
Software security, secure programming

Conclusion

Master M2 Cybersecurity

Academic Year 2025 - 2026



Software vulnerabilities

A multi-level issue . . .
▶ weaknesses in the specification:

unprotected data-flows wrt confidentiality/integrity
lack of input validation/sanitization, etc.

▶ incorrectnesses in the algorithms:
spatial/temporal memory errors, race conditions, etc.

▶ (language related) programming errors:
bad use of APIs, vulnerable built-in functions or patterns,
undefined behaviors, side-channels, etc.

▶ Hardware dependent issues:
Spectre/Meltdown, Rowhammer, side-channels, etc.

↪→ still a very significant source of concrete attacks (CVEs)!

. . . enhanced by the (incorrect) use of insecure languages
▶ importance of type safety and memory safety
▶ trade-off between safety/security and run-time efficiency

(execution time, resource consumption)

↪→ things may move slowly (JavaScript → TypeScript; C → Rust?)

2 / 16



Software vulnerabilities

A multi-level issue . . .
▶ weaknesses in the specification:

unprotected data-flows wrt confidentiality/integrity
lack of input validation/sanitization, etc.

▶ incorrectnesses in the algorithms:
spatial/temporal memory errors, race conditions, etc.

▶ (language related) programming errors:
bad use of APIs, vulnerable built-in functions or patterns,
undefined behaviors, side-channels, etc.

▶ Hardware dependent issues:
Spectre/Meltdown, Rowhammer, side-channels, etc.

↪→ still a very significant source of concrete attacks (CVEs)!

. . . enhanced by the (incorrect) use of insecure languages
▶ importance of type safety and memory safety
▶ trade-off between safety/security and run-time efficiency

(execution time, resource consumption)

↪→ things may move slowly (JavaScript → TypeScript; C → Rust?)

2 / 16



Software vulnerabilities

A multi-level issue . . .
▶ weaknesses in the specification:

unprotected data-flows wrt confidentiality/integrity
lack of input validation/sanitization, etc.

▶ incorrectnesses in the algorithms:
spatial/temporal memory errors, race conditions, etc.

▶ (language related) programming errors:
bad use of APIs, vulnerable built-in functions or patterns,
undefined behaviors, side-channels, etc.

▶ Hardware dependent issues:
Spectre/Meltdown, Rowhammer, side-channels, etc.

↪→ still a very significant source of concrete attacks (CVEs)!

. . . enhanced by the (incorrect) use of insecure languages
▶ importance of type safety and memory safety
▶ trade-off between safety/security and run-time efficiency

(execution time, resource consumption)

↪→ things may move slowly (JavaScript → TypeScript; C → Rust?)

2 / 16



Software vulnerabilities

A multi-level issue . . .
▶ weaknesses in the specification:

unprotected data-flows wrt confidentiality/integrity
lack of input validation/sanitization, etc.

▶ incorrectnesses in the algorithms:
spatial/temporal memory errors, race conditions, etc.

▶ (language related) programming errors:
bad use of APIs, vulnerable built-in functions or patterns,
undefined behaviors, side-channels, etc.

▶ Hardware dependent issues:
Spectre/Meltdown, Rowhammer, side-channels, etc.

↪→ still a very significant source of concrete attacks (CVEs)!

. . . enhanced by the (incorrect) use of insecure languages
▶ importance of type safety and memory safety
▶ trade-off between safety/security and run-time efficiency

(execution time, resource consumption)

↪→ things may move slowly (JavaScript → TypeScript; C → Rust?)

2 / 16



Software vulnerabilities

A multi-level issue . . .
▶ weaknesses in the specification:

unprotected data-flows wrt confidentiality/integrity
lack of input validation/sanitization, etc.

▶ incorrectnesses in the algorithms:
spatial/temporal memory errors, race conditions, etc.

▶ (language related) programming errors:
bad use of APIs, vulnerable built-in functions or patterns,
undefined behaviors, side-channels, etc.

▶ Hardware dependent issues:
Spectre/Meltdown, Rowhammer, side-channels, etc.

↪→ still a very significant source of concrete attacks (CVEs)!

. . . enhanced by the (incorrect) use of insecure languages
▶ importance of type safety and memory safety
▶ trade-off between safety/security and run-time efficiency

(execution time, resource consumption)

↪→ things may move slowly (JavaScript → TypeScript; C → Rust?)

2 / 16



Software vulnerabilities

A multi-level issue . . .
▶ weaknesses in the specification:

unprotected data-flows wrt confidentiality/integrity
lack of input validation/sanitization, etc.

▶ incorrectnesses in the algorithms:
spatial/temporal memory errors, race conditions, etc.

▶ (language related) programming errors:
bad use of APIs, vulnerable built-in functions or patterns,
undefined behaviors, side-channels, etc.

▶ Hardware dependent issues:
Spectre/Meltdown, Rowhammer, side-channels, etc.

↪→ still a very significant source of concrete attacks (CVEs)!

. . . enhanced by the (incorrect) use of insecure languages
▶ importance of type safety and memory safety
▶ trade-off between safety/security and run-time efficiency

(execution time, resource consumption)

↪→ things may move slowly (JavaScript → TypeScript; C → Rust?)

2 / 16



Protections and mitigations

▶ A huge amount of available secure coding documentation
(CWEs, “secure coding patterns”, books, etc.)

▶ A wide-spectrum set of protection mechanisms
▶ compilation options for code hardening

canaries, CFI, etc.

▶ (lightweight) runtime error detection tools
adSan, UBsan, Valgrind, etc.

▶ OS-level protections
DEP, ASLR, etc.

▶ hardware mechanisms (TEE, memory enclaves)
ARM TrustZone, Intel SGX, etc.

↪→ widely deployed on main stream execution platforms . . .
but take care with more specific ones (IoT, Scada, etc.)!

3 / 16



Protections and mitigations

▶ A huge amount of available secure coding documentation
(CWEs, “secure coding patterns”, books, etc.)

▶ A wide-spectrum set of protection mechanisms
▶ compilation options for code hardening

canaries, CFI, etc.

▶ (lightweight) runtime error detection tools
adSan, UBsan, Valgrind, etc.

▶ OS-level protections
DEP, ASLR, etc.

▶ hardware mechanisms (TEE, memory enclaves)
ARM TrustZone, Intel SGX, etc.

↪→ widely deployed on main stream execution platforms . . .
but take care with more specific ones (IoT, Scada, etc.)!

3 / 16



Protections and mitigations

▶ A huge amount of available secure coding documentation
(CWEs, “secure coding patterns”, books, etc.)

▶ A wide-spectrum set of protection mechanisms
▶ compilation options for code hardening

canaries, CFI, etc.

▶ (lightweight) runtime error detection tools
adSan, UBsan, Valgrind, etc.

▶ OS-level protections
DEP, ASLR, etc.

▶ hardware mechanisms (TEE, memory enclaves)
ARM TrustZone, Intel SGX, etc.

↪→ widely deployed on main stream execution platforms . . .
but take care with more specific ones (IoT, Scada, etc.)!

3 / 16



Code analysis techniques & tools

Goals
▶ vulnerability detection
▶ vulnerability analysis (e.g., to evaluate their exploitability level)
▶ reverse-engineering and/or forensic analysis assistance
▶ code (de-)obfuscation, etc.

Several approaches
Mostly adapted from safety-oriented code verification techniques
▶ static techniques: syntax-checking, pattern detection, static analysis
▶ dynamic techniques: fuzzing, (Dynamic) Symbolic Execution

A strong decidabilty issue:
▶ no way to get a fully automated bullet-proof security insurance!
▶ trade-off between soundness (no false negatives) vs completness (no

false positives)

And still a challenging issue to analyse binary code . . .

4 / 16



Code analysis techniques & tools

Goals
▶ vulnerability detection
▶ vulnerability analysis (e.g., to evaluate their exploitability level)
▶ reverse-engineering and/or forensic analysis assistance
▶ code (de-)obfuscation, etc.

Several approaches
Mostly adapted from safety-oriented code verification techniques
▶ static techniques: syntax-checking, pattern detection, static analysis
▶ dynamic techniques: fuzzing, (Dynamic) Symbolic Execution

A strong decidabilty issue:
▶ no way to get a fully automated bullet-proof security insurance!
▶ trade-off between soundness (no false negatives) vs completness (no

false positives)

And still a challenging issue to analyse binary code . . .

4 / 16



Code analysis techniques & tools

Goals
▶ vulnerability detection
▶ vulnerability analysis (e.g., to evaluate their exploitability level)
▶ reverse-engineering and/or forensic analysis assistance
▶ code (de-)obfuscation, etc.

Several approaches
Mostly adapted from safety-oriented code verification techniques
▶ static techniques: syntax-checking, pattern detection, static analysis
▶ dynamic techniques: fuzzing, (Dynamic) Symbolic Execution

A strong decidabilty issue:
▶ no way to get a fully automated bullet-proof security insurance!
▶ trade-off between soundness (no false negatives) vs completness (no

false positives)

And still a challenging issue to analyse binary code . . .

4 / 16



Code analysis techniques & tools

Goals
▶ vulnerability detection
▶ vulnerability analysis (e.g., to evaluate their exploitability level)
▶ reverse-engineering and/or forensic analysis assistance
▶ code (de-)obfuscation, etc.

Several approaches
Mostly adapted from safety-oriented code verification techniques
▶ static techniques: syntax-checking, pattern detection, static analysis
▶ dynamic techniques: fuzzing, (Dynamic) Symbolic Execution

A strong decidabilty issue:
▶ no way to get a fully automated bullet-proof security insurance!
▶ trade-off between soundness (no false negatives) vs completness (no

false positives)

And still a challenging issue to analyse binary code . . .

4 / 16



Outline

What have been seen?

Future trends?

A few words on CodeQL

A few words on machine-learning techniques



Software vulnerabilities

Probably not over in a near future . . .
(endless cat and mouse games between attackers & defenders)

but:
▶ “basic” vulnerabilities (BoF, arithmetic overflows, etc) should become

less proeminent . . .
▶ more HW/SW security issues?

Vulnerability exploitation should become more and more difficult on recent
execution plateforms . . .

but still a huge panel of legacy/unprotected hardware and software (e.g., in
industrial systems)

5 / 16



Vulnerability detection & analysis tools

For the code developers
From DevOps to DevSecOps, with a potential increase of:
▶ fuzzing, including for side-channels, low-level vulnerabilities
▶ pattern-based detection tool (like Semgrep, CodeQL)
▶ machine-learning techniques . . .

For the code auditors &security experts
Towards (smarter) combinations of:
▶ fuzzing, dynamic-symbolic execution and static analysis
▶ machine-learning techniques . . .

Possibly with an emphasis on quantitative analysis
(how much dangerous is a vulnerability?)

6 / 16



Outline

What have been seen?

Future trends?

A few words on CodeQL

A few words on machine-learning techniques



CodeQL: an example of pattern-detection tool

▶ static analysis (no code execution!)

▶ allows to find “arbitrary” patterns on (large) code bases
↪→ e.g., to look for existing CWEs

▶ offer a powerful query language for pattern description allowing to mix
syntactic and semantic features, including:
▶ data-flow analysis
▶ range analyis
▶ alias analysis
▶ etc.

▶ easy to integrate within a CD/CI pipeline . . .

7 / 16



[Credits: H. Zhang, CodeQL: also a powerful binary analysis engine - BlackHat 2023]

8 / 16



[Credits: H. Zhang, CodeQL: also a powerful binary analysis engine - BlackHat 2023]

9 / 16



Query examples and demo

Example of C/C++ publicly available queries

Demo of a use-after-free query . . .

10 / 16

https://github.com/github/codeql/tree/main/cpp/ql/src


Outline

What have been seen?

Future trends?

A few words on CodeQL

A few words on machine-learning techniques



Examples of ML applications for cybersecurity

ML techniques
▶ supervised ML:

Use labeled dataset to train algorithms and define the variables to be
assessed for correlations (input/outputs being specified). Model weights
can be adjusted to avoid overfitting or underfitting.

▶ reinforcment ML:
Train the algorithm by trial and error rather than using sample data.

▶ unsupervised ML (used for deep-learning):
Analyze and cluster unlabeled datasets to identify hidden patterns or
data clustering.

Application to Cybersecurity
▶ Intrusion detection (computer, network)
▶ Malware/ransomware detection & recognition
▶ Log aggregation/corelation & alert analysis (e.g. in SIEM systems)
▶ automated pen-testing (!) [see the paper])
▶ vulnerability detection and analysis . . .
▶ automated secure code generation, exploit generation (?) . . .

11 / 16

https://arxiv.org/pdf/2512.09882


ML classification techniques for vulnerability detection/analysis

Main challenges
▶ get a rather balanced sets of (labeled?) vulnerable & non vulnerable

code examples
▶ relevant code features include data-flow and control-flow information,

to be properly extracted & processed to feed the models

Main applications
▶ vulnerability detection (or simply “vulnerable code” detection . . . )
▶ reverse engineering: function detection, type identification, binary diffing,

etc.
▶ enhanced code analysis techniques (fuzzing, pattern recognition)
▶ side-channel & information leakage detection
▶ etc.

examples of (not too old) papers

12 / 16

https://github.com/strongcourage/ML4Sec-papers


A typical Vulnerability detection tool

VulDeePecker: A Deep Learning-Based System for Vulnerability Detection
(NDDS Conference, 2018)

13 / 16

https://www.youtube.com/watch?v=YcIzDi15zN0


Using LLMs for secure code generation

▶ automated vulnerability patching (Usenix 25 paper)

▶ automated secure code generation (1) (ArXiv 2025 paper)
This study investigated the security of code generated by Large Language

Models (LLMs). We designed a set of prompts and evaluated the code generated
by ten different LLMs, encompassing both closed-source and open-source
models [...]. The results revealed a concerning number of Common
Weakness Enumerations (CWEs) in the generated code. Among the most
critical vulnerabilities identified were CWE-120: Buffer Copy without Checking
Size of Input, CWE-787: Out-of-bounds Write, CWE-122: Heap-based Buffer
Overflow, CWE-252: Unchecked Return Value, CWE-190: Integer Overflow or
Wraparound, and CWE-401: Missing Release of Memory after Effective Lifetime

▶ automated secure code generation (2) (Usenix 25 paper) Our
experiments and findings highlightpackage hallucinations as a persistent and
systemic phenomenon while using state-of-the-art LLMs for code generation,
and a significant challenge which deserves the research community’s urgent
attention

14 / 16

https://www.usenix.org/conference/usenixsecurity25/presentation/nong
https://arxiv.org/html/2511.18966v1
https://www.usenix.org/system/files/usenixsecurity25-spracklen.pdf


Using LLMs for secure code generation

▶ automated vulnerability patching (Usenix 25 paper)

▶ automated secure code generation (1) (ArXiv 2025 paper)
This study investigated the security of code generated by Large Language

Models (LLMs). We designed a set of prompts and evaluated the code generated
by ten different LLMs, encompassing both closed-source and open-source
models [...]. The results revealed a concerning number of Common
Weakness Enumerations (CWEs) in the generated code. Among the most
critical vulnerabilities identified were CWE-120: Buffer Copy without Checking
Size of Input, CWE-787: Out-of-bounds Write, CWE-122: Heap-based Buffer
Overflow, CWE-252: Unchecked Return Value, CWE-190: Integer Overflow or
Wraparound, and CWE-401: Missing Release of Memory after Effective Lifetime

▶ automated secure code generation (2) (Usenix 25 paper) Our
experiments and findings highlightpackage hallucinations as a persistent and
systemic phenomenon while using state-of-the-art LLMs for code generation,
and a significant challenge which deserves the research community’s urgent
attention

14 / 16

https://www.usenix.org/conference/usenixsecurity25/presentation/nong
https://arxiv.org/html/2511.18966v1
https://www.usenix.org/system/files/usenixsecurity25-spracklen.pdf


Using LLMs for secure code generation

▶ automated vulnerability patching (Usenix 25 paper)

▶ automated secure code generation (1) (ArXiv 2025 paper)
This study investigated the security of code generated by Large Language

Models (LLMs). We designed a set of prompts and evaluated the code generated
by ten different LLMs, encompassing both closed-source and open-source
models [...]. The results revealed a concerning number of Common
Weakness Enumerations (CWEs) in the generated code. Among the most
critical vulnerabilities identified were CWE-120: Buffer Copy without Checking
Size of Input, CWE-787: Out-of-bounds Write, CWE-122: Heap-based Buffer
Overflow, CWE-252: Unchecked Return Value, CWE-190: Integer Overflow or
Wraparound, and CWE-401: Missing Release of Memory after Effective Lifetime

▶ automated secure code generation (2) (Usenix 25 paper) Our
experiments and findings highlightpackage hallucinations as a persistent and
systemic phenomenon while using state-of-the-art LLMs for code generation,
and a significant challenge which deserves the research community’s urgent
attention

14 / 16

https://www.usenix.org/conference/usenixsecurity25/presentation/nong
https://arxiv.org/html/2511.18966v1
https://www.usenix.org/system/files/usenixsecurity25-spracklen.pdf


So, what about ML for Software Security?

Not yet the “definite solution” for vulnerability detection/analysis:
▶ hard to evaluate and compare with other existing techniques
▶ lack of result explainability

(e.g., correctly locating vulnerable statements?)
▶ what about new vulnerability patterns?

But clearly a promising and essential research direction . . .
in conjunction with classical techniques

A possible next challenging (and more practical) step:
using generative IA to produce secure-by-construction software?

15 / 16



Credits

A Survey on Machine Learning Techniques for Cyber Security in the Last
Decade - K. Shaukat et al- IEEE Access 2020

Machine learning (ML) in cybersec2yyurity - SailPoint

ML4Sec papers

Software Security Analysis in 2030 and Beyond: A Research Roadmap

16 / 16

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9277523
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9277523
https://www.sailpoint.com/identity-library/how-ai-and-machine-learning-are-improving-cybersecurity/
https://github.com/strongcourage/ML4Sec-papers
https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://arxiv.org/abs/2409.17844&ved=2ahUKEwiD_Jvi4-CKAxVEKvsDHUxxHUUQFnoECBYQAQ&usg=AOvVaw36agwfGVpqt71lHxoGPgdG

	What have been seen?
	Future trends?
	A few words on CodeQL
	A few words on machine-learning techniques

