
Software security, secure programming

Fuzzing

Master M2 Cybersecurity

Academic Year 2024 - 2025



Outline

Fuzzing (or how to cheaply produce useful program inputs)

A concrete fuzzer example: AFL++ (with a short demo)

Making the fuzzing smarter: (Dynamic) Symbolic Execution

Conclusion

1 / 21



Fuzzing a software ?

A (pretty old !) testing method for software (and hardware !) . . .

↪→ an application to software security = vulnerability detection

Main principle
run the program in order to detect “unsecure behaviors”
(from simple crashes to complex security property violations)

Several ways to find “good” input values
black-box vs white-box fuzzing, public vs unknown input format, etc.
▶ (pseudo)-random values, (pseudo)-random mutations of given inputs
▶ human expertise, (non) typical use-cases
▶ code or input space coverage techniques
▶ goal oriented input selection:

▶ target critical functionnalities or suspicious pieces of code
▶ try to invalidate code assertions or security properties
▶ etc.

2 / 21



Fuzzing a software ?

A (pretty old !) testing method for software (and hardware !) . . .

↪→ an application to software security = vulnerability detection

Main principle
run the program in order to detect “unsecure behaviors”
(from simple crashes to complex security property violations)

Several ways to find “good” input values
black-box vs white-box fuzzing, public vs unknown input format, etc.
▶ (pseudo)-random values, (pseudo)-random mutations of given inputs
▶ human expertise, (non) typical use-cases
▶ code or input space coverage techniques
▶ goal oriented input selection:

▶ target critical functionnalities or suspicious pieces of code
▶ try to invalidate code assertions or security properties
▶ etc.

2 / 21



In the following

A quick tour on . . .

“the most commonly used fuzzing techniques for vulnerability detection”

▶ random fuzzing

▶ grammar based fuzzing

▶ genetic based fuzzing (with an overview on AFL++)

▶ smart fuzzing, or symbolic and dynamic-symbolic execution

3 / 21



Random (or brute-force or blind) fuzzing

random_fuzzing (pgm P) {
while (true) {

create a random input i
// either from scratch or randomly mutating an existing one

run P with input i
if the execution "succeeds"

(i.e., crash, security breach, etc.)
store the input i

}
}

Pros:
▶ very efficient generation scheme !
▶ no initial knowledge required
▶ pure black-box

Cons:
▶ no control over the execution sequences produced . . .
▶ easily stuck by checksums, robust parsers, etc.

4 / 21



Random (or brute-force or blind) fuzzing

random_fuzzing (pgm P) {
while (true) {

create a random input i
// either from scratch or randomly mutating an existing one

run P with input i
if the execution "succeeds"

(i.e., crash, security breach, etc.)
store the input i

}
}

Pros:
▶ very efficient generation scheme !
▶ no initial knowledge required
▶ pure black-box

Cons:
▶ no control over the execution sequences produced . . .
▶ easily stuck by checksums, robust parsers, etc.

4 / 21



Grammar-based fuzzing

Drive the input generation using a grammar G of the nominal pgm input
(to ensure that these input won’t be immediately rejected ...)

grammar_based_fuzzing (pgm P, grammar G) {
while (true) {
create a random input i belonging to L(G)

run P with input i
if the execution "succeeds"

(i.e., crash, security breach, etc.)
store the the input i

}
}

Pros:
▶ may cover complex input domains (file format, protocol)
▶ may overcome checksums and first-level parsing barriers

Cons:
▶ required some knowldge about the nominal pgm inputs

(publicly available, reverse-engineering, learning, . . . )
▶ how much “unexpected” are the input produced ?

5 / 21



Grammar-based fuzzing

Drive the input generation using a grammar G of the nominal pgm input
(to ensure that these input won’t be immediately rejected ...)

grammar_based_fuzzing (pgm P, grammar G) {
while (true) {
create a random input i belonging to L(G)

run P with input i
if the execution "succeeds"

(i.e., crash, security breach, etc.)
store the the input i

}
}

Pros:
▶ may cover complex input domains (file format, protocol)
▶ may overcome checksums and first-level parsing barriers

Cons:
▶ required some knowldge about the nominal pgm inputs

(publicly available, reverse-engineering, learning, . . . )
▶ how much “unexpected” are the input produced ?

5 / 21



Genetic-based fuzzing

Use a fitness function to measure execution “relevance”

genetic_fuzzing (pgm P, input set Init) {
CIS = Init /* Current (finite) Input Set */
while (true) {

randomly mutate/combine some inputs of CIS
for each i of CIS
run P with input i and compute its "score"
if the execution "succeeds"
store the the input i

update CIS with the highest score inputs
}

}

Pros:
▶ a mix between random and controled fuzzing
▶ still an efficient generation scheme

Cons:
▶ needs to design a good fitness function w.rt. the intended objective

(coverage, pattern oriented, property oriented, etc.)
▶ some code instrumention usually required (for the fitness function)
▶ may still be stuck by checksums, robust parsers, etc.

(local maximum of fitness function)

6 / 21



Genetic-based fuzzing

Use a fitness function to measure execution “relevance”

genetic_fuzzing (pgm P, input set Init) {
CIS = Init /* Current (finite) Input Set */
while (true) {

randomly mutate/combine some inputs of CIS
for each i of CIS
run P with input i and compute its "score"
if the execution "succeeds"
store the the input i

update CIS with the highest score inputs
}

}

Pros:
▶ a mix between random and controled fuzzing
▶ still an efficient generation scheme

Cons:
▶ needs to design a good fitness function w.rt. the intended objective

(coverage, pattern oriented, property oriented, etc.)
▶ some code instrumention usually required (for the fitness function)
▶ may still be stuck by checksums, robust parsers, etc.

(local maximum of fitness function)
6 / 21



More details on basic fuzzing techniques

see D. Song slides . . .

7 / 21



Outline

Fuzzing (or how to cheaply produce useful program inputs)

A concrete fuzzer example: AFL++ (with a short demo)

Making the fuzzing smarter: (Dynamic) Symbolic Execution

Conclusion



A trendy and powerful fuzzer: AFL++ (follow-up from AFL . . . )

American Fuzzy Loop
A general-purpose fuzzing tool
(not specific to a set of applications, protocols, etc.)
▶ C, C++, Objective C
▶ Python, Golang, RUST, OCaml, ...
▶ (any) binary code (with QEMU, Unicorn, . . . )

governing principles
▶ speed
▶ reliability
▶ ease-of-use
▶ availabililty and code sharing . . .

https://lcamtuf.coredump.cx/afl/
https://aflplus.plus/
https://github.com/AFLplusplus/AFLplusplus

8 / 21

https://lcamtuf.coredump.cx/afl/
https://aflplus.plus/
https://github.com/AFLplusplus/AFLplusplus


Fuzzing algorithm

branch coverage-oriented mutation-based fuzzing

Repeat until a time budget is reached:

1. pick an input from a queue

2. mutate it

3. run it

4. if "coverage increases" put the new input in the queue

Detailed algo:
https://www.comp.nus.edu.sg/~mboehme/paper/CCS16.pdf

9 / 21

https://www.comp.nus.edu.sg/~mboehme/paper/CCS16.pdf


Code instrumentation

Lightweight instrumentation to capture:
▶ branch coverage
▶ coarse branch hits count

→ Use a 64Kb shared memory to record (src,dest) branch hits
code injected at each branch point:

// identifies the current basic block
cur_location = <compile-time-random-value> ;

// mark (and count) a tuple hit
sh_mem[cur_location ^ prev_location]++ ;

// to preserve directionality
prev_location = cur_location >> 1;

trade-off in the size of this memory : #collision vs efficiency (L2 cache)
Detecting new behaviors:
▶ maintains a global map of tuple (= branch) seen so far
▶ only inputs creating new tuples are added to the input queue (others are

discarded)

Rk: branches are considered outside their context
→ may ignore new pahs ...

10 / 21



Some further heuristics

▶ Tuple hits counted using buckets
(1, 2, 3, 4-7, 8-15, ..., 128+)
inputs leading to a change of bucket are added to the input queue

▶ Strong time limits for each executed path
motivation: better to try more paths than slow paths ...

▶ Periodic queue minimization
→ select a small subset covering the same tuples mix between
▶ execution latency + file size
▶ ability to cover new tuples

can be used as well by other external tools ...

▶ Trimmig input files
→ reduce their size to speed-up fuzzing
e.g., remove the size of variable lengths blocks

⇒ favorite seed = fastest and smallest input execersizing a tuple

11 / 21



Mutation strategy

no relationships between mutations and program states

▶ deterministic (sequentially):
▶ flip bits (<> lengths)
▶ add/substract small integers
▶ insert known interesting integers (0, 1, INT_MAX, etc.)

▶ non deterministic:
insertion, deletion, arithmetics, etc.

Dictionnaries
used to retrieve/build syntax of verbose input language
(e.g., JavaScript, SQL, etc.)

12 / 21



Crash unicity

▶ faulty address is too coarse (e.g., crash in strcmp)
▶ call stack checksum is too slow

AFL++
a crach is new if
▶ crash trace include a new tuple wrt existing crashes
▶ crash trace miss some tuple wrt existing crashes

Also provide some support for crash investigation . . .

13 / 21



Beyond crashes ?

AFL++ can be used in conjunction with (dynamic) sanitizers, e.g.:

▶ ASAN: memory corruption vulns (buffer overruns, use-after-free, etc.)

▶ MSAN: read accesses to uninitialized memory locations

▶ UBSAN: C/C++ undefined behaviors

▶ CFISAN: control-flow integrity vulns
(type confusion, invalid return addresses)

▶ TSAN: thread race-conditions

▶ LSAN: memory leakages

→ may slow down the fuzzing process, reasonnable trade-off . . . ?

14 / 21



Outline

Fuzzing (or how to cheaply produce useful program inputs)

A concrete fuzzer example: AFL++ (with a short demo)

Making the fuzzing smarter: (Dynamic) Symbolic Execution

Conclusion



Hunting in the corner cases

Random/Grammar/Genetic fuzzing techniques not always efficient enough to
find “good” test inputs ?
Example: which input allow to activate the vulnerability(ies) below ?

int twice(int v) {
return 2 * v;

}

void test(int x, int y) {
// assert (x+10 != 0)
int *t = (int *) malloc((x+10) * sizeof(int)) ;
z = twice(y);
if (x == z) {

// assert (y <= x +10) ;
// assert (y > 0) ;
t[y] = 0 ;

}
}

A random-based search may not succeed . . .
Is it possible to improve the technique ?

⇒ An (old !) answer: symbolic execution . . .

15 / 21



Hunting in the corner cases

Random/Grammar/Genetic fuzzing techniques not always efficient enough to
find “good” test inputs ?
Example: which input allow to activate the vulnerability(ies) below ?

int twice(int v) {
return 2 * v;

}

void test(int x, int y) {
// assert (x+10 != 0)
int *t = (int *) malloc((x+10) * sizeof(int)) ;
z = twice(y);
if (x == z) {

// assert (y <= x +10) ;
// assert (y > 0) ;
t[y] = 0 ;

}
}

A random-based search may not succeed . . .
Is it possible to improve the technique ?

⇒ An (old !) answer: symbolic execution . . .
15 / 21



Symbolic Excecution
King, 76

Objective:
run a program paths (as in test execution) but mapping variables to symbolic
values (instead of concrete ones)
▶ each symbolic execution allows to reason on a set of concrete

executions (all the ones following the same path in the CFG)
▶ allow to decide if a CFG path is feasable or not

(and with wich input values ?)
▶ allow to explore a (finite !) set of paths in the CFG . . .

Principle:
Associate a path predicate φσ to each path σ of the CFG:

(∃ a variable valuation v s.t v |= φσ) ⇔ (v covers σ)

(φσ is the conjunction of all boolean conditions associated to σ in the CFG)
▶ solving φσ indicates if σ is feasible
▶ iterate over a (finite) subset of the CFG paths . . .

In practice: express φσ in a decidable logic fragment (e.g., SMT).

16 / 21



Symbolic Excecution
King, 76

Objective:
run a program paths (as in test execution) but mapping variables to symbolic
values (instead of concrete ones)
▶ each symbolic execution allows to reason on a set of concrete

executions (all the ones following the same path in the CFG)
▶ allow to decide if a CFG path is feasable or not

(and with wich input values ?)
▶ allow to explore a (finite !) set of paths in the CFG . . .

Principle:
Associate a path predicate φσ to each path σ of the CFG:

(∃ a variable valuation v s.t v |= φσ) ⇔ (v covers σ)

(φσ is the conjunction of all boolean conditions associated to σ in the CFG)
▶ solving φσ indicates if σ is feasible
▶ iterate over a (finite) subset of the CFG paths . . .

In practice: express φσ in a decidable logic fragment (e.g., SMT).

16 / 21



More on Symbolic Execution . . .

▶ application to the previous example

▶ what can we do if:

▶ the path predicate cannot be expressed in a decidable logic ?
(e.g., non linear operations)

▶ the program contains conditions on non-reversible functions ?
(e.g., if (x == hash(y)) ...)

▶ part of the program code is not available
(e.g., library functions, if (!strcmp(s1, s2) ...)

→ combine symbolic and concrete executions:
concolic execution (or Dynamic Symbolic Execution)

⇒ Trade-off between:
▶ tractability: keep decidable decision procedures over path predicates
▶ scalabilty: concrete execution faster than symbolic reasonning
▶ completness: concretization ⇒ loss of execution paths

see that on Martin Vechev’s slides . . .

17 / 21



More on Symbolic Execution . . .

▶ application to the previous example

▶ what can we do if:

▶ the path predicate cannot be expressed in a decidable logic ?
(e.g., non linear operations)

▶ the program contains conditions on non-reversible functions ?
(e.g., if (x == hash(y)) ...)

▶ part of the program code is not available
(e.g., library functions, if (!strcmp(s1, s2) ...)

→ combine symbolic and concrete executions:
concolic execution (or Dynamic Symbolic Execution)

⇒ Trade-off between:
▶ tractability: keep decidable decision procedures over path predicates
▶ scalabilty: concrete execution faster than symbolic reasonning
▶ completness: concretization ⇒ loss of execution paths

see that on Martin Vechev’s slides . . .

17 / 21



DSE for vunlnerability analysis

▶ an effective and flexible test generation & execution technique

▶ can be used on “arbitrary” code
dynamic allocation, complex math. functions, binary code

▶ trade-off between correctness, completeness and efficiency
(ratio between symbolic and concrete values)

▶ can be used in a coverage-oriented (bug finding) or goal-oriented
(vulnerability confirmation) way
Ex: out-of-bound array access, arithmetic overflow, etc.

⇒ widely used in vuln. detection and exploitability analysis)

▶ numerous existing tools . . .
▶ source-level: Klee(C/C++), JPF (Java), etc.
▶ binary-level: Sage, Mayhem, Angr, BinSec, Triton, etc.

▶ however, not all problems solved (yet ?), e.g.:
▶ “path explosion” problem on large codes
▶ can be rather slow (compared with fuzzing)

18 / 21



DSE for vunlnerability analysis

▶ an effective and flexible test generation & execution technique

▶ can be used on “arbitrary” code
dynamic allocation, complex math. functions, binary code

▶ trade-off between correctness, completeness and efficiency
(ratio between symbolic and concrete values)

▶ can be used in a coverage-oriented (bug finding) or goal-oriented
(vulnerability confirmation) way
Ex: out-of-bound array access, arithmetic overflow, etc.

⇒ widely used in vuln. detection and exploitability analysis)

▶ numerous existing tools . . .
▶ source-level: Klee(C/C++), JPF (Java), etc.
▶ binary-level: Sage, Mayhem, Angr, BinSec, Triton, etc.

▶ however, not all problems solved (yet ?), e.g.:
▶ “path explosion” problem on large codes
▶ can be rather slow (compared with fuzzing)

18 / 21



DSE for vunlnerability analysis

▶ an effective and flexible test generation & execution technique

▶ can be used on “arbitrary” code
dynamic allocation, complex math. functions, binary code

▶ trade-off between correctness, completeness and efficiency
(ratio between symbolic and concrete values)

▶ can be used in a coverage-oriented (bug finding) or goal-oriented
(vulnerability confirmation) way
Ex: out-of-bound array access, arithmetic overflow, etc.

⇒ widely used in vuln. detection and exploitability analysis)

▶ numerous existing tools . . .
▶ source-level: Klee(C/C++), JPF (Java), etc.
▶ binary-level: Sage, Mayhem, Angr, BinSec, Triton, etc.

▶ however, not all problems solved (yet ?), e.g.:
▶ “path explosion” problem on large codes
▶ can be rather slow (compared with fuzzing)

18 / 21



How to get more from fuzzing ?

run an instrumented version of the target program to collect runtime
information on the program behavior

Some very appealing features
▶ can be used on (almost) every kind of applications1: binary code,

complex functions, large applications, virtual execution environment, etc.
▶ several execution-level applications:

▶ detect assertion violations
▶ profiling
▶ data-flow analysis (e.g., taint analysis)
▶ source-level engineering

⇒ rather well adapted for security analysis / vulnerability detection

Main requirements
▶ code instrumentation facilities + instrumented code execution
▶ find good program inputs !

⇒ makes sense within testing or fuzzing campaigns

1as long as instrumentation is feasable, see later
19 / 21



How to get more from fuzzing ?

run an instrumented version of the target program to collect runtime
information on the program behavior

Some very appealing features
▶ can be used on (almost) every kind of applications1: binary code,

complex functions, large applications, virtual execution environment, etc.
▶ several execution-level applications:

▶ detect assertion violations
▶ profiling
▶ data-flow analysis (e.g., taint analysis)
▶ source-level engineering

⇒ rather well adapted for security analysis / vulnerability detection

Main requirements
▶ code instrumentation facilities + instrumented code execution
▶ find good program inputs !

⇒ makes sense within testing or fuzzing campaigns

1as long as instrumentation is feasable, see later
19 / 21



How to get more from fuzzing ?

run an instrumented version of the target program to collect runtime
information on the program behavior

Some very appealing features
▶ can be used on (almost) every kind of applications1: binary code,

complex functions, large applications, virtual execution environment, etc.
▶ several execution-level applications:

▶ detect assertion violations
▶ profiling
▶ data-flow analysis (e.g., taint analysis)
▶ source-level engineering

⇒ rather well adapted for security analysis / vulnerability detection

Main requirements
▶ code instrumentation facilities + instrumented code execution
▶ find good program inputs !

⇒ makes sense within testing or fuzzing campaigns

1as long as instrumentation is feasable, see later
19 / 21



Outline

Fuzzing (or how to cheaply produce useful program inputs)

A concrete fuzzer example: AFL++ (with a short demo)

Making the fuzzing smarter: (Dynamic) Symbolic Execution

Conclusion



An effective vulnerability detection technique

(certainly still one of the most effective !)

Why ?
▶ An "easy to go" approach: don’t (always) need the source, dont (always)

even need to disassemble just need to "execute" (or simply to emulate)
→ can be often implemented in a few lines of Python ...

▶ Cover a potentially large spectrum, e.g.,
▶ AFL++: fast, but detect superficial/shallow bugs only
▶ DSE: slow but can find deep vulnerabilities

▶ Easy to integrate in a DevSecOps workflow (e.g., ∃ github support)

However
▶ never give you a “vulnerability free” stamp

(but may provide you with concrete "vulnerable inputs")
▶ could be limited by some dynamic code protection techniques

20 / 21



Still a promising R&D direction . . .

A huge number of available tools, covering:
▶ many fuzzing techniques
▶ many application domains (web, protocols, file processors, OS, etc.)

Metrics to evaluate a fuzzing technique/tool
▶ effectiveness: ratio execution time vs relevance
▶ ability to re-execute (faulty) tests, test minimization
▶ feedback produced (beyond "segmentation faults")

→ exploitability indications ?

⇒ numerous new challenges to come:
▶ application domains: embedded systems, IoT, industrial systems, . . .
▶ (combination with other techniques: static analysis, IA, etc.

Have a look to P. Godefroid paper and 3mn video (links on the course
webpage)

21 / 21


	Fuzzing (or how to cheaply produce useful program inputs)
	A concrete fuzzer example: AFL++ (with a short demo)
	Making the fuzzing smarter: (Dynamic) Symbolic Execution
	Conclusion

