UFR IM?AG

Grenoble INP
" ENnsimAg

“" UNIVERSITE

ee Grenoble

! Alpes

Software security, secure programming

Conclusion

Master M2 Cybersecurity

Academic Year 2025 - 2026

Software vulnerabilities

A multi-level issue . ..

> weaknesses in the specification:
unprotected data-flows wrt confidentiality/integrity
lack of input validation/sanitization, etc.

2/16

Software vulnerabilities

A multi-level issue . ..

> weaknesses in the specification:
unprotected data-flows wrt confidentiality/integrity
lack of input validation/sanitization, etc.

» incorrectnesses in the algorithms:

spatial/temporal memory errors, race conditions, etc.

2/16

Software vulnerabilities

A multi-level issue . ..

> weaknesses in the specification:
unprotected data-flows wrt confidentiality/integrity
lack of input validation/sanitization, etc.

» incorrectnesses in the algorithms:
spatial/temporal memory errors, race conditions, etc.

» (language related) programming errors:
bad use of APIs, vulnerable built-in functions or patterns,
undefined behaviors, side-channels, etc.

2/16

Software vulnerabilities

A multi-level issue . ..

> weaknesses in the specification:
unprotected data-flows wrt confidentiality/integrity
lack of input validation/sanitization, etc.

» incorrectnesses in the algorithms:
spatial/temporal memory errors, race conditions, etc.

» (language related) programming errors:
bad use of APIs, vulnerable built-in functions or patterns,
undefined behaviors, side-channels, etc.

» Hardware dependent issues:
Spectre/Meltdown, Rowhammer, side-channels, etc.

2/16

Software vulnerabilities

A multi-level issue . ..

> weaknesses in the specification:
unprotected data-flows wrt confidentiality/integrity
lack of input validation/sanitization, etc.
» incorrectnesses in the algorithms:
spatial/temporal memory errors, race conditions, etc.
» (language related) programming errors:
bad use of APIs, vulnerable built-in functions or patterns,
undefined behaviors, side-channels, etc.
» Hardware dependent issues:
Spectre/Meltdown, Rowhammer, side-channels, etc.

—» still a very significant source of concrete attacks (CVESs)!

2/16

Software vulnerabilities

A multi-level issue . ..

> weaknesses in the specification:
unprotected data-flows wrt confidentiality/integrity
lack of input validation/sanitization, etc.

» incorrectnesses in the algorithms:
spatial/temporal memory errors, race conditions, etc.

» (language related) programming errors:
bad use of APIs, vulnerable built-in functions or patterns,
undefined behaviors, side-channels, etc.

» Hardware dependent issues:
Spectre/Meltdown, Rowhammer, side-channels, etc.

—» still a very significant source of concrete attacks (CVESs)!

...enhanced by the (incorrect) use of insecure languages

» importance of type safety and memory safety

» trade-off between safety/security and run-time efficiency
(execution time, resource consumption)

< things may move slowly (JavaScript — TypeScript; C — Rust?)

2/16

Protections and mitigations

» A huge amount of available secure coding documentation
(CWEs, “secure coding patterns”, books, etc.)

3/16

Protections and mitigations

» A huge amount of available secure coding documentation
(CWEs, “secure coding patterns”, books, etc.)

> A wide-spectrum set of protection mechanisms

» compilation options for code hardening
canaries, CFl, etc.

> (lightweight) runtime error detection tools
adSan, UBsan, Valgrind, etc.

»> OS-level protections
DEP, ASLR, etc.

» hardware mechanisms (TEE, memory enclaves)
ARM TrustZone, Intel SGX, etc.

3/16

Protections and mitigations

» A huge amount of available secure coding documentation
(CWEs, “secure coding patterns”, books, etc.)

> A wide-spectrum set of protection mechanisms

» compilation options for code hardening
canaries, CFl, etc.

> (lightweight) runtime error detection tools
adSan, UBsan, Valgrind, etc.

»> OS-level protections
DEP, ASLR, etc.

» hardware mechanisms (TEE, memory enclaves)
ARM TrustZone, Intel SGX, etc.

— widely deployed on main stream execution platforms ...

but take care with more specific ones (loT, Scada, etc.)!

3/16

Code analysis techniques & tools

Goals
» vulnerability detection
» vulnerability analysis (e.g., to evaluate their exploitability level)
> reverse-engineering and/or forensic analysis assistance
» code (de-)obfuscation, etc.

4/16

Code analysis techniques & tools

Goals
» vulnerability detection
» vulnerability analysis (e.g., to evaluate their exploitability level)
> reverse-engineering and/or forensic analysis assistance
» code (de-)obfuscation, etc.

Several approaches

Mostly adapted from safety-oriented code verification techniques
» static techniques: syntax-checking, pattern detection, static analysis
» dynamic techniques: fuzzing, (Dynamic) Symbolic Execution

4/16

Code analysis techniques & tools

Goals
» vulnerability detection
» vulnerability analysis (e.g., to evaluate their exploitability level)
> reverse-engineering and/or forensic analysis assistance
» code (de-)obfuscation, etc.

Several approaches

Mostly adapted from safety-oriented code verification techniques
» static techniques: syntax-checking, pattern detection, static analysis
» dynamic techniques: fuzzing, (Dynamic) Symbolic Execution

A strong decidabilty issue:
» no way to get a fully automated bullet-proof security insurance!

> trade-off between soundness (no false negatives) vs completness (no
false positives)

4/16

Code analysis techniques & tools

Goals
» vulnerability detection
» vulnerability analysis (e.g., to evaluate their exploitability level)
> reverse-engineering and/or forensic analysis assistance
» code (de-)obfuscation, etc.

Several approaches

Mostly adapted from safety-oriented code verification techniques
» static techniques: syntax-checking, pattern detection, static analysis
» dynamic techniques: fuzzing, (Dynamic) Symbolic Execution

A strong decidabilty issue:
» no way to get a fully automated bullet-proof security insurance!

> trade-off between soundness (no false negatives) vs completness (no
false positives)

And still a challenging issue to analyse binary code ...

4/16

Outline

Future trends?

Software vulnerabilities

Probably not over in a near future ...
(endless cat and mouse games between attackers & defenders)

but:

» “basic” vulnerabilities (BoF, arithmetic overflows, etc) should become
less proeminent ...

» more HW/SW security issues?

Vulnerability exploitation should become more and more difficult on recent
execution plateforms ...

but still a huge panel of legacy/unprotected hardware and software (e.g., in
industrial systems)

5/16

Vulnerability detection & analysis tools

For the code developers
From DevOps to DevSecOps, with a potential increase of:

» fuzzing, including for side-channels, low-level vulnerabilities
> pattern-based detection tool (like Semgrep, CodeQL)
» machine-learning techniques ...

For the code auditors &security experts

Towards (smarter) combinations of:
» fuzzing, dynamic-symbolic execution and static analysis
» machine-learning techniques ...

Possibly with an emphasis on quantitative analysis
(how much dangerous is a vulnerability?)

6/16

Outline

A few words on CodeQL

CodeQL: an example of pattern-detection tool

» static analysis (no code execution!)

> allows to find “arbitrary” patterns on (large) code bases
— e.g., to look for existing CWEs

» offer a powerful query language for pattern description allowing to mix
syntactic and semantic features, including:
> data-flow analysis
> range analyis
> alias analysis
> etc.

> easy to integrate within a CD/CI pipeline . ..

7/16

biSek hat

What is CodeQL

» Founded in 2006, a research project from Oxford University, acquired by Github in 2019

Partly open source , but the core engine is source closed

%

> Basically scan code, make database and run query logic, find patterns

» Make code analysis to code property query

[Credits: H. Zhang, CodeQL.: also a powerful binary analysis engine - BlackHat 2023]

8/16

bIgc’:k

hat

Architecture of CodeQL

» The extractor can be regarded as language frontend, so it's
‘ QL Code ‘ language depends
| L &
(w(:pw » Extractor scan code, make extra analysis and store code property
to database

» Database store code information, can be shared and reused

> CodeQL introduced a query language, the ql is related with query
logic, but not related with code that being analyzed,so it's language

‘ agnostic
» CodeQL has developed a mature and P library that
can perform various data flow analysis, such as the classic taint
ey analysis

» The core engine can be regarded as a database evaluate engine

[Credits: H. Zhang, CodeQL.: also a powerful binary analysis engine - BlackHat 2023]

9/16

Query examples and demo

Example of C/C++ publicly available queries

Demo of a use-after-free query ...

10/16

https://github.com/github/codeql/tree/main/cpp/ql/src

Outline

A few words on machine-learning techniques

Examples of ML applications for cybersecurity

ML techniques

>

supervised ML:

Use labeled dataset to train algorithms and define the variables to be
assessed for correlations (input/outputs being specified). Model weights
can be adjusted to avoid overfitting or underfitting.

reinforcment ML:
Train the algorithm by trial and error rather than using sample data.

unsupervised ML (used for deep-learning):
Analyze and cluster unlabeled datasets to identify hidden patterns or
data clustering.

Application to Cybersecurity

>

vvYyyvyy

Intrusion detection (computer, network)

Malware/ransomware detection & recognition

Log aggregation/corelation & alert analysis (e.g. in SIEM systems)
automated pen-testing (!) [see the paper])

vulnerability detection and analysis ...
automated secure code generation, exploit generation (?) ...

11/16

https://arxiv.org/pdf/2512.09882

ML classification techniques for vulnerability detection/analysis

Main challenges

| 2

>

get a rather balanced sets of (labeled?) vulnerable & non vulnerable
code examples

relevant code features include data-flow and control-flow information,
to be properly extracted & processed to feed the models

Main applications

>
| 2

>
>
| 4

vulnerability detection (or simply “vulnerable code” detection .. .)

reverse engineering: function detection, type identification, binary diffing,
etc.

enhanced code analysis techniques (fuzzing, pattern recognition)
side-channel & information leakage detection
etc.

examples of (not too old) papers

12/16

https://github.com/strongcourage/ML4Sec-papers

A typical Vulnerability detection tool

VulDeePecker: A Deep Learning-Based System for Vulnerability Detection
(NDDS Conference, 2018)

13/16

https://www.youtube.com/watch?v=YcIzDi15zN0

Using LLMs for secure code generation

» automated vulnerability patching (Usenix 25 paper)

14/16

https://www.usenix.org/conference/usenixsecurity25/presentation/nong
https://arxiv.org/html/2511.18966v1
https://www.usenix.org/system/files/usenixsecurity25-spracklen.pdf

Using LLMs for secure code generation

» automated vulnerability patching (Usenix 25 paper)

> automated secure code generation (1) (ArXiv 2025 paper)

This study investigated the security of code generated by Large Language
Models (LLMs). We designed a set of prompts and evaluated the code generated
by ten different LLMs, encompassing both closed-source and open-source
models [...]. The results revealed a concerning number of Common
Weakness Enumerations (CWEs) in the generated code. Among the most
critical vulnerabilities identified were CWE-120: Buffer Copy without Checking
Size of Input, CWE-787: Out-of-bounds Write, CWE-122: Heap-based Buffer
Overflow, CWE-252: Unchecked Return Value, CWE-190: Integer Overflow or
Wraparound, and CWE-401: Missing Release of Memory after Effective Lifetime

14/16

https://www.usenix.org/conference/usenixsecurity25/presentation/nong
https://arxiv.org/html/2511.18966v1
https://www.usenix.org/system/files/usenixsecurity25-spracklen.pdf

Using LLMs for secure code generation

» automated vulnerability patching (Usenix 25 paper)

> automated secure code generation (1) (ArXiv 2025 paper)

This study investigated the security of code generated by Large Language
Models (LLMs). We designed a set of prompts and evaluated the code generated
by ten different LLMs, encompassing both closed-source and open-source
models [...]. The results revealed a concerning number of Common
Weakness Enumerations (CWEs) in the generated code. Among the most
critical vulnerabilities identified were CWE-120: Buffer Copy without Checking
Size of Input, CWE-787: Out-of-bounds Write, CWE-122: Heap-based Buffer
Overflow, CWE-252: Unchecked Return Value, CWE-190: Integer Overflow or
Wraparound, and CWE-401: Missing Release of Memory after Effective Lifetime

» automated secure code generation (2) (Usenix 25 paper) Our
experiments and findings highlightpackage hallucinations as a persistent and
systemic phenomenon while using state-of-the-art LLMs for code generation,
and a significant challenge which deserves the research community’s urgent
attention

14/16

https://www.usenix.org/conference/usenixsecurity25/presentation/nong
https://arxiv.org/html/2511.18966v1
https://www.usenix.org/system/files/usenixsecurity25-spracklen.pdf

So, what about ML for Software Security?

Not yet the “definite solution” for vulnerability detection/analysis:
» hard to evaluate and compare with other existing techniques

> lack of result explainability
(e.g., correctly locating vulnerable statements?)

» what about new vulnerability patterns?

But clearly a promising and essential research direction ...
in conjunction with classical techniques

A possible next challenging (and more practical) step:
using generative |A to produce secure-by-construction software?

15/16

Credits

A Survey on Machine Learning Techniques for Cyber Security in the Last
Decade - K. Shaukat et al- IEEE Access 2020

Machine learning (ML) in cybersec2yyurity - SailPoint

ML4Sec papers

Software Security Analysis in 2030 and Beyond: A Research Roadmap

16/16

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9277523
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9277523
https://www.sailpoint.com/identity-library/how-ai-and-machine-learning-are-improving-cybersecurity/
https://github.com/strongcourage/ML4Sec-papers
https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://arxiv.org/abs/2409.17844&ved=2ahUKEwiD_Jvi4-CKAxVEKvsDHUxxHUUQFnoECBYQAQ&usg=AOvVaw36agwfGVpqt71lHxoGPgdG

	What have been seen?
	Future trends?
	A few words on CodeQL
	A few words on machine-learning techniques

