
Software security, secure programming

Static Analysis (in a nutshell)

Master M2 Cybersecurity

Academic Year 2024 - 2025



Static Analysis

Main objective:
statically compute some information about (an approximation of) the
program behavior

Examples: given (the source-code of) a program P
▶ does all executions of P satisfy a property φ ?
▶ does φ satisfied at a given (source) program location ?

⇒ Of course, such questions are undecidable . . . (why ?)

Possible work-arounds:
▶ over-approximate the pgm behaviour

→ result is sound (no false negatives), but incomplete (∃ false positives)
▶ under-approximate the pgm behaviour

→ result is complete (no false negatives), but unsound (∃ false negative)
▶ non-terminating analysis

→ if the analysis terminates, then the result is sound and complete

1 / 31



Static Analysis

Main objective:
statically compute some information about (an approximation of) the
program behavior

Examples: given (the source-code of) a program P
▶ does all executions of P satisfy a property φ ?
▶ does φ satisfied at a given (source) program location ?

⇒ Of course, such questions are undecidable . . . (why ?)

Possible work-arounds:
▶ over-approximate the pgm behaviour

→ result is sound (no false negatives), but incomplete (∃ false positives)
▶ under-approximate the pgm behaviour

→ result is complete (no false negatives), but unsound (∃ false negative)
▶ non-terminating analysis

→ if the analysis terminates, then the result is sound and complete

1 / 31



Static Analysis

Main objective:
statically compute some information about (an approximation of) the
program behavior

Examples: given (the source-code of) a program P
▶ does all executions of P satisfy a property φ ?
▶ does φ satisfied at a given (source) program location ?

⇒ Of course, such questions are undecidable . . . (why ?)

Possible work-arounds:
▶ over-approximate the pgm behaviour

→ result is sound (no false negatives), but incomplete (∃ false positives)

▶ under-approximate the pgm behaviour
→ result is complete (no false negatives), but unsound (∃ false negative)

▶ non-terminating analysis
→ if the analysis terminates, then the result is sound and complete

1 / 31



Static Analysis

Main objective:
statically compute some information about (an approximation of) the
program behavior

Examples: given (the source-code of) a program P
▶ does all executions of P satisfy a property φ ?
▶ does φ satisfied at a given (source) program location ?

⇒ Of course, such questions are undecidable . . . (why ?)

Possible work-arounds:
▶ over-approximate the pgm behaviour

→ result is sound (no false negatives), but incomplete (∃ false positives)
▶ under-approximate the pgm behaviour

→ result is complete (no false negatives), but unsound (∃ false negative)

▶ non-terminating analysis
→ if the analysis terminates, then the result is sound and complete

1 / 31



Static Analysis

Main objective:
statically compute some information about (an approximation of) the
program behavior

Examples: given (the source-code of) a program P
▶ does all executions of P satisfy a property φ ?
▶ does φ satisfied at a given (source) program location ?

⇒ Of course, such questions are undecidable . . . (why ?)

Possible work-arounds:
▶ over-approximate the pgm behaviour

→ result is sound (no false negatives), but incomplete (∃ false positives)
▶ under-approximate the pgm behaviour

→ result is complete (no false negatives), but unsound (∃ false negative)
▶ non-terminating analysis

→ if the analysis terminates, then the result is sound and complete

1 / 31



What static analysis can be used for ?

General applications
▶ compiler optimization

e.g., active variables, available expressions, constant propagations, etc.
▶ program verification (e.g., invariant, post-conditions, etc.)
▶ worst-case execution time computation, parallelization
▶ etc.

In the “software security” context
▶ disassembling

e.g., what are the targets of a dynamic jump
(be eax, content of eax ?)

▶ error and vulnerability detection
memory error (Null-pointer dereference, out-of-bound array access),
use-after-free, arithmetic overflow, etc.

▶ variant analysis (e.g. CodeQL)
find similar semantic patterns in a code base

2 / 31



What static analysis can be used for ?

General applications
▶ compiler optimization

e.g., active variables, available expressions, constant propagations, etc.
▶ program verification (e.g., invariant, post-conditions, etc.)
▶ worst-case execution time computation, parallelization
▶ etc.

In the “software security” context
▶ disassembling

e.g., what are the targets of a dynamic jump
(be eax, content of eax ?)

▶ error and vulnerability detection
memory error (Null-pointer dereference, out-of-bound array access),
use-after-free, arithmetic overflow, etc.

▶ variant analysis (e.g. CodeQL)
find similar semantic patterns in a code base

2 / 31



Outline

Overview

Principles

Weakest Preconditions

Abstract Interpretation

Value-Set Analysis (VSA)

Conclusion



How to proceed ?

Typical problems
▶ need to reason on a set of executions (not on a single one)

ex: x = y * z

→ compute values of x for all possible values of y and z ?
▶ need to cope with loops

ex: while (x < y) do ... end

→ infer the loop behavior for all possible values of x and y ?

A solution: over-approximate the program behavior

1. propagate an abstract state (over approximating the memory content)

e.g., x > 0, p ̸= NULL, x ≤ y + z, p and q are aliases, etc.

→ depends on the properties you want to check !

2. safely merge memory abstract states produced from ̸= paths

3. make loop iterations always finite

Pb: How to find a suitable abstract domains ?
→ accuracy vs scalability trade-offs . . .

3 / 31



How to proceed ?

Typical problems
▶ need to reason on a set of executions (not on a single one)

ex: x = y * z

→ compute values of x for all possible values of y and z ?
▶ need to cope with loops

ex: while (x < y) do ... end

→ infer the loop behavior for all possible values of x and y ?

A solution: over-approximate the program behavior

1. propagate an abstract state (over approximating the memory content)

e.g., x > 0, p ̸= NULL, x ≤ y + z, p and q are aliases, etc.

→ depends on the properties you want to check !

2. safely merge memory abstract states produced from ̸= paths

3. make loop iterations always finite

Pb: How to find a suitable abstract domains ?
→ accuracy vs scalability trade-offs . . .

3 / 31



How to proceed ?

Typical problems
▶ need to reason on a set of executions (not on a single one)

ex: x = y * z

→ compute values of x for all possible values of y and z ?
▶ need to cope with loops

ex: while (x < y) do ... end

→ infer the loop behavior for all possible values of x and y ?

A solution: over-approximate the program behavior

1. propagate an abstract state (over approximating the memory content)

e.g., x > 0, p ̸= NULL, x ≤ y + z, p and q are aliases, etc.

→ depends on the properties you want to check !

2. safely merge memory abstract states produced from ̸= paths

3. make loop iterations always finite

Pb: How to find a suitable abstract domains ?
→ accuracy vs scalability trade-offs . . .

3 / 31



Outline

Overview

Principles

Weakest Preconditions

Abstract Interpretation

Value-Set Analysis (VSA)

Conclusion



A basic programming language

Syntax

Exp ::= x | n | op (Exp, . . . Exp)

Stm ::= x := Exp

::= Stm ; Stm

::= skip

::= if Exp then Stm else Stm

::= while Exp do Stm end

::= assert Exp

In practice : arrays, structures, pointers, procedures, etc.

4 / 31



Axiomatic Semantics

⇒ programs viewed as predicate transformers where predicates are
assertions on program variables (Hoare, Dijkstra 1976).

▶ Weakest Preconditions (wp) : backward computation
Example :

x ≥ 0 {x := x + 1; } x > 0

▶ Strongest Postcondition (sp) : forward computation
Example :

x ≥ 0 {x := x + 1; } x > 0

5 / 31



Weakest precondition / Strongest postcondition

Let I a statement, P, R, ′, R′ some predicats

The weakest precondition P = wp(I,R) is such that:

∀P′ (P′ ⇒ wp(I,R)) ⇒ (P′ ⇒ P)

A precondition P′ stronger than x ≥ 0 : x > 5.

The strongest postcondition R = sp(R, I) is such that:

∀R′ (sp(P, I) ⇒ R′ ⇒ (R ⇒ R′)

A postcondition R′ weaker than x ≥ 0 : x > −2.

6 / 31



Weakest precondition / Strongest postcondition

Let I a statement, P, R, ′, R′ some predicats

The weakest precondition P = wp(I,R) is such that:

∀P′ (P′ ⇒ wp(I,R)) ⇒ (P′ ⇒ P)

A precondition P′ stronger than x ≥ 0 : x > 5.

The strongest postcondition R = sp(R, I) is such that:

∀R′ (sp(P, I) ⇒ R′ ⇒ (R ⇒ R′)

A postcondition R′ weaker than x ≥ 0 : x > −2.

6 / 31



Substitution - free/bounded variables

Free and bounded variables

A variable x is bounded (resp. free) within formula F iff F contains an
occurrence of x which is (resp. which is not) within the scope of a quantifier.

Example:
φ ≡ P(y , x) ∧ ∀x . Q(x , y)

↪→ there is both a free and a bounded occurrence of x in φ

Substitution

P[E/x ] is the formula P in which all free occurrences of variable x have been
replaced by the term E .

Example:
(φ[x + 1/x ])[f/y ] ≡ P(f , x + 1) ∧ ∀x . Q(x , f )

7 / 31



Substitution - free/bounded variables

Free and bounded variables

A variable x is bounded (resp. free) within formula F iff F contains an
occurrence of x which is (resp. which is not) within the scope of a quantifier.

Example:
φ ≡ P(y , x) ∧ ∀x . Q(x , y)

↪→ there is both a free and a bounded occurrence of x in φ

Substitution

P[E/x ] is the formula P in which all free occurrences of variable x have been
replaced by the term E .

Example:
(φ[x + 1/x ])[f/y ] ≡ P(f , x + 1) ∧ ∀x . Q(x , f )

7 / 31



Computing weakest preconditions: basic instructions

Statement def . WP
wp(skip,R) =̂ R
wp(x := e,R) =̂ R[e/x ]
wp(i1 ; i2,R) =̂ wp(i1,wp(i2,R))
wp(assert(e),R) =̂ e ∧ R

Examples:

1. wp(x := x + 1, x > 0)

2. wp(z := 2 ; y := z + 1 ; x := z + y , x ∈ 3..8)

8 / 31



Computing weakest preconditions: basic instructions

Statement def . WP
wp(skip,R) =̂ R
wp(x := e,R) =̂ R[e/x ]
wp(i1 ; i2,R) =̂ wp(i1,wp(i2,R))
wp(assert(e),R) =̂ e ∧ R

Examples:

1. wp(x := x + 1, x > 0)

2. wp(z := 2 ; y := z + 1 ; x := z + y , x ∈ 3..8)

8 / 31



Another way to write WPs

R R[e/x ]
skip; x := e;

wp(i1,wp(i2,R)) P ∧ R
i1; assert(P)
wp(i2,R)
i2;

9 / 31



Example

2 + 2 + 1 ∈ 3..8
z:=2 ;
z + z + 1 ∈ 3..8
y:=z+1 ;
z + y ∈ 3..8
x:=z+y;
x ∈ 3..8

10 / 31



Computing weakest precondition: conditional statement

wp(if P then i1else i2 end,R)
=̂ (P ⇒ wp(i1,R)) ∧ (¬P ⇒ wp(i2,R))

Examples:

▶ Define wp(if e then i end ,R).

▶ What does the following program compute ? Prove the result . . .

begin
if x > y then m := x else m := y end ;
if z > m then m := z end

end

11 / 31



Computing weakest precondition: conditional statement

wp(if P then i1else i2 end,R)
=̂ (P ⇒ wp(i1,R)) ∧ (¬P ⇒ wp(i2,R))

Examples:

▶ Define wp(if e then i end ,R).

▶ What does the following program compute ? Prove the result . . .

begin
if x > y then m := x else m := y end ;
if z > m then m := z end

end

11 / 31



Computing weakest precondition: conditional statement

wp(if P then i1else i2 end,R)
=̂ (P ⇒ wp(i1,R)) ∧ (¬P ⇒ wp(i2,R))

Examples:

▶ Define wp(if e then i end ,R).

▶ What does the following program compute ? Prove the result . . .

begin
if x > y then m := x else m := y end ;
if z > m then m := z end

end

11 / 31



Solution (1)

(x > y ⇒ F1[x/m]) ∧ (¬(x > y) ⇒]F1[y/m]) = F2

if x > y
F1[x/m]
then m := x
F1[y/m]
else m := y end ;

(z > m ⇒ R1[z/m]) ∧ (¬(z > m) ⇒ R1) = F1

if z > m
R1[z/m] ;
then m := z
R1 ;
else skip ;

end
R1

12 / 31



Solution (2)

Postcondition :

(m = x ∨ m = y ∨ m = z) ∧ m ≥ x ∧ m ≥ y ∧ m ≥ z

Let’s process R1 = m ≥ x .

Computing F1 :

(z > m ⇒ m[z/m] ≥ x) ∧ (¬(z > m) ⇒ m ≥ x)

which can be rewritten:

(z > m ⇒ z ≥ x) ∧ (¬(z > m) ⇒ m ≥ x)

13 / 31



Solution (3)

Computing F2:

(x > y ⇒ F1[x/m]) ∧ (¬(x > y) ⇒ F1[y/m])

leading to:

(x > y ∧ z > x ⇒ z ≥ x) ∧
(x > y ∧ ¬(z > x) ⇒ x ≥ x) ∧
(¬(x > y) ∧ z > y ⇒ x ≥ x) ∧
(¬(x > y) ∧ ¬(z > y) ⇒ y ≥ x)

Each of these 4 propositions is equivalent to true.

14 / 31



Computing weakest precondition: iteration

wp(while b do S end ,R) ?

Partial correctness
→ compute the WP assuming the loop will terminate
▶ need to reason about an arbitrary number of iteration;
▶ find a loop invariant I such that:

1. I is preserved by the loop body:

I ∧ b ⇒ wp(S, I)

2. if and when the loop terminates, the post-condition holds:

I ∧ ¬b ⇒ R

Then
wp(while b do S end ,R) = I

Total correctness: prove that the loop do terminate . . .
need to introduce a loop variant
(i.e, a measure strictly decreasing at each iteration towards a limit).

15 / 31



Computing weakest precondition: iteration

wp(while b do S end ,R) ?

Partial correctness
→ compute the WP assuming the loop will terminate
▶ need to reason about an arbitrary number of iteration;
▶ find a loop invariant I such that:

1. I is preserved by the loop body:

I ∧ b ⇒ wp(S, I)

2. if and when the loop terminates, the post-condition holds:

I ∧ ¬b ⇒ R

Then
wp(while b do S end ,R) = I

Total correctness: prove that the loop do terminate . . .
need to introduce a loop variant
(i.e, a measure strictly decreasing at each iteration towards a limit).

15 / 31



Example

Prove the following program using WP

{x=n && n>0}
y := 1 ;
while x <> 1 do

y := y*x ;
x := x-1 ;

end
{y=n! && n>0}

16 / 31



Implementing WP computation ?

1. WP computation:
▶ based on the program structure (Abstract Syntax Tree)

▶ leaves⇝ root, following the instruction structure

2. Decidability problems:
▶ simplification and proof of formula

undecidable in general, heuristics . . .

▶ invariant generation
undecidable in general, only specific invariant can be generated in some
restricted conditions (i.e., inductive invariants)

17 / 31



Implementing WP computation ?

1. WP computation:
▶ based on the program structure (Abstract Syntax Tree)

▶ leaves⇝ root, following the instruction structure

2. Decidability problems:
▶ simplification and proof of formula

undecidable in general, heuristics . . .

▶ invariant generation
undecidable in general, only specific invariant can be generated in some
restricted conditions (i.e., inductive invariants)

17 / 31



Accurracy vs Effectiveness trade-off

Assertion language

Theories Complexity Rappels
First order logic undecidable Interactive provers
Booleans decidable state enumeration
Intervals quasi linear approximation
Polyhedras exponential (better) approximation

Tools:
Frama-C/WP (proofs), Frama-C/Value (intervals), Polyspace (polyhedras) . . .

18 / 31



Outline

Overview

Principles

Weakest Preconditions

Abstract Interpretation

Value-Set Analysis (VSA)

Conclusion



A general framework : abstract interpretation

Although this theory has been invented here in Grenoble . . .

. . . let’s jump to Dillig’s slides (from UT Austin, Texas) !

19 / 31



A general framework : abstract interpretation

Although this theory has been invented here in Grenoble . . .

. . . let’s jump to Dillig’s slides (from UT Austin, Texas) !

19 / 31



Outline

Overview

Principles

Weakest Preconditions

Abstract Interpretation

Value-Set Analysis (VSA)

Conclusion



Analysis example: Value-Set Analysis

Objective:
compute a (super)-set of possible values of each variable at each program
location . . .

Env(x , l) = value set of variable x at program location l

Several possible abstract domains to express these sets:
▶ bounded value sets (k-sets)

ex: Env(x , l) = {0, 4, 9, 10},Env(y , l) = {1},Env(z, l) = ⊤
▶ intervals

ex: Env(x , l) = [2, 8],Env(y , l) = [−∞, 7],Env(z, l) = [−∞,+∞]

▶ differential bounded matrix (DBM)
ex : Env(l) = x − y < 10 ∧ z < 0

▶ polyhedra (conjonction of linear equations)
ex: Env(l) = x + y ≥ 10 ∧ z < 0

▶ etc.

20 / 31



VSA with intervals (example 1)

1. x := x+y ;
if x>0 then

2. y:= x + 2
else

3. y:= -x
4. fi
5. return x+y

Asumming (pre-condition) that:

x ∈ [−3, 3], y ∈ [−1, 5]

compute Env(x , l) and Env(y , l) for each program location l
what is the set of return values ?

21 / 31



Computing intervals on expressions

Syntax of expressions

e → n | x | e + e | e × e | . . .

Computation rules

Val(e,Env) is the interval associated to e within Env

Val(n,Env) = [n, n]

Val(x ,Env) = Env(x)

Val(e1 + e2,Env) = [a + c, b + d ] where

Val(e1,Env) = [a, b] ∧ Val(e2,Env) = [c, d ]

Val(e1 × e2,Env) = [x , y ] where

Val(e1,Env) = [a, b] ∧ Val(e2,Env) = [c, d ]

x = min(a × c, a × d , b × c, b × d)

y = max(a × c, a × d , b × c, b × d)

22 / 31



Computing intervals on expressions

Syntax of expressions

e → n | x | e + e | e × e | . . .

Computation rules

Val(e,Env) is the interval associated to e within Env

Val(n,Env) = [n, n]

Val(x ,Env) = Env(x)

Val(e1 + e2,Env) = [a + c, b + d ] where

Val(e1,Env) = [a, b] ∧ Val(e2,Env) = [c, d ]

Val(e1 × e2,Env) = [x , y ] where

Val(e1,Env) = [a, b] ∧ Val(e2,Env) = [c, d ]

x = min(a × c, a × d , b × c, b × d)

y = max(a × c, a × d , b × c, b × d)

22 / 31



Computing intervals on expressions

Syntax of expressions

e → n | x | e + e | e × e | . . .

Computation rules

Val(e,Env) is the interval associated to e within Env

Val(n,Env) = [n, n]

Val(x ,Env) = Env(x)

Val(e1 + e2,Env) = [a + c, b + d ] where

Val(e1,Env) = [a, b] ∧ Val(e2,Env) = [c, d ]

Val(e1 × e2,Env) = [x , y ] where

Val(e1,Env) = [a, b] ∧ Val(e2,Env) = [c, d ]

x = min(a × c, a × d , b × c, b × d)

y = max(a × c, a × d , b × c, b × d)

22 / 31



Computing intervals on expressions

Syntax of expressions

e → n | x | e + e | e × e | . . .

Computation rules

Val(e,Env) is the interval associated to e within Env

Val(n,Env) = [n, n]

Val(x ,Env) = Env(x)

Val(e1 + e2,Env) = [a + c, b + d ] where

Val(e1,Env) = [a, b] ∧ Val(e2,Env) = [c, d ]

Val(e1 × e2,Env) = [x , y ] where

Val(e1,Env) = [a, b] ∧ Val(e2,Env) = [c, d ]

x = min(a × c, a × d , b × c, b × d)

y = max(a × c, a × d , b × c, b × d)

22 / 31



Computing intervals on expressions

Syntax of expressions

e → n | x | e + e | e × e | . . .

Computation rules

Val(e,Env) is the interval associated to e within Env

Val(n,Env) = [n, n]

Val(x ,Env) = Env(x)

Val(e1 + e2,Env) = [a + c, b + d ] where

Val(e1,Env) = [a, b] ∧ Val(e2,Env) = [c, d ]

Val(e1 × e2,Env) = [x , y ] where

Val(e1,Env) = [a, b] ∧ Val(e2,Env) = [c, d ]

x = min(a × c, a × d , b × c, b × d)

y = max(a × c, a × d , b × c, b × d)

22 / 31



Intervals propagation

Propagation rules along the statement syntax:

▶ assignment
{Env1} x := e {Env2}

where

Env2(x) = Val(e,Env1) ∧ Env2(y) = Env1(x) for y ̸= x

▶ sequence
{Env1} s1;s2 {Env2}

where
{Env1} s1 {Env3} ∧ {Env3} s2 {Env2}

▶ conditionnal

{Env} if (b) then s1 else s2 {Env ′}

where
▶ {Env ∩ Val(b, Env)} s1 {Env1}
▶ {Env ∩ Val(¬ b, Env)} s2 {Env2}
▶ Env’ = Env1 ⊔ Env2

(Env ′(x) is the smallest interval containing Env1(x) and Env2(x), ∀x)

23 / 31



Intervals propagation

Propagation rules along the statement syntax:

▶ assignment
{Env1} x := e {Env2}

where

Env2(x) = Val(e,Env1) ∧ Env2(y) = Env1(x) for y ̸= x

▶ sequence
{Env1} s1;s2 {Env2}

where
{Env1} s1 {Env3} ∧ {Env3} s2 {Env2}

▶ conditionnal

{Env} if (b) then s1 else s2 {Env ′}

where
▶ {Env ∩ Val(b, Env)} s1 {Env1}
▶ {Env ∩ Val(¬ b, Env)} s2 {Env2}
▶ Env’ = Env1 ⊔ Env2

(Env ′(x) is the smallest interval containing Env1(x) and Env2(x), ∀x)

23 / 31



Intervals propagation

Propagation rules along the statement syntax:

▶ assignment
{Env1} x := e {Env2}

where

Env2(x) = Val(e,Env1) ∧ Env2(y) = Env1(x) for y ̸= x

▶ sequence
{Env1} s1;s2 {Env2}

where
{Env1} s1 {Env3} ∧ {Env3} s2 {Env2}

▶ conditionnal

{Env} if (b) then s1 else s2 {Env ′}

where
▶ {Env ∩ Val(b, Env)} s1 {Env1}
▶ {Env ∩ Val(¬ b, Env)} s2 {Env2}
▶ Env’ = Env1 ⊔ Env2

(Env ′(x) is the smallest interval containing Env1(x) and Env2(x), ∀x)

23 / 31



Iteration ? (example 1)

1. x : = 0 ;
while (x < 2) do

2. x := x+1
3. end
4. return x

compute Env(x , l) for each program location l , where . . .

Env(x , 2) = Env(x , 1) ⊔ Env(x , 3)

Actually, what we aim to compute is the least solution of function Env , i.e:

Env0(⊥, l) ⊔ Env1(⊥, l) ⊔ Env2(⊥, l) ⊔ . . . ⊔ Env k (⊥, l) ⊔ . . .

24 / 31



Iteration ? (example 1)

1. x : = 0 ;
while (x < 2) do

2. x := x+1
3. end
4. return x

compute Env(x , l) for each program location l , where . . .

Env(x , 2) = Env(x , 1) ⊔ Env(x , 3)

Actually, what we aim to compute is the least solution of function Env , i.e:

Env0(⊥, l) ⊔ Env1(⊥, l) ⊔ Env2(⊥, l) ⊔ . . . ⊔ Env k (⊥, l) ⊔ . . .

24 / 31



Iteration ? (example 2)

1. x : = 0 ;
while (x < 1000) do

2. x := x+1
3. end
4. return x

Compute Env(x , l) for each program location l . . .

What happens if we replace x := x+1 by x := x-1 ?

How to cope with such loooong, or even infinite, computations ?

25 / 31



Iteration ? (example 2)

1. x : = 0 ;
while (x < 1000) do

2. x := x+1
3. end
4. return x

Compute Env(x , l) for each program location l . . .

What happens if we replace x := x+1 by x := x-1 ?

How to cope with such loooong, or even infinite, computations ?

25 / 31



Iteration ? (example 2)

1. x : = 0 ;
while (x < 1000) do

2. x := x+1
3. end
4. return x

Compute Env(x , l) for each program location l . . .

What happens if we replace x := x+1 by x := x-1 ?

How to cope with such loooong, or even infinite, computations ?

25 / 31



A practical solution : Widening & Narrowing operators

See Hakjoo Oh slides . . .

26 / 31



Outline

Overview

Principles

Weakest Preconditions

Abstract Interpretation

Value-Set Analysis (VSA)

Conclusion



Challenges for static analysis

Accuracy vs scalability trade-off . . .

▶ inter-procedural analysis (+ recursivity . . . )
▶ multi-threading
▶ dynamic memory allocation
▶ modular reasonning
▶ libraries (+ legacy code)
▶ etc.

27 / 31



Application to vulnerability detection ?

Clearly may provide some useful features:
▶ out-of-bounds array access
▶ arithmetic overflows
▶ incorrect memory access (null pointer, mis-aligned address)
▶ use-after-free
▶ etc.

But still some limitations:
▶ exploitability analysis (beyond standard program semantics) ?
▶ relevant and accurate memory model (for heap and stack)
▶ self-modifying code (e.g., malwares)
▶ binary code analysis (see next slide !)

28 / 31



Application to vulnerability detection ?

Clearly may provide some useful features:
▶ out-of-bounds array access
▶ arithmetic overflows
▶ incorrect memory access (null pointer, mis-aligned address)
▶ use-after-free
▶ etc.

But still some limitations:
▶ exploitability analysis (beyond standard program semantics) ?
▶ relevant and accurate memory model (for heap and stack)
▶ self-modifying code (e.g., malwares)
▶ binary code analysis (see next slide !)

28 / 31



Static analysis on binary code

Static analysis relies on a (clear) program semantics
▶ can be done at the assembly-level (or IR)
▶ but disassembling is undecidable . . .
▶ . . . and disassemblers may rely on static analysis !

(to retrieve the program CFG)

Static analysis on low-level code is difficult
▶ no types (a single type for value, addresses, data, code, . . . )
▶ address computation is pervasive . . .

ex: mov eax, [ecx + 42]

▶ function bounds cannot always be retrieved
→ many un-initialized memory locations

▶ sacalability issues
▶ etc.

29 / 31



Static analysis on binary code

Static analysis relies on a (clear) program semantics
▶ can be done at the assembly-level (or IR)
▶ but disassembling is undecidable . . .
▶ . . . and disassemblers may rely on static analysis !

(to retrieve the program CFG)

Static analysis on low-level code is difficult
▶ no types (a single type for value, addresses, data, code, . . . )
▶ address computation is pervasive . . .

ex: mov eax, [ecx + 42]

▶ function bounds cannot always be retrieved
→ many un-initialized memory locations

▶ sacalability issues
▶ etc.

29 / 31



What help for “security analysis” ?
“security analysis” = vulnerability detection

A pragmatic approach:

1. annotate the code with “vulnerability checks” (e.g., frama-c -rte)
i.e., assertions to detect integer overflows, invalid memory accesses
(arrays, pointers), etc

2. run a VSA
→ reveals a lot of hot spots (= unchecked assertions)

3. add user-defined assertions when possible . . .
e.g., function pre/post conditions, loop invariants, extra information . . .
→ consider proving (some of) these assertions ?

4. run the VSA again . . .

⇒ a set of potential vulnerabilities remains, to be discharged by other means,
possibly on a program slice
(false positive ? real bug but harmless w.r.t security ? real vulnerability ?)

Rk: some static analysis tools also provide bug finding facilities
(i.e., no false postives, . . . but false negatives instead)

30 / 31



What help for “security analysis” ?
“security analysis” = vulnerability detection

A pragmatic approach:

1. annotate the code with “vulnerability checks” (e.g., frama-c -rte)
i.e., assertions to detect integer overflows, invalid memory accesses
(arrays, pointers), etc

2. run a VSA
→ reveals a lot of hot spots (= unchecked assertions)

3. add user-defined assertions when possible . . .
e.g., function pre/post conditions, loop invariants, extra information . . .
→ consider proving (some of) these assertions ?

4. run the VSA again . . .

⇒ a set of potential vulnerabilities remains, to be discharged by other means,
possibly on a program slice
(false positive ? real bug but harmless w.r.t security ? real vulnerability ?)

Rk: some static analysis tools also provide bug finding facilities
(i.e., no false postives, . . . but false negatives instead)

30 / 31



What help for “security analysis” ?
“security analysis” = vulnerability detection

A pragmatic approach:

1. annotate the code with “vulnerability checks” (e.g., frama-c -rte)
i.e., assertions to detect integer overflows, invalid memory accesses
(arrays, pointers), etc

2. run a VSA
→ reveals a lot of hot spots (= unchecked assertions)

3. add user-defined assertions when possible . . .
e.g., function pre/post conditions, loop invariants, extra information . . .
→ consider proving (some of) these assertions ?

4. run the VSA again . . .

⇒ a set of potential vulnerabilities remains, to be discharged by other means,
possibly on a program slice
(false positive ? real bug but harmless w.r.t security ? real vulnerability ?)

Rk: some static analysis tools also provide bug finding facilities
(i.e., no false postives, . . . but false negatives instead)

30 / 31



What help for “security analysis” ?
“security analysis” = vulnerability detection

A pragmatic approach:

1. annotate the code with “vulnerability checks” (e.g., frama-c -rte)
i.e., assertions to detect integer overflows, invalid memory accesses
(arrays, pointers), etc

2. run a VSA
→ reveals a lot of hot spots (= unchecked assertions)

3. add user-defined assertions when possible . . .
e.g., function pre/post conditions, loop invariants, extra information . . .
→ consider proving (some of) these assertions ?

4. run the VSA again . . .

⇒ a set of potential vulnerabilities remains, to be discharged by other means,
possibly on a program slice
(false positive ? real bug but harmless w.r.t security ? real vulnerability ?)

Rk: some static analysis tools also provide bug finding facilities
(i.e., no false postives, . . . but false negatives instead)

30 / 31



What help for “security analysis” ?
“security analysis” = vulnerability detection

A pragmatic approach:

1. annotate the code with “vulnerability checks” (e.g., frama-c -rte)
i.e., assertions to detect integer overflows, invalid memory accesses
(arrays, pointers), etc

2. run a VSA
→ reveals a lot of hot spots (= unchecked assertions)

3. add user-defined assertions when possible . . .
e.g., function pre/post conditions, loop invariants, extra information . . .
→ consider proving (some of) these assertions ?

4. run the VSA again . . .

⇒ a set of potential vulnerabilities remains, to be discharged by other means,
possibly on a program slice
(false positive ? real bug but harmless w.r.t security ? real vulnerability ?)

Rk: some static analysis tools also provide bug finding facilities
(i.e., no false postives, . . . but false negatives instead)

30 / 31



What help for “security analysis” ?
“security analysis” = vulnerability detection

A pragmatic approach:

1. annotate the code with “vulnerability checks” (e.g., frama-c -rte)
i.e., assertions to detect integer overflows, invalid memory accesses
(arrays, pointers), etc

2. run a VSA
→ reveals a lot of hot spots (= unchecked assertions)

3. add user-defined assertions when possible . . .
e.g., function pre/post conditions, loop invariants, extra information . . .
→ consider proving (some of) these assertions ?

4. run the VSA again . . .

⇒ a set of potential vulnerabilities remains, to be discharged by other means,
possibly on a program slice
(false positive ? real bug but harmless w.r.t security ? real vulnerability ?)

Rk: some static analysis tools also provide bug finding facilities
(i.e., no false postives, . . . but false negatives instead)

30 / 31



Tool examples
Disclaimer: non limitative nor objective list ! (see wikipedia for more info)

Source-level tools
▶ Astrèe
▶ Coverity, Polyspace, CodeSonar, HP Fortify, VeraCode
▶ Frama-C, Fluctuat
▶ etc, etc, . . .

Some binary-level tools
▶ x86-CodeSurfer
▶ VeraCode
▶ Angr
▶ BinSec plateform
▶ etc ?

You can see also:
▶ the CERT webpages
▶ the Microsoft “Secure Development Lifecycle” . . .

31 / 31



Tool examples
Disclaimer: non limitative nor objective list ! (see wikipedia for more info)

Source-level tools
▶ Astrèe
▶ Coverity, Polyspace, CodeSonar, HP Fortify, VeraCode
▶ Frama-C, Fluctuat
▶ etc, etc, . . .

Some binary-level tools
▶ x86-CodeSurfer
▶ VeraCode
▶ Angr
▶ BinSec plateform
▶ etc ?

You can see also:
▶ the CERT webpages
▶ the Microsoft “Secure Development Lifecycle” . . .

31 / 31


	Overview
	Principles
	Weakest Preconditions
	Abstract Interpretation
	Value-Set Analysis (VSA)
	Conclusion

