Software security, secure programming

Lecture 5: Static Analysis (in a nutshell)

Master M2 Cybersecurity

Academic Year 2023-2024

Static Analysis

Main objective:

statically compute some information about (an approximation of) the program behavior

Static Analysis

Main objective:

statically compute some information about (an approximation of) the program behavior

Examples: given (the source-code of) a program P

- does all executions of P satisfy a property φ ?
- does φ satisfied at a given (source) program location?
\Rightarrow Of course, such questions are undecidable ... (why ?)

Static Analysis

Main objective:

statically compute some information about (an approximation of) the program behavior

Examples: given (the source-code of) a program P

- does all executions of P satisfy a property φ ?
\checkmark does φ satisfied at a given (source) program location ?
\Rightarrow Of course, such questions are undecidable ... (why ?)

Possible work-arounds:

- over-approximate the pgm behaviour
\rightarrow result is sound (no false negatives), but incomplete (\exists false positives)

Static Analysis

Main objective:

statically compute some information about (an approximation of) the program behavior

Examples: given (the source-code of) a program P

- does all executions of P satisfy a property φ ?
- does φ satisfied at a given (source) program location ?
\Rightarrow Of course, such questions are undecidable ... (why ?)

Possible work-arounds:

- over-approximate the pgm behaviour
\rightarrow result is sound (no false negatives), but incomplete (\exists false positives)
- under-approximate the pgm behaviour
\rightarrow result is complete (no false negatives), but unsound (\exists false negative)

Static Analysis

Main objective:

statically compute some information about (an approximation of) the program behavior

Examples: given (the source-code of) a program P

- does all executions of P satisfy a property φ ?
- does φ satisfied at a given (source) program location ?
\Rightarrow Of course, such questions are undecidable ... (why ?)

Possible work-arounds:

- over-approximate the pgm behaviour
\rightarrow result is sound (no false negatives), but incomplete (\exists false positives)
\checkmark under-approximate the pgm behaviour
\rightarrow result is complete (no false negatives), but unsound (\exists false negative)
- non-terminating analysis
\rightarrow if the analysis terminates, then the result is sound and complete

What static analysis can be used for?

General applications

- compiler optimization
e.g., active variables, available expressions, constant propagations, etc.
- program verification
e.g., invariant, post-conditions, etc.
- worst-case execution time computation
- parallelization
- etc.

What static analysis can be used for?

General applications

- compiler optimization
e.g., active variables, available expressions, constant propagations, etc.
- program verification
e.g., invariant, post-conditions, etc.
- worst-case execution time computation
- parallelization
- etc.

In the "software security" context

- disassembling
e.g., what are the targets of a dynamic jump
(be eax, content of eax?)
- error and vulnerability detection memory error (Null-pointer dereference, out-of-bound array access), use-after-free, arithmetic overflow, etc.
- information-flow analysis (integrity, confidentiality, taint analysis)
- "semantic pattern" recognition
- etc.

Outline

Overview

Principles

Weakest Preconditions

Abstract Interpretation

Value-Set Analysis (VSA)

Conclusion

How to proceed ?

Typical problems

- need to reason on a set of executions (not on a single one)

$$
e x: x=y \star z
$$

\rightarrow compute values of x for all possible values of y and z ?

- need to cope with loops
ex: while (x < y) do ... end
\rightarrow infer the loop behavior for all possible values of x and y ?

How to proceed?

Typical problems

- need to reason on a set of executions (not on a single one)

$$
e x: x=y \star z
$$

\rightarrow compute values of x for all possible values of y and z ?

- need to cope with loops
ex: while (x < y) do ... end
\rightarrow infer the loop behavior for all possible values of x and y ?
A solution: over-approximate the program behavior

1. propagate an abstract state (over approximating the memory content)

$$
\text { e.g., } x>0, p \neq N U L L, x \leq y+z, p \text { and } q \text { are aliases, etc. }
$$

\rightarrow depends on the properties you want to check!
2. safely merge memory abstract states produced from \neq paths
3. make loop iterations always finite

How to proceed ?

Typical problems

- need to reason on a set of executions (not on a single one)

$$
e x: x=y \star z
$$

\rightarrow compute values of x for all possible values of y and z ?

- need to cope with loops
ex: while (x < y) do ... end
\rightarrow infer the loop behavior for all possible values of x and y ?
A solution: over-approximate the program behavior

1. propagate an abstract state (over approximating the memory content)

$$
\text { e.g., } x>0, p \neq N U L L, x \leq y+z, p \text { and } q \text { are aliases, etc. }
$$

\rightarrow depends on the properties you want to check!
2. safely merge memory abstract states produced from \neq paths
3. make loop iterations always finite

Pb: How to find a suitable abstract domains ?
\rightarrow accuracy vs scalability trade-offs ...

Outline

Overview

Principles

Weakest Preconditions

Abstract Interpretation

Value-Set Analysis (VSA)

Conclusion

A basic programming language

Syntax

$$
\begin{aligned}
\operatorname{Exp} & ::=x|n| o p(\operatorname{Exp}, \ldots \operatorname{Exp}) \\
\operatorname{Stm} & ::=x:=\operatorname{Exp} \\
& ::=\operatorname{Stm} ; \operatorname{Stm} \\
& ::=\text { skip } \\
& ::=\text { if Exp then Stm else Stm } \\
& ::=\text { while Exp do Stm end } \\
& ::=\text { assert Exp }
\end{aligned}
$$

In practice : arrays, structures, pointers, procedures, etc.

Axiomatic Semantics

\Rightarrow programs viewed as predicate transformers where predicates are assertions on program variables (Hoare, Dijkstra 1976).

- Weakest Preconditions (wp) : backward computation Example :

$$
x \geq 0\{x:=x+1 ;\} \quad x>0
$$

- Strongest Postcondition ($s p$) : forward computation Example :

$$
x \geq 0\{x:=x+1 ;\} \quad x>0
$$

Weakest precondition / Strongest postcondition

Let I a statement, $P, R,{ }^{\prime}, R^{\prime}$ some predicats

The weakest precondition $P=w p(I, R)$ is such that:

$$
\forall P^{\prime}\left(P^{\prime} \Rightarrow w p(I, R)\right) \Rightarrow\left(P^{\prime} \Rightarrow P\right)
$$

A precondition P^{\prime} stronger than $x \geq 0: x>5$.

Weakest precondition / Strongest postcondition

Let I a statement, $P, R,{ }^{\prime}, R^{\prime}$ some predicats

The weakest precondition $P=w p(I, R)$ is such that:

$$
\forall P^{\prime}\left(P^{\prime} \Rightarrow w p(I, R)\right) \Rightarrow\left(P^{\prime} \Rightarrow P\right)
$$

A precondition P^{\prime} stronger than $x \geq 0: x>5$.

The strongest postcondition $R=s p(R, l)$ is such that:

$$
\forall R^{\prime}\left(s p(P, I) \Rightarrow R^{\prime} \Rightarrow\left(R \Rightarrow R^{\prime}\right)\right.
$$

A postcondition R^{\prime} weaker than $x \geq 0: x>-2$.

Substitution - free/bounded variables

Free and bounded variables
A variable x is bounded (resp. free) within formula F iff F contains an occurrence of x which is (resp. which is not) within the scope of a quantifier.

Example:

$$
\varphi \equiv P(y, x) \wedge \forall x \cdot Q(x, y)
$$

\hookrightarrow there is both a free and a bounded occurrence of x in φ

Substitution - free/bounded variables

Free and bounded variables
A variable x is bounded (resp. free) within formula F iff F contains an occurrence of x which is (resp. which is not) within the scope of a quantifier.

Example:

$$
\varphi \equiv P(y, x) \wedge \forall x . Q(x, y)
$$

\hookrightarrow there is both a free and a bounded occurrence of x in φ

Substitution

$P[E / x]$ is the formula P in which all free occurrences of variable x have been replaced by the term E.

Example:

$$
(\varphi[x+1 / x])[f / y] \equiv P(f, x+1) \wedge \forall x \cdot Q(x, f)
$$

Computing weakest preconditions: basic instructions

Statement	def.	WP
wp(skip, R)	$\hat{\underline{=}}$	R
$w p(x:=e, R)$	$\hat{=}$	$R[e / x]$
$w p\left(i_{1} ; i_{2}, R\right)$	$\hat{\underline{=}}$	$w p\left(i_{1}, w p\left(i_{2}, R\right)\right)$
wp(assert(e), R)	$\hat{=}$	$e \wedge R$

Computing weakest preconditions: basic instructions

Statement	def.	WP
wp(skip, R)	$\hat{=}$	R
$w p(x:=e, R)$	$\hat{=}$	$R[e / x]$
$w p\left(i_{1} ; i_{2}, R\right)$	$\hat{\underline{=}}$	$w p\left(i_{1}, w p\left(i_{2}, R\right)\right)$
wp(assert(e), R)	$\hat{}$	$e \wedge R$

Examples:

1. $w p(x:=x+1, x>0)$
2. $w p(z:=2 ; y:=z+1 ; x:=z+y, x \in 3 . .8)$

Another way to write WPs

R
skip;
$R[e / x]$
$\mathbf{x}:=\mathbf{e} ;$
$P \wedge R$
assert(P)

Example

$$
\begin{aligned}
& 2+2+1 \in 3 . .8 \\
& \mathbf{z}:=\mathbf{2} ; \\
& z+z+1 \in 3 . .8 \\
& \mathbf{y}:=\mathbf{z + 1} ; \\
& z+y \in 3 . .8 \\
& \mathbf{x}:=\mathbf{z + y} \\
& x \in 3 . .8
\end{aligned}
$$

Computing weakest precondition: conditional statement

$$
\begin{gathered}
w p\left(\text { if } P \text { then } i_{1} \text { else } i_{2} \text { end, } R\right) \\
\hat{=}\left(P \Rightarrow w p\left(i_{1}, R\right)\right) \wedge\left(\neg P \Rightarrow w p\left(i_{2}, R\right)\right)
\end{gathered}
$$

Computing weakest precondition: conditional statement

$$
\begin{gathered}
w p\left(\text { if } P \text { then } i_{1} \text { else } i_{2} \text { end, } R\right) \\
\hat{=}\left(P \Rightarrow w p\left(i_{1}, R\right)\right) \wedge\left(\neg P \Rightarrow w p\left(i_{2}, R\right)\right)
\end{gathered}
$$

Examples:

- Define $w p$ (if e then i end,R).

Computing weakest precondition: conditional statement

$$
\begin{gathered}
\text { wp(if } \left.P \text { then } i_{1} \text { else } i_{2} \text { end, } R\right) \\
\hat{=}\left(P \Rightarrow w p\left(i_{1}, R\right)\right) \wedge\left(\neg P \Rightarrow w p\left(i_{2}, R\right)\right)
\end{gathered}
$$

Examples:

- Define $w p$ (if e then i end,R).
- What does the following program compute ? Prove the result ...

```
begin
    if }x>y\mathrm{ then m:=x else m:=y end;
    if z>m then m:=z end
    end
```


Solution (1)

```
\(\left.\left(x>y \Rightarrow F_{1}[x / m]\right) \wedge(\neg(x>y) \Rightarrow] F_{1}[y / m]\right) \quad=F_{2}\)
if \(x>y\)
    \(F_{1}[x / m]\)
    then \(m:=x\)
    \(F_{1}[y / m]\)
    else \(m:=y\) end;
\(\left(z>m \Rightarrow R_{1}[z / m]\right) \wedge\left(\neg(z>m) \Rightarrow R_{1}\right) \quad=F_{1}\)
if \(z>m\)
    \(R_{1}[z / m] ;\)
    then \(m:=z\)
        \(R_{1}\);
    else skip ;
end
    \(R_{1}\)
```


Solution (2)

Postcondition:

$$
(m=x \vee m=y \vee m=z) \wedge m \geq x \wedge m \geq y \wedge m \geq z
$$

Let's process $R_{1}=m \geq x$.

Computing F_{1} :

$$
(z>m \Rightarrow m[z / m] \geq x) \wedge(\neg(z>m) \Rightarrow m \geq x)
$$

which can be rewritten:

$$
(z>m \Rightarrow z \geq x) \wedge(\neg(z>m) \Rightarrow m \geq x)
$$

Solution (3)

Computing F_{2} :

$$
\left(x>y \Rightarrow F_{1}[x / m]\right) \wedge\left(\neg(x>y) \Rightarrow F_{1}[y / m]\right)
$$

leading to:

$$
\begin{array}{lll}
(x>y \wedge z>x & \Rightarrow z \geq x) & \wedge \\
(x>y \wedge \neg(z>x) & \Rightarrow x \geq x) & \wedge \\
(\neg(x>y) \wedge z>y & \Rightarrow x \geq x) & \wedge \\
(\neg(x>y) \wedge \neg(z>y) & \Rightarrow y \geq x) &
\end{array}
$$

Each of these 4 propositions is equivalent to true.

Computing weakest precondition: iteration

$$
w p(\text { while } b \text { do } S \text { end }, R) \text { ? }
$$

Partial correctness
\rightarrow compute the WP assuming the loop will terminate

- need to reason about an arbitrary number of iteration;
- find a loop invariant / such that:

1. I is preserved by the loop body:

$$
I \wedge b \Rightarrow w p(S, l)
$$

2. if and when the loop terminates, the post-condition holds:

$$
I \wedge \neg b \Rightarrow R
$$

Then

$$
w p(\text { while } b \text { do } S \text { end }, R)=I
$$

Computing weakest precondition: iteration

$$
w p(\text { while } b \text { do } S \text { end }, R) \text { ? }
$$

Partial correctness

\rightarrow compute the WP assuming the loop will terminate

- need to reason about an arbitrary number of iteration;
- find a loop invariant / such that:

1. I is preserved by the loop body:

$$
I \wedge b \Rightarrow w p(S, I)
$$

2. if and when the loop terminates, the post-condition holds:

$$
I \wedge \neg b \Rightarrow R
$$

Then

$$
w p(\text { while } b \text { do } S \text { end }, R)=I
$$

Total correctness: prove that the loop do terminate ... need to introduce a loop variant (i.e, a measure strictly decreasing at each iteration towards a limit).

Example

Prove the following program using WP

```
\(\{x=n \quad \& \& n>0\}\)
    y : = 1 ;
    while \(x<>1\) do
        \(\mathrm{Y}:=\mathrm{Y} * \mathrm{X}\);
        \(\mathrm{x}:=\mathrm{x}-1\);
        end
\(\{y=n!\& \& n>0\}\)
```


Implementing WP computation?

1. WP computation:

- based on the program structure (Abstract Syntax Tree)
- leaves \rightsquigarrow root, following the instruction structure

Implementing WP computation ?

1. WP computation:

- based on the program structure (Abstract Syntax Tree)
- leaves \rightsquigarrow root, following the instruction structure

2. Decidability problems:

- simplification and proof of formula undecidable in general, heuristics ...
- invariant generation undecidable in general, only specific invariant can be generated in some restricted conditions (i.e., inductive invariants)

Accurracy vs Effectiveness trade-off

Assertion language

Theories	Complexity	Rappels
First order logic	undecidable	Interactive provers
Booleans	decidable	state enumeration
Intervals	quasi linear	approximation
Polyhedras	exponential	(better) approximation

Tools:
Frama-C/WP (proofs), Frama-C/Value (intervals), Polyspace (polyhedras) ...

Outline

Overview

Principles

Weakest Preconditions

Abstract Interpretation

Value-Set Analysis (VSA)

Conclusion

A general framework : abstract interpretation

Although this theory has been invented here in Grenoble ...

A general framework : abstract interpretation

Although this theory has been invented here in Grenoble ...

.. . let's jump to Dillig's slides (from UT Austin, Texas) !

Outline

Overview

Principles

Weakest Preconditions

Abstract Interpretation

Value-Set Analysis (VSA)

Conclusion

Analysis example: Value-Set Analysis

Objective:

compute a (super)-set of possible values of each variable at each program location...

$$
\operatorname{Env}(x, l)=\text { value set of variable } \mathrm{x} \text { at program location } 1
$$

Several possible abstract domains to express these sets:

- bounded value sets (k -sets)

$$
\text { ex: } \operatorname{Env}(x, l)=\{0,4,9,10\}, \operatorname{Env}(y, l)=\{1\}, \operatorname{Env}(z, l)=\top
$$

- intervals ex: $\operatorname{Env}(x, I)=[2,8], \operatorname{Env}(y, I)=[-\infty, 7], \operatorname{Env}(z, I)=[-\infty,+\infty]$
- differential bounded matrix (DBM)
ex: $\operatorname{Env}(I)=x-y<10 \wedge z<0$
- polyhedra (conjonction of linear equations)
ex: $\operatorname{Env}(I)=x+y \geq 10 \wedge z<0$
- etc.

VSA with intervals (example 1)

```
1. x := x+y ;
if x>0 then
    2. y:= x + 2
else
    3. y:= -x
4. fi
5. return x+y
```

Asumming (pre-condition) that:

$$
x \in[-3,3], y \in[-1,5]
$$

compute $\operatorname{Env}(x, I)$ and $\operatorname{Env}(y, I)$ for each program location I what is the set of return values ?

Computing intervals on expressions

Syntax of expressions

$$
e \rightarrow n|x| e+e|e \times e| \ldots
$$

Computation rules
Val(e, Env) is the interval associated to e within Env

Computing intervals on expressions

Syntax of expressions

$$
e \rightarrow n|x| e+e|e \times e| \ldots
$$

Computation rules
Val(e, Env) is the interval associated to e within Env

$$
\operatorname{Val}(n, E n v)=[n, n]
$$

Computing intervals on expressions

Syntax of expressions

$$
e \rightarrow n|x| e+e|e \times e| \ldots
$$

Computation rules
Val(e, Env) is the interval associated to e within Env

$$
\begin{aligned}
\operatorname{Val}(n, E n v) & =[n, n] \\
\operatorname{Val}(x, E n v) & =\operatorname{Env}(x)
\end{aligned}
$$

Computing intervals on expressions

Syntax of expressions

$$
e \rightarrow n|x| e+e|e \times e| \ldots
$$

Computation rules
Val(e, Env) is the interval associated to e within Env

$$
\begin{aligned}
\operatorname{Val}(n, \text { Env })= & {[n, n] } \\
\operatorname{Val}(x, E n v)= & \operatorname{Env}(x) \\
\operatorname{Val}(e 1+e 2, \text { Env })= & {[a+c, b+d] \text { where } } \\
& \operatorname{Val}(e 1, E n v)=[a, b] \wedge \operatorname{Val}(e 2, E n v)=[c, d]
\end{aligned}
$$

Computing intervals on expressions

Syntax of expressions

$$
e \rightarrow n|x| e+e|e \times e| \ldots
$$

Computation rules
Val(e, Env) is the interval associated to e within Env

$$
\begin{aligned}
\operatorname{Val}(n, E n v)= & {[n, n] } \\
\operatorname{Val}(x, E n v)= & \operatorname{Env}(x) \\
\operatorname{Val}(e 1+e 2, E n v)= & {[a+c, b+d] \text { where } } \\
& \operatorname{Val}(e 1, E n v)=[a, b] \wedge \operatorname{Val}(e 2, E n v)=[c, d] \\
\operatorname{Val}(e 1 \times e 2, E n v)= & {[x, y] \text { where } } \\
& \operatorname{Val}(e 1, E n v)=[a, b] \wedge \operatorname{Val}(e 2, E n v)=[c, d] \\
& x=\min (a \times c, a \times d, b \times c, b \times d) \\
& y=\max (a \times c, a \times d, b \times c, b \times d)
\end{aligned}
$$

Intervals propagation

Propagation rules along the statement syntax:

- assignment

$$
\{E n v 1\} \times:=e\{E n v 2\}
$$

where

$$
\operatorname{Env2}(x)=\operatorname{Val}(e, \operatorname{Env} 1) \wedge \operatorname{Env2}(y)=\operatorname{Env} 1(x) \text { for } y \neq x
$$

Intervals propagation

Propagation rules along the statement syntax:

- assignment

$$
\{E n v 1\} \mathrm{x}:=\mathrm{e}\{E n v 2\}
$$

where

$$
\operatorname{Env2}(x)=\operatorname{Val}(e, \operatorname{Env1}) \wedge \operatorname{Env2}(y)=\operatorname{Env1}(x) \text { for } y \neq x
$$

- sequence

$$
\{E n v 1\} s 1 ; s 2\{E n v 2\}
$$

where

$$
\{E n v 1\} s 1\{E n v 3\} \wedge\{E n v 3\} s 2\{E n v 2\}
$$

Intervals propagation

Propagation rules along the statement syntax:

- assignment

$$
\{E n v 1\} \mathrm{x}:=\mathrm{e}\{E n v 2\}
$$

where

$$
\operatorname{Env2}(x)=\operatorname{Val}(e, \operatorname{Env1}) \wedge \operatorname{Env2}(y)=\operatorname{Env1}(x) \text { for } y \neq x
$$

- sequence

$$
\{E n v 1\} s 1 ; s 2\{E n v 2\}
$$

where

$$
\{E n v 1\} s 1\{E n v 3\} \wedge\{E n v 3\} s 2\{E n v 2\}
$$

- conditionnal

$$
\{E n v\} \text { if (b) then s1 else s2 }\left\{E n v^{\prime}\right\}
$$

where

- $\{E n v \cap \operatorname{Val}(b, E n v)\}$ s1 \{Env1\}
- \{Env $\cap \operatorname{Val}(\neg \mathrm{b}$, Env $)\}$ s2 $\{E n v 2\}$
- Env' = Env1 \sqcup Env2
$\left(\operatorname{Env}^{\prime}(x)\right.$ is the smallest interval containing Env1 (x) and $\left.\operatorname{Env2}(x), \forall x\right)$

Iteration ? (example 1)

```
1. x : = 0 ;
while (x < 2) do
    2. x := x+1
3. end
4. return x
```

compute $\operatorname{Env}(x, I)$ for each program location I, where ...

$$
\operatorname{Env}(x, 2)=\operatorname{Env}(x, 1) \sqcup \operatorname{Env}(x, 3)
$$

Iteration ? (example 1)

```
1. x : = 0 ;
while (x < 2) do
    2. x := x+1
3. end
4. return x
```

compute $\operatorname{Env}(x, I)$ for each program location I, where ...

$$
\operatorname{Env}(x, 2)=\operatorname{Env}(x, 1) \sqcup \operatorname{Env}(x, 3)
$$

Actually, what we aim to compute is the least solution of function Env, i.e:

$$
\operatorname{Env}^{0}(\perp, l) \sqcup \operatorname{Env}^{1}(\perp, l) \sqcup \operatorname{Env}^{2}(\perp, l) \sqcup \ldots \sqcup \operatorname{Env}^{k}(\perp, l) \sqcup \ldots
$$

Iteration ? (example 2)

```
1. x : = 0 ;
while (x < 1000) do
    2. x := x+1
3. end
4. return x
```

Compute $\operatorname{Env}(x, I)$ for each program location I ...

Iteration ? (example 2)

```
1. x : = 0 ;
while (x < 1000) do
    2. x := x+1
3. end
4. return x
```

Compute $\operatorname{Env}(x, I)$ for each program location I ...

What happens if we replace $\mathrm{x}:=\mathrm{x}+1$ by $\mathrm{x}:=\mathrm{x}-1$?

Iteration ? (example 2)

```
1. x : = 0 ;
while (x < 1000) do
    2. x := x+1
3. end
4. return x
```

Compute $\operatorname{Env}(x, I)$ for each program location I ...

What happens if we replace $\mathrm{x}:=\mathrm{x}+1$ by $\mathrm{x}:=\mathrm{x}-1$?

How to cope with such loooong, or even infinite, computations ?

Widening

For a lattice (E, \leq), we define $\nabla: E \times E \rightarrow E$
∇ is a (pair-)widening operator if and only if

1. Extrapolation:

$$
\forall x, y \in E . x \leq x \nabla y \wedge y \leq x \nabla y
$$

Widening

For a lattice (E, \leq), we define $\nabla: E \times E \rightarrow E$
∇ is a (pair-)widening operator if and only if

1. Extrapolation:

$$
\forall x, y \in E . x \leq x \nabla y \wedge y \leq x \nabla y
$$

2. Enforce the convergence of $(\operatorname{Env}(x, /))^{n \geq 0}$ by computing at each / the limit of:

$$
\begin{gathered}
x_{0}=\perp \\
X_{i}= \begin{cases}X_{i-1}, & \text { if }\left(X_{i-1}, l\right) \subseteq X_{i-1} \\
X_{i-1} \nabla \operatorname{Env}\left(X_{i-1}, l\right), & \text { otherwise }\end{cases}
\end{gathered}
$$

$\left(X_{n}\right)_{n \geq 0}$ is ultimately stationnary \ldots
\rightarrow open "unstable" bounds (jumping over the fix-point) !

Widening on intervals

Definition
$[a, b] \nabla[c, d]=[e, f]$ where,

- $\mathrm{e}=$ if $c<a$ then $-\infty$ else a
- $\mathrm{f}=$ if $b<d$ then $+\infty$ else b

Widening on intervals

Definition

$[a, b] \nabla[c, d]=[e, f]$ where,

- $\mathrm{e}=$ if $c<a$ then $-\infty$ else a
- $\mathrm{f}=$ if $b<d$ then $+\infty$ else b

Examples

- $[2,3] \nabla[1,4]$?
- $[1,4] \nabla[2,3]$?
- $[1,3] \nabla[2,4]$?

Back to the previous example

```
1. x : = 0 ;
while (x < 1000) do
    2. x := x+1
3. end
4. return x
```

$$
\operatorname{Env}(x, 2)_{n+1}=\operatorname{Env}(x, 2)_{n} \nabla\left(\operatorname{Env}(x, 1)_{n} \sqcup \operatorname{Env}(x, 3)_{n}\right)
$$

$$
\begin{aligned}
& \operatorname{Env}(x, 2)_{1}=[0,0] \\
& \operatorname{Env}(x, 2)_{2}=[0,1] \\
& \operatorname{Env}(x, 2)_{3}=[0,999] \\
& \operatorname{Env}(x, 3)_{3}=[0,1000]
\end{aligned}
$$

\rightarrow stable solution ...

Back to the previous example

```
1. x : = 0 ;
while (x < 1000) do
    2. x := x+1
3. end
4. return x
```

$$
\operatorname{Env}(x, 2)_{n+1}=\operatorname{Env}(x, 2)_{n} \nabla\left(\operatorname{Env}(x, 1)_{n} \sqcup \operatorname{Env}(x, 3)_{n}\right)
$$

$$
\begin{aligned}
& \operatorname{Env}(x, 2)_{1}=[0,0] \\
& \operatorname{Env}(x, 2)_{2}=[0,1] \\
& \operatorname{Env}(x, 2)_{3}=[0,999] \\
& \operatorname{Env}(x, 3)_{3}=[0,1000]
\end{aligned}
$$

\rightarrow stable solution ... but not precise enough ?

$$
\operatorname{Env}(x, 4)_{3}=[1000,+\infty]
$$

Narrowing

lattice $(E, \leq), \triangle: E \times E \rightarrow E$
Δ is a (pair-)narrowing operator if and only if

1. (abstract) intersection

$$
\forall x, y \in E . x \cap y \leq x \triangle y
$$

2. Enforce the convergence of $\left(Y_{n}\right)_{n \geq 0}$:

$$
Y_{n}= \begin{cases}\lim X_{i}, & \text { if } i=0 \\ Y_{i-1} \triangle \operatorname{Env}\left(Y_{i-1}, l\right), & \text { otherwise }\end{cases}
$$

$\left(Y_{n}\right)_{n \geq 0}$ is ultimately stationnary \ldots
\rightarrow refines open bounds !

Narrowing on intervals

$[a, b] \Delta[c, d]=[e, f]$ where,

- $\mathrm{e}=$ if $a=-\infty$ then c else a
- $\mathrm{f}=$ if $b=+\infty$ then d else b

Examples

- $[2,3] \triangle[1,+\infty]$?
- $[1,4] \triangle[-\infty, 3]$?
- $[1,3] \triangle[+\infty,-\infty]$?

Back (again !) to the previous example

```
1. x : = 0 ;
while (x < 1000) do
    2. x := x+1
3. end
4. return x
```

$$
\operatorname{Env}(x, 2)_{n+1}=\operatorname{Env}(x, 2)_{n} \triangle\left(E n v(x, 1)_{n} \sqcup \operatorname{Env}(x, 3)_{n}\right)
$$

$$
\begin{aligned}
\operatorname{Env}(x, 3)_{1} & =[0,1000] \\
\operatorname{Env}(x, 4)_{1} & =[1000,+\infty] \\
\operatorname{Env}(x, 4)_{2} & =[1000,1000]
\end{aligned}
$$

\rightarrow stable solution ...

Outline

Overview

Principles

Weakest Preconditions

Abstract Interpretation

Value-Set Analysis (VSA)

Conclusion

Challenges for static analysis

Accuracy vs scalability trade-off ...

- inter-procedural analysis (+ recursivity ...)
- multi-threading
- dynamic memory allocation
- modular reasonning
- libraries (+ legacy code)
- etc.

Application to vulnerability detection ?

Clearly may provide some useful features:

- out-of-bounds array access
- arithmetic overflows
- incorrect memory access (null pointer, mis-aligned address)
- use-after-free
- etc.

Application to vulnerability detection?

Clearly may provide some useful features:

- out-of-bounds array access
- arithmetic overflows
- incorrect memory access (null pointer, mis-aligned address)
- use-after-free
- etc.

But still some limitations:

- exploitability analysis (beyond standard program semantics) ?
- relevant and accurate memory model (for heap and stack)
- self-modifying code (e.g., malwares)
- binary code analysis (see next slide !)

Static analysis on binary code

Static analysis relies on a (clear) program semantics

- can be done at the assembly-level (or IR)
- but disassembling is undecidable ...
- ... and disassemblers may rely on static analysis ! (to retrieve the program CFG)

Static analysis on binary code

Static analysis relies on a (clear) program semantics

- can be done at the assembly-level (or IR)
- but disassembling is undecidable ...
- ... and disassemblers may rely on static analysis ! (to retrieve the program CFG)

Static analysis on low-level code is difficult

- no types (a single type for value, addresses, data, code, ...)
- address computation is pervasive ...
ex: mov eax, [ecx + 42]
- function bounds cannot always be retrieved \rightarrow many un-initialized memory locations
- sacalability issues
- etc.

What help for "security analysis" ?

"security analysis" = vulnerability detection

A pragmatic approach:

1. annotate the code with "vulnerability checks" (e.g., frama-c -rte) i.e., assertions to detect integer overflows, invalid memory accesses (arrays, pointers), etc

What help for "security analysis" ?

"security analysis" = vulnerability detection

A pragmatic approach:

1. annotate the code with "vulnerability checks" (e.g., frama-c -rte) i.e., assertions to detect integer overflows, invalid memory accesses (arrays, pointers), etc
2. run a VSA
\rightarrow reveals a lot of hot spots (= unchecked assertions)

What help for "security analysis" ?

"security analysis" = vulnerability detection

A pragmatic approach:

1. annotate the code with "vulnerability checks" (e.g., frama-c -rte) i.e., assertions to detect integer overflows, invalid memory accesses (arrays, pointers), etc
2. run a VSA
\rightarrow reveals a lot of hot spots (= unchecked assertions)
3. add user-defined assertions when possible ...
e.g., function pre/post conditions, loop invariants, extra information ... \rightarrow consider proving (some of) these assertions ?

What help for "security analysis" ?

"security analysis" = vulnerability detection

A pragmatic approach:

1. annotate the code with "vulnerability checks" (e.g., frama-c -rte) i.e., assertions to detect integer overflows, invalid memory accesses (arrays, pointers), etc
2. run a VSA
\rightarrow reveals a lot of hot spots (= unchecked assertions)
3. add user-defined assertions when possible ...
e.g., function pre/post conditions, loop invariants, extra information ... \rightarrow consider proving (some of) these assertions ?
4. run the VSA again...

What help for "security analysis" ?

"security analysis" = vulnerability detection

A pragmatic approach:

1. annotate the code with "vulnerability checks" (e.g., frama-c -rte) i.e., assertions to detect integer overflows, invalid memory accesses (arrays, pointers), etc
2. run a VSA
\rightarrow reveals a lot of hot spots (= unchecked assertions)
3. add user-defined assertions when possible ... e.g., function pre/post conditions, loop invariants, extra information... \rightarrow consider proving (some of) these assertions ?
4. run the VSA again...
\Rightarrow a set of potential vulnerabilities remains, to be discharged by other means, possibly on a program slice (false positive ? real bug but harmless w.r.t security ? real vulnerability ?)

What help for "security analysis" ?

"security analysis" = vulnerability detection

A pragmatic approach:

1. annotate the code with "vulnerability checks" (e.g., frama-c -rte) i.e., assertions to detect integer overflows, invalid memory accesses (arrays, pointers), etc
2. run a VSA
\rightarrow reveals a lot of hot spots (= unchecked assertions)
3. add user-defined assertions when possible... e.g., function pre/post conditions, loop invariants, extra information... \rightarrow consider proving (some of) these assertions ?
4. run the VSA again...
\Rightarrow a set of potential vulnerabilities remains, to be discharged by other means, possibly on a program slice (false positive ? real bug but harmless w.r.t security ? real vulnerability ?)

Rk: some static analysis tools also provide bug finding facilities (i.e., no false postives, . . . but false negatives instead)

Tool examples

Disclaimer: non limitative nor objective list! (see wikipedia for more info)
Source-level tools

- Astrèe
- Coverity, Polyspace, CodeSonar, HP Fortify, VeraCode
- Frama-C, Fluctuat
- etc, etc, ...

Tool examples

Disclaimer: non limitative nor objective list! (see wikipedia for more info)
Source-level tools

- Astrèe
- Coverity, Polyspace, CodeSonar, HP Fortify, VeraCode
- Frama-C, Fluctuat
- etc, etc, ...

Some binary-level tools

- x86-CodeSurfer
- VeraCode
- Angr
- BinSec plateform
- etc?

You can see also:

- the CERT webpages
- the Microsoft "Secure Development Lifecycle" ...

