
Univ. Grenoble Alpes UFR IM2AG
MoSIG 1 Year 2021-2022

Programming Language Semantics and Compiler Design
—

Midterm Exam of Wednesday 27 October

• Duration: 1h20.
• 3 sheets of A4 paper are authorized.
• Any electronic device is forbidden.
• The grading scale is indicative.
• Exercises are independent.

• The care of your submission will be taken into account.
• It is recommended to read each exercise till the end before an-

swering. Indicate your group number on your submission.
• If you don’t know how to answer to some question, you may

assume the result and proceed with the next question.
• The maximal grade is obtained with 20 points.

begin
var x := 42;
var y := 21;
proc p is x := x * 2
proc q is y := y * 2;
call p;
begin

proc q is x := x * 2;
call q

end
end

(a) Program for Exercise 1.

p := m ;
acc := 1 ;
while acc <= n do

p := p + m ;
acc := acc + 1

od

(b) Program for Exercise 2.

switch (a) {
case n1:

S1;
break;

case n2:
S2;

...
case nk:

Sk;
break;

default:
S

}

(c) Example of program in Exercise 3.

Figure 1: Some code snippets.

Answer of exercise 1
1. It can be obtained following the same principle as in the course.
2. The semantics of the program does not change with static scope for variables and procedures. Statement

call q calls the same procedure in both cases.

Answer of exercise ??
1. Let us define S0, S1 as the following sub-programs:

• S0: p := m; acc := 1, and
• S1: p := p + m; acc := acc + 1, respectively.

The invariant is: I ≡ p = acc × m ∧ acc ≤ n + 1.
We first show that the invariant propagates through the loop body and show that the condition obtained after
the loop body implies the postcondition:

{I ∧ acc ≤ n} p := p + m {p = (acc + 1) × m ∧ acc ≤ n} {p = (acc + 1) × m ∧ acc ≤ n} acc := acc + 1 {I}
{acc ≤ n ∧ I} S1 {I}

{I} while acc ≤ n do S1 od {I ∧ n < acc}
{I} while acc ≤ n do S1 od {prod = m × (n + 1)}

We consider the initialization and essentially show that before the loop, the initialization ensures the invariant.

1

{m = m} p := m {p = m} {p = m} acc := 1 {I}
{m = m} S0 {I}
{n ≥ 1} S0 {I}

Finally, using the rule for sequential composition, we obtain:

{n ≥ 1} S0 {I} {I} while acc ≤ n do S1 od {prod = m × (n + 1)}
{n ≥ 1} S {prod = m × (n + 1)}

Answer of exercise ??
1. An example of such program is given below:

switch (x + 2) {
case 3:

skip;
break;

case 2:
x := x * y;

default:
x := 0

}

2. The grammar for case_list is given below:

case_list ::= case n: S; break_option case_list | case n: S

where n is a denotation of a natural number and S is a statement.
3. The grammar for break_option is given below:

break_option ::= break; | epsilon

4. Non-terminal configurations are extended with a an integer that is the semantics of the arithmetic expression
present in the swtich part. That is, the set of non-terminal configurations is a subset of Stm × State × Z.
In terminal configurations, one can find the state as well as a Boolean for recording whether a break statement
has been encountered. That is, the set of terminal configurations is a subset of State × B.

5. The rules are given below:

(case_list, σ, v) → (σ′, b)
(case n : S; break_option case_list, σ, v) → (σ′, b) N (n) ̸= v

(S, σ) → σ′

(case n : S; break; case_list, σ, v) → (σ′, tt) N (n) = v

(S, σ) → σ′ (case_list, σ′, v) → (σ′′, b)
(case n : S; case_list, σ, v) → (σ′′, b) N (n) = v

6. The semantic rules are given below:

(case_list, σ, A[a]σ) → (σ′, tt)
(switch(a) {case_list default_option}, σ) → σ′

(case_list, σ, A[a]σ) → (σ′, ff)
(switch(a) {case_list }, σ) → σ′

(case_list, σ, A[a]σ) → (σ′, ff) (S, σ′) → σ′′

(switch(a) {case_list default : S}, σ) → σ′′

2


