

Software security, secure programming

Lecture 5: Static Analysis (in a nutshell)

Master M2 Cybersecurity

Academic Year 2023 - 2024

Main objective:

statically compute some information about (an approximation of) the program behavior

Main objective:

statically compute some information about (an approximation of) the program behavior

Examples: given (the source-code of) a program *P*

- **b** does all executions of P satisfy a property φ ?
- ightharpoonup does φ satisfied at a given (source) program location ?
- ⇒ Of course, such questions are undecidable ... (why ?)

Main objective:

statically compute some information about (an approximation of) the program behavior

Examples: given (the source-code of) a program *P*

- **b** does all executions of P satisfy a property φ ?
- does φ satisfied at a given (source) program location ?
- ⇒ Of course, such questions are undecidable . . . (why ?)

Possible work-arounds:

- over-approximate the pgm behaviour
 - \rightarrow result is sound (no false negatives), but incomplete (\exists false positives)

Main objective:

statically compute some information about (an approximation of) the program behavior

Examples: given (the source-code of) a program *P*

- does all executions of P satisfy a property φ?
- does φ satisfied at a given (source) program location ?
- ⇒ Of course, such questions are undecidable . . . (why ?)

Possible work-arounds:

- over-approximate the pgm behaviour
 - \rightarrow result is sound (no false negatives), but incomplete (\exists false positives)
- under-approximate the pgm behaviour
 - \rightarrow result is complete (no false negatives), but unsound (\exists false negative)

Main objective:

statically compute some information about (an approximation of) the program behavior

Examples: given (the source-code of) a program *P*

- does all executions of P satisfy a property φ?
- does φ satisfied at a given (source) program location ?
- ⇒ Of course, such questions are undecidable ... (why ?)

Possible work-arounds:

- over-approximate the pgm behaviour
 - \rightarrow result is sound (no false negatives), but incomplete (\exists false positives)
- under-approximate the pgm behaviour
 - \rightarrow result is complete (no false negatives), but unsound (\exists false negative)
- non-terminating analysis
 - \rightarrow if the analysis terminates, then the result is sound and complete

What static analysis can be used for ?

General applications

- compiler optimization
 e.g., active variables, available expressions, constant propagations, etc.
- program verificatione.g., invariant, post-conditions, etc.
- worst-case execution time computation
- parallelization
- etc.

What static analysis can be used for ?

General applications

- compiler optimization
 e.g., active variables, available expressions, constant propagations, etc.
- program verification e.g., invariant, post-conditions, etc.
- worst-case execution time computation
- parallelization
- etc.

In the "software security" context

- disassembling
 e.g., what are the targets of a dynamic jump
 (be eax, content of eax?)
- error and vulnerability detection memory error (Null-pointer dereference, out-of-bound array access), use-after-free, arithmetic overflow, etc.
- ▶ information-flow analysis (integrity, confidentiality, taint analysis)
- "semantic pattern" recognition
- ▶ etc.

Outline

Overview

Principles

Weakest Preconditions

Abstract Interpretation

Value-Set Analysis (VSA

Conclusion

How to proceed?

Typical problems

need to reason on a set of executions (not on a single one)

ex:
$$x = y * z$$

- \rightarrow compute values of x for all possible values of y and z ?
- need to cope with loops

$$ex:$$
 while $(x < y)$ do ... end

 \rightarrow infer the loop behavior for all possible values of x and y ?

How to proceed?

Typical problems

need to reason on a set of executions (not on a single one)

ex:
$$x = y * z$$

- \rightarrow compute values of x for all possible values of y and z ?
- need to cope with loops

$$ex:$$
 while $(x < y)$ do ... end

 \rightarrow infer the loop behavior for all possible values of x and y ?

A solution: over-approximate the program behavior

- 1. propagate an abstract state (over approximating the memory content) e.g., x > 0, $p \ne NULL$, $x \le y + z$, p and q are aliases, etc.
 - → depends on the properties you want to check!
- **2. safely** merge memory abstract states produced from \neq paths
- 3. make loop iterations always finite

How to proceed?

Typical problems

need to reason on a set of executions (not on a single one)

ex:
$$x = y * z$$

- \rightarrow compute values of x for all possible values of y and z ?
- need to cope with loops

$$ex:$$
 while $(x < y)$ do ... end

 \rightarrow infer the loop behavior for all possible values of x and y ?

A solution: over-approximate the program behavior

- 1. propagate an abstract state (over approximating the memory content) e.g., x > 0, $p \ne NULL$, $x \le y + z$, p and q are aliases, etc.
 - → depends on the properties you want to check!
- **2. safely** merge memory abstract states produced from \neq paths
- 3. make loop iterations always finite

Pb: How to find a suitable abstract domains ? \rightarrow accuracy vs scalability trade-offs . . .

Outline

Overview

Principles

Weakest Preconditions

Abstract Interpretation

Value-Set Analysis (VSA

Conclusion

A basic programming language

Syntax

```
Exp ::= x \mid n \mid op (Exp, ... Exp)

Stm ::= x := \text{Exp}

::= Stm; Stm

::= skip

::= if Exp then Stm else Stm

::= while Exp do Stm end

::= assert Exp
```

In practice: arrays, structures, pointers, procedures, etc.

Axiomatic Semantics

⇒ programs viewed as <u>predicate transformers</u> where predicates are <u>assertions</u> on program variables (Hoare, Dijkstra 1976).

Weakest Preconditions (wp): backward computation Example:

$$x \ge 0 \ \{x := x + 1; \} \ x > 0$$

Strongest Postcondition (sp): forward computation Example:

$$x \ge 0 \{x := x + 1; \} x > 0$$

Weakest precondition / Strongest postcondition

Let I a statement, P, R, ', R' some predicats

The weakest precondition P = wp(I, R) is such that:

$$\forall P' \ (P' \Rightarrow wp(I,R)) \Rightarrow (P' \Rightarrow P)$$

A precondition P' stronger than $x \ge 0$: x > 5.

Weakest precondition / Strongest postcondition

Let I a statement, P, R, ', R' some predicats

The weakest precondition P = wp(I, R) is such that:

$$\forall P' (P' \Rightarrow wp(I,R)) \Rightarrow (P' \Rightarrow P)$$

A precondition P' stronger than $x \ge 0$: x > 5.

The strongest postcondition R = sp(R, I) is such that:

$$\forall R' \ (\mathit{sp}(P,I) \Rightarrow R' \Rightarrow (R \Rightarrow R')$$

A postcondition R' weaker than $x \ge 0$: x > -2.

Substitution - free/bounded variables

Free and bounded variables

A variable *x* is bounded (resp. free) within formula *F* iff *F* contains an occurrence of *x* which is (resp. which is not) within the scope of a quantifier.

Example:

$$\varphi \equiv P(y,x) \wedge \forall x . Q(x,y)$$

 \hookrightarrow there is both a free and a bounded occurrence of x in φ

Substitution - free/bounded variables

Free and bounded variables

A variable *x* is bounded (resp. free) within formula *F* iff *F* contains an occurrence of *x* which is (resp. which is not) within the scope of a quantifier.

Example:

$$\varphi \equiv P(y,x) \wedge \forall x . Q(x,y)$$

 \hookrightarrow there is both a free and a bounded occurrence of x in φ

Substitution

P[E/x] is the formula P in which all free occurrences of variable x have been replaced by the term E.

Example:

$$(\varphi[x+1/x])[f/y] \equiv P(f,x+1) \wedge \forall x . Q(x,f)$$

Computing weakest preconditions: basic instructions

Statement	def.	WP
wp(skip, R)	â	R
wp(x := e, R)	â	R[e/x]
$wp(i_1; i_2, R)$	â	$wp(i_1, wp(i_2, R))$
wp(assert(e), R)	â	e∧ R

Computing weakest preconditions: basic instructions

Statement	def.	WP
wp(skip, R)	â	R
wp(x := e, R)	â	R[e/x]
$wp(i_1 ; i_2, R)$	â	$wp(i_1, wp(i_2, R))$
wp(assert(e), R)	â	e∧ R

Examples:

- 1. wp(x := x + 1, x > 0)
- 2. $wp(z := 2 ; y := z + 1 ; x := z + y, x \in 3..8)$

Another way to write WPs

```
R R[e/x] \mathbf{x} := \mathbf{e}; \mathbf{x} := \mathbf{e}; \mathbf{w}p(i_1, \mathbf{w}p(i_2, R)) P \wedge R P \wedge
```

Example

$$2+2+1 \in 3..8$$

 $z:=2$;
 $z+z+1 \in 3..8$
 $y:=z+1$;
 $z+y \in 3..8$
 $x:=z+y$;
 $x \in 3..8$

Computing weakest precondition: conditional statement

$$wp(\text{if } P \text{ then } i_1 \text{ else } i_2 \text{ end, } R)$$

$$\hat{=} (P \Rightarrow wp(i_1, R)) \land (\neg P \Rightarrow wp(i_2, R))$$

Computing weakest precondition: conditional statement

$$wp(\text{if } P \text{ then } i_1 \text{else } i_2 \text{ end}, R)$$

 $\hat{=} (P \Rightarrow wp(i_1, R)) \land (\neg P \Rightarrow wp(i_2, R))$

Examples:

▶ Define wp(if e then i end R).

Computing weakest precondition: conditional statement

$$wp(\text{if } P \text{ then } i_1 \text{else } i_2 \text{ end}, R)$$

 $\hat{=} (P \Rightarrow wp(i_1, R)) \land (\neg P \Rightarrow wp(i_2, R))$

Examples:

- ▶ Define wp(if e then i end , R).
- What does the following program compute ? Prove the result ...

```
begin if x > y then m := x else m := y end; if z > m then m := z end end
```

Solution (1)

```
(x > y \Rightarrow F_1[x/m]) \land (\neg(x > y) \Rightarrow F_1[y/m]) = F_2
if x > y
  F_1[x/m]
  then m := x
  F_1[y/m]
  else m := y end;
(z > m \Rightarrow R_1[z/m]) \land (\neg(z > m) \Rightarrow R_1)
                                                  = F_1
if z > m
   R_1[z/m];
  then m := z
   R_1;
  else skip;
end
 R_1
```

Solution (2)

Postcondition:

$$(m = x \lor m = y \lor m = z) \land m \ge x \land m \ge y \land m \ge z$$

Let's process $R_1 = m \ge x$.

Computing F_1 :

$$(z > m \Rightarrow m[z/m] \ge x) \land (\neg(z > m) \Rightarrow m \ge x)$$

which can be rewritten:

$$(z > m \Rightarrow z \ge x) \land (\neg(z > m) \Rightarrow m \ge x)$$

Solution (3)

Computing F_2 :

$$(x > y \Rightarrow F_1[x/m]) \wedge (\neg(x > y) \Rightarrow F_1[y/m])$$

leading to:

Each of these 4 propositions is equivalent to **true**.

Computing weakest precondition: iteration

$$wp(while \ b \ do \ S \ end \ , R)$$
 ?

Partial correctness

- → compute the WP assuming the loop will terminate
 - need to reason about an arbitrary number of iteration;
 - ▶ find a loop invariant / such that:
 - 1. I is preserved by the loop body:

$$I \wedge b \Rightarrow wp(S, I)$$

2. if and when the loop terminates, the post-condition holds:

$$I \wedge \neg b \Rightarrow R$$

Then

$$wp(while \ b \ do \ S \ end \ , R) = I$$

Computing weakest precondition: iteration

$$wp(while \ b \ do \ S \ end \ , R)$$
?

Partial correctness

- → compute the WP assuming the loop will terminate
 - need to reason about an arbitrary number of iteration;
 - ► find a loop invariant / such that:
 - 1. I is preserved by the loop body:

$$I \wedge b \Rightarrow wp(S, I)$$

2. if and when the loop terminates, the post-condition holds:

$$I \wedge \neg b \Rightarrow R$$

Then

$$wp(while \ b \ do \ S \ end \ , R) = I$$

Total correctness: prove that the loop **do** terminate ... need to introduce a loop variant (i.e, a measure strictly decreasing at each iteration towards a limit).

Example

Prove the following program using WP

```
{x=n && n>0}
y := 1;
while x <> 1 do
    y := y*x;
    x := x-1;
end
{y=n! && n>0}
```

Implementing WP computation?

- 1. WP computation:
 - based on the program structure (Abstract Syntax Tree)
 - ▶ leaves → root, following the instruction structure

Implementing WP computation?

- 1. WP computation:
 - based on the program structure (Abstract Syntax Tree)
 - ▶ leaves → root, following the instruction structure

- 2. Decidability problems:
 - simplification and proof of formula undecidable in general, heuristics ...
 - invariant generation undecidable in general, only specific invariant can be generated in some restricted conditions (i.e., inductive invariants)

Accurracy vs Effectiveness trade-off

Assertion language

Theories	Complexity	Rappels
First order logic	undecidable	Interactive provers
Booleans	decidable	state enumeration
Intervals	quasi linear	approximation
Polyhedras	exponential	(better) approximation

Tools:

Frama-C/WP (proofs), Frama-C/Value (intervals), Polyspace (polyhedras) \dots

Outline

Overview

Principles

Weakest Preconditions

Abstract Interpretation

Value-Set Analysis (VSA

Conclusion

A general framework : abstract interpretation

Although this theory has been invented here in Grenoble ...

A general framework : abstract interpretation

Although this theory has been invented here in Grenoble ...

...let's jump to Dillig's slides (from UT Austin, Texas)!

Outline

Overview

Principles

Weakest Preconditions

Abstract Interpretation

Value-Set Analysis (VSA)

Conclusion

Analysis example: Value-Set Analysis

Objective:

compute a (super)-set of possible values of each variable at each program location . . .

Env(x, l) = value set of variable x at program location 1

Several possible abstract domains to express these sets:

- bounded value sets (k-sets) ex: Env(x, l) = {0, 4, 9, 10}, Env(y, l) = {1}, Env(z, l) = ⊤
- intervals ex: $Env(x, l) = [2, 8], Env(y, l) = [-\infty, 7], Env(z, l) = [-\infty, +\infty]$
- ▶ differential bounded matrix (DBM) ex : $Env(I) = x y < 10 \land z < 0$
- ▶ polyhedra (conjonction of linear equations) ex: $Env(I) = x + y \ge 10 \land z < 0$
- etc.

VSA with intervals (example 1)

```
1. x := x+y;
if x>0 then
    2. y:= x + 2
else
    3. y:= -x
4. fi
5. return x+y
```

Asumming (pre-condition) that:

$$x \in [-3, 3], y \in [-1, 5]$$

compute Env(x, I) and Env(y, I) for each program location I what is the set of return values ?

Syntax of expressions

$$e \rightarrow n \mid x \mid e + e \mid e \times e \mid \dots$$

Computation rules

Syntax of expressions

$$e \rightarrow n \mid x \mid e + e \mid e \times e \mid \dots$$

Computation rules

$$Val(n, Env) = [n, n]$$

Syntax of expressions

$$e \rightarrow n \mid x \mid e + e \mid e \times e \mid \dots$$

Computation rules

$$Val(n, Env) = [n, n]$$

 $Val(x, Env) = Env(x)$

Syntax of expressions

$$e \rightarrow n \mid x \mid e + e \mid e \times e \mid \dots$$

Computation rules

$$Val(n, Env) = [n, n]$$

 $Val(x, Env) = Env(x)$
 $Val(e1 + e2, Env) = [a + c, b + d]$ where
 $Val(e1, Env) = [a, b] \land Val(e2, Env) = [c, d]$

Syntax of expressions

$$e \rightarrow n \mid x \mid e + e \mid e \times e \mid \dots$$

Computation rules

$$\begin{array}{rcl} \mathit{Val}(\mathit{n}, \mathit{Env}) &=& [\mathit{n}, \mathit{n}] \\ \mathit{Val}(x, \mathit{Env}) &=& \mathit{Env}(x) \\ \mathit{Val}(\mathit{e1} + \mathit{e2}, \mathit{Env}) &=& [\mathit{a} + \mathit{c}, \mathit{b} + \mathit{d}] \; \mathsf{where} \\ & \mathit{Val}(\mathit{e1}, \mathit{Env}) = [\mathit{a}, \mathit{b}] \land \mathit{Val}(\mathit{e2}, \mathit{Env}) = [\mathit{c}, \mathit{d}] \\ \mathit{Val}(\mathit{e1} \times \mathit{e2}, \mathit{Env}) &=& [\mathit{x}, \mathit{y}] \; \mathsf{where} \\ & \mathit{Val}(\mathit{e1}, \mathit{Env}) = [\mathit{a}, \mathit{b}] \land \mathit{Val}(\mathit{e2}, \mathit{Env}) = [\mathit{c}, \mathit{d}] \\ & \mathit{x} = \mathit{min}(\mathit{a} \times \mathit{c}, \mathit{a} \times \mathit{d}, \mathit{b} \times \mathit{c}, \mathit{b} \times \mathit{d}) \\ & \mathit{y} = \mathit{max}(\mathit{a} \times \mathit{c}, \mathit{a} \times \mathit{d}, \mathit{b} \times \mathit{c}, \mathit{b} \times \mathit{d}) \end{array}$$

Intervals propagation

Propagation rules along the statement syntax:

assignment

$$\{Env1\} \times := e \{Env2\}$$

where

$$Env2(x) = Val(e, Env1) \land Env2(y) = Env1(x)$$
 for $y \neq x$

Intervals propagation

Propagation rules along the statement syntax:

assignment

$$\{Env1\} \times := e \{Env2\}$$

where

$$Env2(x) = Val(e, Env1) \land Env2(y) = Env1(x)$$
 for $y \neq x$

sequence

where

$$\{\textit{Env}1\} \text{ s1 } \{\textit{Env}3\} \land \{\textit{Env}3\} \text{ s2 } \{\textit{Env}2\}$$

Intervals propagation

Propagation rules along the statement syntax:

assignment

$$\{Env1\} \times := e \{Env2\}$$

where

$$Env2(x) = Val(e, Env1) \land Env2(y) = Env1(x)$$
 for $y \neq x$

sequence

where

$$\{Env1\} \ s1 \ \{Env3\} \land \{Env3\} \ s2 \ \{Env2\}$$

conditionnal

$$\{Env\}$$
 if (b) then s1 else s2 $\{Env'\}$

where

- ► {Env ∩ Val(b, Env)} s1 {Env1}
- ► {Env ∩ Val(¬ b, Env)} s2 {Env2}
- Env' = Env1

 Env2 (Env'(x) is the smallest interval containing Env1(x) and Env2(x), ∀x)

Iteration ? (example 1)

```
1. x : = 0;
while (x < 2) do
  2. x := x+1
3. end
4. return x</pre>
```

compute Env(x, I) for each program location I, where . . .

$$Env(x,2) = Env(x,1) \sqcup Env(x,3)$$

Iteration ? (example 1)

```
1. x : = 0 ;
while (x < 2) do
   2. x := x+1
3. end
4. return x</pre>
```

compute Env(x, I) for each program location I, where ...

$$Env(x,2) = Env(x,1) \sqcup Env(x,3)$$

Actually, what we aim to compute is the least solution of function Env, i.e:

$$Env^{0}(\bot, I) \sqcup Env^{1}(\bot, I) \sqcup Env^{2}(\bot, I) \sqcup \ldots \sqcup Env^{k}(\bot, I) \sqcup \ldots$$

Iteration ? (example 2)

```
1. x := 0 ;
while (x < 1000) do
  2. x := x+1
3. end
4. return x</pre>
```

Compute Env(x, I) for each program location I...

Iteration ? (example 2)

```
1. x := 0 ;
while (x < 1000) do
  2. x := x+1
3. end
4. return x</pre>
```

Compute Env(x, I) for each program location I...

What happens if we replace x := x+1 by x := x-1?

Iteration ? (example 2)

```
1. x := 0 ;
while (x < 1000) do
   2. x := x+1
3. end
4. return x</pre>
```

Compute Env(x, I) for each program location I...

What happens if we replace x := x+1 by x := x-1?

How to cope with such loooong, or even infinite, computations?

Widening

For a lattice (E, \leq) , we define $\nabla : E \times E \rightarrow E$

 $\boldsymbol{\nabla}$ is a (pair-)widening operator if and only if

1. Extrapolation:

$$\forall x,y \in E.\ x \le x \nabla y \land y \le x \nabla y$$

Widening

For a lattice (E, \leq) , we define $\nabla : E \times E \rightarrow E$

abla is a (pair-)widening operator if and only if

1. Extrapolation:

$$\forall x, y \in E. \ x \le x \nabla y \land y \le x \nabla y$$

 Enforce the convergence of (Env(x, I))^{n≥0} by computing at each I the limit of:

$$X_0 = \bot$$

$$X_i = \begin{cases} X_{i-1}, & \text{if } (X_{i-1}, I) \subseteq X_{i-1} \\ X_{i-1} \nabla Env(X_{i-1}, I), & \text{otherwise} \end{cases}$$

 $(X_n)_{n\geq 0}$ is ultimately stationnary . . .

ightarrow open "unstable" bounds (jumping over the fix-point) !

Widening on intervals

Definition

$$[a,b] \nabla [c,d] = [e,f]$$
 where,

- ▶ e = if c < a then $-\infty$ else a
- ▶ $f = if b < d then +\infty else b$

Widening on intervals

Definition

$$[a,b] \nabla [c,d] = [e,f]$$
 where,

- ▶ e = if c < a then $-\infty$ else a
- ▶ f = if b < d then $+\infty$ else b

Examples

- **▶** [2,3] ∇ [1,4] ?
- **▶** [1,4] ∇ [2,3] ?
- **▶** [1,3] ∇ [2,4] ?

Back to the previous example

```
1. x := 0;
while (x < 1000) do
2. x := x+1
3. end
4. return x
      Env(x,2)_{n+1} = Env(x,2)_n \nabla (Env(x,1)_n \sqcup Env(x,3)_n)
                  Env(x,2)_1 = [0,0]
                  Env(x,2)_2 = [0,1]
                  Env(x,2)_3 = [0,999]
                  Env(x,3)_3 = [0,1000]
```

 \rightarrow stable solution . . .

Back to the previous example

```
1. x := 0;
while (x < 1000) do
 2. x := x+1
3. end
4. return x
      Env(x,2)_{n+1} = Env(x,2)_n \nabla (Env(x,1)_n \sqcup Env(x,3)_n)
                   Env(x,2)_1 = [0,0]
                   Env(x,2)_2 = [0,1]
                   Env(x,2)_3 = [0,999]
                   Env(x,3)_3 = [0,1000]
```

 \rightarrow stable solution . . . but not precise enough ?

$$Env(x,4)_3 = [1000, +\infty]$$

Narrowing

lattice
$$(E, \leq)$$
, $\triangle : E \times E \rightarrow E$

 \triangle is a (pair-)narrowing operator if and only if

1. (abstract) intersection

$$\forall x, y \in E. \ x \cap y \leq x \triangle y$$

2. Enforce the convergence of $(Y_n)_{n\geq 0}$:

$$Y_n = \begin{cases} \lim X_i, & \text{if } i = 0 \\ Y_{i-1} \triangle Env(Y_{i-1}, I), & \text{otherwise} \end{cases}$$

 $(Y_n)_{n\geq 0}$ is ultimately stationnary . . .

→ refines open bounds!

Narrowing on intervals

$$[a,b] \triangle [c,d] = [e,f]$$
 where,

- ightharpoonup e = if $a = -\infty$ then c else a
- ▶ $f = if b = +\infty$ then d else b

Examples

- ▶ $[2,3] \triangle [1,+\infty]$?
- ▶ $[1,4] \triangle [-\infty,3]$?
- ▶ [1,3] \triangle $[+\infty, -\infty]$?

Back (again !) to the previous example

```
1. x := 0;
while (x < 1000) do
 2. x := x+1
3. end
4. return x
      Env(x,2)_{n+1} = Env(x,2)_n \triangle (Env(x,1)_n \sqcup Env(x,3)_n)
                  Env(x,3)_1 = [0,1000]
                  Env(x, 4)_1 = [1000, +\infty]
                  Env(x, 4)_2 = [1000, 1000]
```

 \rightarrow stable solution . . .

Outline

Overview

Principles

Weakest Preconditions

Abstract Interpretation

Value-Set Analysis (VSA)

Conclusion

Challenges for static analysis

Accuracy vs scalability trade-off ...

- ▶ inter-procedural analysis (+ recursivity . . .)
- multi-threading
- dynamic memory allocation
- modular reasonning
- ► libraries (+ legacy code)
- etc.

Application to vulnerability detection?

Clearly may provide some useful features:

- out-of-bounds array access
- arithmetic overflows
- incorrect memory access (null pointer, mis-aligned address)
- use-after-free
- etc.

Application to vulnerability detection?

Clearly may provide some useful features:

- out-of-bounds array access
- arithmetic overflows
- incorrect memory access (null pointer, mis-aligned address)
- use-after-free
- etc.

But still some limitations:

- exploitability analysis (beyond standard program semantics) ?
- relevant and accurate memory model (for heap and stack)
- self-modifying code (e.g., malwares)
- binary code analysis (see next slide!)

Static analysis on binary code

Static analysis relies on a (clear) program semantics

- can be done at the assembly-level (or IR)
- but disassembling is undecidable ...
- ... and disassemblers may rely on static analysis! (to retrieve the program CFG)

Static analysis on binary code

Static analysis relies on a (clear) program semantics

- can be done at the assembly-level (or IR)
- but disassembling is undecidable . . .
- ...and disassemblers may rely on static analysis! (to retrieve the program CFG)

Static analysis on low-level code is difficult

- ▶ no types (a single type for value, addresses, data, code, ...)
- address computation is pervasive . . .

```
ex: mov eax, [ecx + 42]
```

- ▶ function bounds cannot always be retrieved → many un-initialized memory locations
- scalability issues, e.g., complex but realistic memory model (≠ independent stack frames!)
- etc.

"security analysis" = vulnerability detection

A pragmatic approach:

 annotate the code with "vulnerability checks" (e.g., frama-c -rte) i.e., assertions to detect integer overflows, invalid memory accesses (arrays, pointers), etc

"security analysis" = vulnerability detection

- annotate the code with "vulnerability checks" (e.g., frama-c -rte)
 i.e., assertions to detect integer overflows, invalid memory accesses
 (arrays, pointers), etc
- 2. run a VSA
 - → reveals a lot of hot spots (= unchecked assertions)

"security analysis" = vulnerability detection

- annotate the code with "vulnerability checks" (e.g., frama-c -rte) i.e., assertions to detect integer overflows, invalid memory accesses (arrays, pointers), etc
- 2. run a VSA
 - → reveals a lot of hot spots (= unchecked assertions)
- add user-defined assertions when possible . . .
 e.g., function pre/post conditions, loop invariants, extra information . . .
 → consider proving (some of) these assertions?

"security analysis" = vulnerability detection

- annotate the code with "vulnerability checks" (e.g., frama-c -rte)
 i.e., assertions to detect integer overflows, invalid memory accesses
 (arrays, pointers), etc
- run a VSA
 - → reveals a lot of hot spots (= unchecked assertions)
- add user-defined assertions when possible ...
 e.g., function pre/post conditions, loop invariants, extra information ...
 → consider proving (some of) these assertions?
- 4. run the VSA again ...

"security analysis" = vulnerability detection

- annotate the code with "vulnerability checks" (e.g., frama-c -rte) i.e., assertions to detect integer overflows, invalid memory accesses (arrays, pointers), etc
- 2. run a VSA
 - → reveals a lot of hot spots (= unchecked assertions)
- add user-defined assertions when possible ...
 e.g., function pre/post conditions, loop invariants, extra information ...
 → consider proving (some of) these assertions?
- 4. run the VSA again ...
- ⇒ a set of potential vulnerabilities remains, to be discharged by other means, possibly on a **program slice** (false positive ? real bug but harmless w.r.t security ? real vulnerability ?)

"security analysis" = vulnerability detection

A pragmatic approach:

- annotate the code with "vulnerability checks" (e.g., frama-c -rte) i.e., assertions to detect integer overflows, invalid memory accesses (arrays, pointers), etc
- 2. run a VSA
 - → reveals a lot of hot spots (= unchecked assertions)
- 3. add user-defined assertions when possible ...
 e.g., function pre/post conditions, loop invariants, extra information ...
 → consider proving (some of) these assertions?
- 4. run the VSA again ...
- ⇒ a set of potential vulnerabilities remains, to be discharged by other means, possibly on a **program slice** (false positive ? real bug but harmless w.r.t security ? real vulnerability ?)

Rk: some static analysis tools also provide bug finding facilities (i.e., no false postives, ... but false negatives instead)

To summarize: some static analysis building blocks for security

General purpose (but useful for security!)

- value analysis . . .
- data-flow analysis
 - statements defining a variable at a control location?
 - part of the code impacted by a given statement?
 - memory locations assigned by a given statement?
 - etc.
 - ⇒ application on program slicing

DEMO: frama-c impact analysis

proof techniques (WP, theorem proving)

More specificaly security-oriented

- non-interference
- constant-time programming
- pattern-based security checkers
- etc.

Tool examples

Disclaimer: non limitative nor objective list!

Source-level tools

- Astrèe
- ► Coverity, **Polyspace**, CodeSonar, HP Fortify, VeraCode
- ► Frama-C, Fluctuat
- ► etc, etc, . . .

Tool examples

Disclaimer: non limitative nor objective list!

Source-level tools

- Astrèe
- Coverity, Polyspace, CodeSonar, HP Fortify, VeraCode
- ► Frama-C, Fluctuat
- etc, etc, . . .

Some binary-level tools

- x86-CodeSurfer
- VeraCode
- Angr
- BinSec plateform
- ► etc?

You can see also:

- ▶ the NIST list of source code security analysers
- the Wikipedia List of static analysis tools