
Software security, secure programming

Tools for code security analysis

Master M2 Cybersecurity

Academic Year 2024 - 2025



Motivation

Most software (are likely to) contain security vulnerabilities . . .

There is a strong need for tools allowing to:
▶ detect potential vulnerabilities
▶ help to evaluate their exploitability/dangerousness

→ Useful for:
developers, users of 3rd-party libraries/applications, code auditors, etc.

Other possible applications :
▶ malware (behavioral) analysis
▶ reverse engineering
▶ code (de-)obfuscation
▶ exploit generation
▶ variant analysis
▶ etc.

2 / 7



Several classes of tools

Syntactic vs Semantic
▶ syntactic: check compliance w.r.t. to coding rules/standarts
▶ semantic: check for behavioral inconsistencies

Static vs Dynamic
▶ static: check are performed at “compile time”

(no concrete code execution)
▶ dynamic: on-line and/or offline checks require code execution steps

Black vs Grey vs White Box
▶ black box: no access required to the target code
▶ white box: full access required to the (source ?) target code
▶ grey box: partial access required to the target code

etc.

3 / 7



Taking into account the limits of computability . . .

. . . no hope to get a fully automated (powerful) tool:

all non-trivial semantic properties of programs are undecidable
[Rice theorem]

Possible work-arounds:

▶ Approximate enough the program behavior to make the analysis
decidable ⇒ the results may be no longer sound no complete

▶ use a semi-algorithm
if the analysis terminates then it gives sound and complete results . . .

In practice:
re-use & extend existing code analysis techniques used for compilation, test,
verification

4 / 7



Over-approximation of the program behavior

false positive

program behavior

"error" found

over−approximation

true positive

Sound: “correct” verdicts are always reliable . . .
(never miss an “incorrect” execution)

Not Complete: may reject correct programs . . .
(∃ “false positives”)

5 / 7



Under-approximation of the program behavior

program behavior

"error" found

over−approximation

false negative true negative

Unsound: “correct” verdicts are not reliable . . .
(may miss “incorrect” executions)

Complete: never reject correct programs . . .
(“incorrect” execution reported are real ones)

6 / 7



In the following . . .

An overview of:

▶ dynamic approaches:

▶ fuzzing

▶ (dynamic-)symbolic execution

▶ static approaches:

▶ value-set analysis

▶ code-pattern based vulnerability detection

. . . through a practical comparison/evaluation on a few concrete examples.

7 / 7


