
M2 CySec UGA / Grenoble INP

Exercises on code analysis techniques

Abstract Interpretation (value set analysis)

In the following we consider abstract interpretation on programs using the interval abstract domain.

Exercise 1

We consider the following C code and its control-flow graph :

Q1. Compute the value sets at each entry/exit points of each basic blocks without using any
acceleration technique (i.e., widening/narrowing).

Q2. Same as Q1, but using widening/narrowing operators.

Q3. Same as Q2 by replacing the constant 3 by the constants1000 and 1001.

Q4 . What can we conclude about potential program vunerabilities ?

Solution: the detail of the fix-point computations using intervals is available on Moodle, and
the result is depicted on the Figure below. Hence, a buffer overflow will occur ...

#define N 3

int x ;
int Tab[N] ;

x = 0 ;
while (x<N)
 x = x+2 ;
tab[x] = 0

x = 0

x<N

x = x+2

tab[x] = 0

T

F

B0

B1

B2

B3

[0,0]

[2,N+2[

[0,N+2[

[N,N+1]

[0,N[

Exercise 2

We consider the following C code and its control-flow graph :

Q1. Compute the value sets at each entry/exit points of each basic blocks using acceleration
techniques (i.e., widening/narrowing).

Q2 . What can we conclude about potential program vulnerabilities ?

Q3. How could we get more precise results with Frama-C ?

Solution:

 Using fix-points computations with intervals (as in Exercise 1) we get the following result

The interval obtained when entering B3 is an over-approximation, the exact one would be [24,32].

#define N 33

int x ;
int Tab[N] ;

x = 1;
while (x<N)
 x = x*2 ;
tab[x] = 0

Hence Frama-C would report a false posityive for a potential buffer overflow in B3. A way to get
more precise results is to use "slevel" or "loop-unrolling" options in order to unroll the loop 5 times
before applying the widening operator ...

Symbolic Execution

Exercise 3

We consider the following code, where variable x is a user input :

#define N ...
unsigned x, y z ;
int T[N] ;

read(x) ;
z = 2*x ;
if (z<x+20) {
 y = z -10
 if (y > 12)
 T[y] = 0 ;
 else
 T[x] = 0 ;
} else {
 T[z+ 3] = 0 ;
}

Q1. Give its sets of execution paths and corresponding path predicates

 PC1: z0=2*x0 and z0<x0+20 and y0=z0-10 and y0>12
 PC2: z0=2*x0 and z0<x0+20 and y0=z0-10 and y0<=12
 PC3: z0=2*x0 and z0>=x0+20

Q2. Is there a valid input valuation for each of these path predicates ?

 x0=30 satisfies PC1
 x0=10 satisfies PC2
 x0=21 satisfies PC3

Q3. How to extend theses path predicates in order to detect potential buffer overflows ?

 We have to add extra constraints on each PC, s.t. a BoF occurs if one of them is satisfiable:

 PC1: z0=2*x0 and z0<x0+20 and y0=z0-10 and y0>12 and (y<0 or y>=N)
 PC2: z0=2*x0 and z0<x0+20 and y0=z0-10 and y0<12 and (x<0 or x>=N)
 PC3: z0=2*x0 and z0>=x0+20 and ((z+3<0 or (z+3)>=N)

Exercise 4

We consider the following code example , where x is a positive user input :

Q1. Is a symbolic tool like PathCrawler able to find all the execution paths triggering the
vulnerability ? Explain your answer, giving the set of path predicates to consider and their
corresponding solutions (assuming no arithmetic overflows)

There are 3 execution paths allowing to reach the potentially vulnerable statement tab[x]=0:

 - entering an initial value for x larger than N
 PC1 : x0>=N and (x0<0 or x0>=N), satisfiable for any x0>=N
 The buffer overflow is always triggered in this case (without arithmetic overflows).
 Note that if we consider arithmetic overflows the BoF is not trigerred for x0 in
 {UINT_MAX-1, UINT_MAX, UINT_MAX+1}
 - unrolling the loop exactly once
 PC2 : x0<N and x1=x0+2 and x1>=N, satisfiable for x0=1 or x0=2, hence trigerring the BoF
 - unrolling the loop twice
 x0<N and x1=x0+2 and and x1<N and x2=x1+2 and (x2>=N), satisfiable for x0=0, triggering
the BoF

 All of them could be found by a symbolic execution engine.

Q2 . Same question with N=1000

For N=1000, the number of execution paths becomes quite large (about 1000 ... !).
 It is still feasible to find all of them using a symbolic execution engine, but in practice it would
depend on the exploration strategy ...

#define N 3

int x ;
int Tab[N] ;

read (x) ;
while (x<N)
 x = x+2 ;
tab[x] = 0

M2 CySec									UGA / Grenoble INP

Exercises on code analysis techniques

Abstract Interpretation (value set analysis)

In the following we consider abstract interpretation on programs using the interval abstract domain.

Exercise 1

We consider the following C code and its control-flow graph :

 #define N 3 int x ; int Tab[N] ; x = 0 ; while (x<N) x = x+2 ; tab[x] = 0

Q1. Compute the value sets at each entry/exit points of each basic blocks without using any acceleration technique (i.e., widening/narrowing).

Q2. Same as Q1, but using widening/narrowing operators.

Q3. Same as Q2 by replacing the constant 3 by the constants1000 and 1001.

Q4 . What can we conclude about potential program vunerabilities ?

Solution: the detail of the fix-point computations using intervals is available on Moodle, and

the result is depicted on the Figure below. Hence, a buffer overflow will occur ...

Exercise 2

We consider the following C code and its control-flow graph :

 #define N 33 int x ; int Tab[N] ; x = 1; while (x<N) x = x*2 ; tab[x] = 0

Q1. Compute the value sets at each entry/exit points of each basic blocks using acceleration techniques (i.e., widening/narrowing).

Q2 . What can we conclude about potential program vulnerabilities ?

Q3. How could we get more precise results with Frama-C ?

Solution:

 Using fix-points computations with intervals (as in Exercise 1) we get the following result

The interval obtained when entering B3 is an over-approximation, the exact one would be [24,32].

Hence Frama-C would report a false posityive for a potential buffer overflow in B3. A way to get more precise results is to use "slevel" or "loop-unrolling" options in order to unroll the loop 5 times before applying the widening operator ...

Symbolic Execution

Exercise 3

We consider the following code, where variable x is a user input :

#define N ...

unsigned x, y z ;

int T[N] ;

read(x) ;

z = 2*x ;

if (z<x+20) {

 y = z -10

 if (y > 12)

 T[y] = 0 ;

 else

 T[x] = 0 ;

} else {

 T[z+ 3] = 0 ;

}

Q1. Give its sets of execution paths and corresponding path predicates

 PC1: z0=2*x0 and z0<x0+20 and y0=z0-10 and y0>12

 PC2: z0=2*x0 and z0<x0+20 and y0=z0-10 and y0<=12

 PC3: z0=2*x0 and z0>=x0+20

Q2. Is there a valid input valuation for each of these path predicates ?

 x0=30 satisfies PC1

 x0=10 satisfies PC2

 x0=21 satisfies PC3

Q3. How to extend theses path predicates in order to detect potential buffer overflows ?

 We have to add extra constraints on each PC, s.t. a BoF occurs if one of them is satisfiable:

 PC1: z0=2*x0 and z0<x0+20 and y0=z0-10 and y0>12 and (y<0 or y>=N)

 PC2: z0=2*x0 and z0<x0+20 and y0=z0-10 and y0<12 and (x<0 or x>=N)

 PC3: z0=2*x0 and z0>=x0+20 and ((z+3<0 or (z+3)>=N)

Exercise 4

We consider the following code example , where x is a positive user input :

 #define N 3 int x ; int Tab[N] ; read (x) ; while (x<N) x = x+2 ; tab[x] = 0

Q1. Is a symbolic tool like PathCrawler able to find all the execution paths triggering the vulnerability ? Explain your answer, giving the set of path predicates to consider and their corresponding solutions (assuming no arithmetic overflows)

There are 3 execution paths allowing to reach the potentially vulnerable statement tab[x]=0:

 - entering an initial value for x larger than N

 PC1 : x0>=N and (x0<0 or x0>=N), satisfiable for any x0>=N

 The buffer overflow is always triggered in this case (without arithmetic overflows).

 Note that if we consider arithmetic overflows the BoF is not trigerred for x0 in

 {UINT_MAX-1, UINT_MAX, UINT_MAX+1}

 - unrolling the loop exactly once

 PC2 : x0<N and x1=x0+2 and x1>=N, satisfiable for x0=1 or x0=2, hence trigerring the BoF

 - unrolling the loop twice

 x0<N and x1=x0+2 and and x1<N and x2=x1+2 and (x2>=N), satisfiable for x0=0, triggering the BoF

 All of them could be found by a symbolic execution engine.

Q2 . Same question with N=1000

For N=1000, the number of execution paths becomes quite large (about 1000 ... !).

 It is still feasible to find all of them using a symbolic execution engine, but in practice it would depend on the exploration strategy ...

Bl

BO

tab[x]

[0,0]

Bl

1,1]
[146
Bl| x<24 =)
T
naN
by B2| x=x#2 [
[24,46] 12,46]
tab[x] =0 | B3

x = 0

x<N

x = x+2

tab[x] = 0

T

F

B0

B1

B2

B3

[0,0]

[2,N+2[

[0,N+2[

[N,N+1]

[0,N[

Bl

BO

tab[x]

s [rr—

e 2 g om0 0
40 e ol ot o g s

D ——
et T R

Lo

