
Software security, secure programming

A brief introduction to Frama-C

Master M2 Cybersecurity

Academic Year 2024 - 2025

The Frama-C plateform

An open-source collaborative plateform for the analysis of C programs
http://frama-c.com/index.html

▶ developed by the CEA List and INRIA Saclay

▶ offers an integrated set of code analysis plug-ins:

▶ runtime-error detection (RTE)
↪→ annotate the code with assertions ensuring absence of runtime errors
and undefined behaviors;

▶ value analysis (EVA)
↪→ over-approximate of the program behavior

▶ weakest-precondition computations (WP)
↪→ semi-automated proof technique of program properties

▶ dependency analysis and slicing

▶ control-flow-grah and call-graph computations

▶ etc.

→ we are going to use essentially RTE, EVA, and (possibly) WP . . .

2 / 9

Value-Analysis1

Goal: staticaly compute an over-approximated set of values, for each
variable, at each program location.

Principle

Abstract Interpretation

▶ analyze the program behavior using an abstract semantics
(i.e., based on an abstract domains to express values and operations)

▶ loop behaviors are over-approximated as fix-point computation,
termination being accelerated/enforced using widening & narrowing
operators.

Outcomes
▶ help to detect potential runtime errors (arithmetic overflow, invalid

memory access, etc.)
▶ may produce false positives (i.e., non existing bugs) when the

over-approximation is too coarse . . .

1(more to come during the next lecture !)
3 / 9

WP computations2

Principle

Weakest-Precondition computations

▶ Given a program P and a property Ψ, “compute” the more general
pre-condition Φ on P “inputs” such that the (post-condition) Ψ holds
if/when P terminates;

▶ Not a fully automated computation, loop invariants and loop
termination arguments may have to be user-provided . . .

Outcomes
▶ help to refine the results provided by EVA, adding more precise

information on the program behavior;
▶ still limited by the user-provided information and the underlying solver

capabilites . . .

2(more to come during the next lecture !)
4 / 9

Using Frama-C in our “software security” context: possible workflow

1. Generate the runtime assertions (Rtegen)
frama-c-gui -rte example.c

→ verify that you understand them . . .

2. Run the value analysis (EVA)
frama-c-gui -eva example.c

→ verify that you understand the results
Why some (obvious ?) assertions may not be validated ?

3. If you thing the code is incorrect/unsecure, try to strengthen it and goto 1

4. Otherwise, if you think the code is correct:
▶ try to add some extra assertions (and loop invariants ?)
▶ optionally, try to use WP to prove them ?
▶ re-run EVA with these new assertions . . .

All these plugins can also be conveniently accessed through the Analyses
menu (Rtegen, Eva and WP) of the graphical user interface:

frama-c-gui example.c

5 / 9

Using Frama-C in our “software security” context: possible workflow

1. Generate the runtime assertions (Rtegen)
frama-c-gui -rte example.c

→ verify that you understand them . . .

2. Run the value analysis (EVA)
frama-c-gui -eva example.c

→ verify that you understand the results
Why some (obvious ?) assertions may not be validated ?

3. If you thing the code is incorrect/unsecure, try to strengthen it and goto 1

4. Otherwise, if you think the code is correct:
▶ try to add some extra assertions (and loop invariants ?)
▶ optionally, try to use WP to prove them ?
▶ re-run EVA with these new assertions . . .

All these plugins can also be conveniently accessed through the Analyses
menu (Rtegen, Eva and WP) of the graphical user interface:

frama-c-gui example.c

5 / 9

Using Frama-C in our “software security” context: possible workflow

1. Generate the runtime assertions (Rtegen)
frama-c-gui -rte example.c

→ verify that you understand them . . .

2. Run the value analysis (EVA)
frama-c-gui -eva example.c

→ verify that you understand the results
Why some (obvious ?) assertions may not be validated ?

3. If you thing the code is incorrect/unsecure, try to strengthen it and goto 1

4. Otherwise, if you think the code is correct:
▶ try to add some extra assertions (and loop invariants ?)
▶ optionally, try to use WP to prove them ?
▶ re-run EVA with these new assertions . . .

All these plugins can also be conveniently accessed through the Analyses
menu (Rtegen, Eva and WP) of the graphical user interface:

frama-c-gui example.c

5 / 9

Using Frama-C in our “software security” context: possible workflow

1. Generate the runtime assertions (Rtegen)
frama-c-gui -rte example.c

→ verify that you understand them . . .

2. Run the value analysis (EVA)
frama-c-gui -eva example.c

→ verify that you understand the results
Why some (obvious ?) assertions may not be validated ?

3. If you thing the code is incorrect/unsecure, try to strengthen it and goto 1

4. Otherwise, if you think the code is correct:
▶ try to add some extra assertions (and loop invariants ?)
▶ optionally, try to use WP to prove them ?
▶ re-run EVA with these new assertions . . .

All these plugins can also be conveniently accessed through the Analyses
menu (Rtegen, Eva and WP) of the graphical user interface:

frama-c-gui example.c

5 / 9

More on the value analysis plug-in

(Evolved) Value Analysis
▶ Based on Abstract Interprattion to compute abstract variable domains
▶ Fully automated, but can be user-guided through ACSL annotations
▶ mainly used to discharge runtime-error asssertions (RTE), but internaly

used by other plugins . . .

Some practical informations
▶ abstract domains = value sets and intervals (non relational domains)
▶ controlling approximations (time vs memory)

▶ syntactic loop unrolling (-ulevel)
▶ semantic unrolling (-slevel)

→ useful when widenning operators are too coarse
▶ adding ACSL loop invariants, or extra assertions . . .

6 / 9

More on WP: expressing assertions with ACSL
Ansi-C Specification Language

▶ first order logic

▶ use C types (int, float, pointers, arrays, etc.) + Z + R

▶ built-in predicates for memory access: valid, separated
→ allows to express memory-level requirements (beyond the C
semantics)

▶ used as special comments:

/*@ */

⇒ have a look to the short tutorial:
http://frama-c.com/acsl_tutorial_index.html

7 / 9

Example of assertion

▶ valid memory access:
\valid(a) means that address a refers to
a memory location correctly allocated (w.r.t. the C type of a)

\valid(p)
\valid(t+i)

\valid(t+)(0..n-1)

▶ pre- and post- conditions

\requires x<= n && \valid(t+x)
\ensures (t+x) = x

▶ loop invariants, assertions

loop invariant z==x+y
assert x>=0

▶ etc.

8 / 9

Lab Session

Objective:
Evaluate the strengths and weaknesses of static analysis tools
(like Frama-C) for source-level vulnerability detection . . .

1. Play with the examples/exercices provided in the course web page . . .

2. You can also use Frama-C on the “grub” example (in addition with
AFL++, Klee, etc.)

9 / 9

	Overview

