role hierarchies and constraints (permission
inheritances, restricted by constraints, e.g, separation of duties)

▶ flexible, allows to combine MAC and DAC
▶ well adapted for large organisations/companies/administrations . . .

11 / 14



Access Control and (programming) languages

Specification languages for AC
▶ numerous logic-based formalisms, allow to prove AC properties!
▶ some XML extensions (XACLM, XrML) to “implement” AC policy

descriptions
▶ etc.

Using AC primitives in a program
1. use the primitives available at the OS level

▶ (very) coase-grained, only inter-process AC
▶ relies on a huge TCB (the OS itself!)

2. use dedicated primitives (when available in the PL)
▶ (basic) attributes to restrain code/data access (private, protected, etc.)
▶ Java: allows to mitigate access to a class/method the class “origin” (JPSA),

or wrt the “user” (JAAS)
▶ some available libraries un Python . . .
▶ fine-grained AC primitives available in Swift (Apple)

12 / 14



Access Control and (programming) languages

Specification languages for AC
▶ numerous logic-based formalisms, allow to prove AC properties!
▶ some XML extensions (XACLM, XrML) to “implement” AC policy

descriptions
▶ etc.

Using AC primitives in a program
1. use the primitives available at the OS level

▶ (very) coase-grained, only inter-process AC
▶ relies on a huge TCB (the OS itself!)

2. use dedicated primitives (when available in the PL)
▶ (basic) attributes to restrain code/data access (private, protected, etc.)
▶ Java: allows to mitigate access to a class/method the class “origin” (JPSA),

or wrt the “user” (JAAS)
▶ some available libraries un Python . . .
▶ fine-grained AC primitives available in Swift (Apple)

12 / 14



HW based AC mechanisms: protection rings

Multics Operating System
▶ Linux precursor, introduced in 1964 . . .
▶ 8 rings, each memory segment associated to one ring
▶ access allowed to current ring and higher ones
▶ predefined ring intervals, with lightweight domain switching

More recently
▶ still available in modern processors (∼ 4 rings)
▶ X86 /OS2 : kernel / privileged code / unprivileged code
▶ ARM V8: secure monitor/firmware / OS / hypervisor / applications

13 / 14



HW based AC mechanisms: protection rings

Multics Operating System
▶ Linux precursor, introduced in 1964 . . .
▶ 8 rings, each memory segment associated to one ring
▶ access allowed to current ring and higher ones
▶ predefined ring intervals, with lightweight domain switching

More recently
▶ still available in modern processors (∼ 4 rings)
▶ X86 /OS2 : kernel / privileged code / unprivileged code
▶ ARM V8: secure monitor/firmware / OS / hypervisor / applications

13 / 14



HW based AC mechanisms: protection rings

Multics Operating System
▶ Linux precursor, introduced in 1964 . . .
▶ 8 rings, each memory segment associated to one ring
▶ access allowed to current ring and higher ones
▶ predefined ring intervals, with lightweight domain switching

More recently
▶ still available in modern processors (∼ 4 rings)
▶ X86 /OS2 : kernel / privileged code / unprivileged code
▶ ARM V8: secure monitor/firmware / OS / hypervisor / applications

13 / 14


