Univ. Grenoble Alpes UFR IM?AG
MoSIG 1 Year 2021-2022

Programming Language Semantics and Compiler Design

Midterm Exam of Wednesday 27 October

« Duration: 1h20. The care of your submission will be taken into account.

It is recommended to read each exercise till the end before an-
swering. Indicate your group number on your submission.

o 3 sheets of A4 paper are authorized.

o Any electronic device is forbidden.

.

If you don’t know how to answer to some question, you may

* The grading scale is indicative. assume the result and proceed with the next question.

« Exercises are independent.

The maximal grade is obtained with 20 points.

switch (a) {

begin case nl:
var x := 42; S1;
var y := 21; pi=m; break;
proc p is x :=x * 2 acé _=’1 . case n2:
i o= . B H .
pr;; Qisy =y *2 while acc <= n do 52;
call p; = +m e
begin P 1‘)_ ’ case nk:
. o . 9 acc :=acc + 1 Sk
proc q is x := x H od H
call q break;
end (b) Program for Exercise 2. default:
end S

(a) Program for Exercise 1.
(c) Example of program in Exercise 3.

Figure 1: Some code snippets.

Exercise 1 — Natural Operational Semantic of Proc (3 points)

Let us consider the Proc program depicted in Figure 1a.

1. (2 points) Compute the natural operational semantics of the program by either computing its derivation
tree or giving the procedure and variable environments before and after each program location. Consider an
initial variable environment py = [] and state o9 = []. For this, consider dynamic scope for variables and
procedures.

2. (1 point) Is the semantics of the program with static scope for variables and procedures different? If yes,
indicate the final state reached by the program. Otherwise, justify why they do not differ.

Exercise 2 — Axiomatic Semantic (5 points)

1. Prove that the following Hoare triple is valid {n > 1} S , where S is the program in
Figure 1b.
For this, you may use the invariant I =p =... Aacc < ..., to be completed.

Exercise 3 — Natural Operational Semantics - case construct (17 points)

We are interested in language While and its natural operational semantics as defined in the course. We want
to extend the language to account for switch-case statements. An example is given in Figure lc. In code snippet, a
is an arithmetic expression, S1,...,Sk are statements, and n1, . ..,nk are numerals (denotations of natural numbers).
Moreover, the break statements at the end of each case are optional. The default case is also optional.

The informal semantics of this statement is to evaluate the value of arithmetic expression a and go through the
case list. Going over the case list is done in order. The first time the numeral attached to a case statement denotes
a natural number which value is the value of the arithmetic expression, then the corresponding statement is selected
for execution. The statement is executed, which modifies the current state. If there is a break statement at the end
of the statement, the execution of the switch-case construct is over. If there is no break statement, the execution
proceeds with the next case element of the list (and a case statement can be executed later). Once there is no
remaining case statements, if no break statement has been encountered, the statement associated with default case
is executed.

In this exercise, we first formalize the syntax of the switch-case statements and then provide them with a natural
operational semantics. For this, we start by considering the following incomplete grammar.

swtich-statement ::= swith (a) { case_list default_option }
case_list ::=
break_option : e
default_option ::= default: S | epsilon

where epsilon denotes the empty sequence, case_list is a list of case statements, break_option and default_option
are optional break and default case statements (either the corresponding statement or empty).

1. (1 point) Give an example of switch-case statement, with at least two cases and a default one.

2. (1 point) Recall that a case_list is a non-empty list of case statements, where each case statement is of
the form case n: S break_option, where case is a keyword, n is a denotation of a natural number and
break_option is a symbol referring to the rule for optional break statements. Define the grammar rule of the
case_list, as per the grammar sketched before.

3. (1 point) An optional break statements consists of either the break keyword or is empty. Give the corre-
sponding grammar rule by completing the following one: break_option ::=

4. (2 points) We consider now the semantics. In the rules, we will distinguish the execution of the case_list
apart from the complete switch-case statement. We start with the definition of the semantics for the case_list.
Statements in the case list execute in an extended configuration where, in addition to the usual statement and
state, there is a value v € Z which corresponds to the evaluation of the arithmetic expression a in switch(a).
This value is part of the (starting) non-final configurations. Moreover, after a case_list executes (in final
configuration), we should record with a boolean whether a break statement has been encountered (in one of
the case statements) to later determine whether the default case should be executed.

Define the sets of all possible non-terminal configurations and terminal configurations.

5. (6 points) In executing a statement of the form case n: S break_option with a value v for the arithmetic
expression a, there are two cases: either the natural number denoted by n is equal to v and the statement
executes, otherwise the execution proceeds with the next case statement in the list. When the case statement
executes, the statement modifies the state. Depending on whether there is a break statement at the end, the
information is recorded as a Boolean in the final configuration.

One can thus distinguish three possible rules as indicated in the skeletons of rules below. Complete the rules.

list,o,..) = (...
(case_: 1‘5 o,...) A() N # 0
(case n: S;break option case list,...,...) = (...,...)
S,o) = ... S,o)—> ... list,...y..) > (ceny e
(S,0) i N = v (S,0) (case .1s)= ()/\/(n)=v
(case n: S;break; case list,...,...) — (...,...) (casen: S;case_list,...,...) = (...,...)

6. (6 points) We now consider the rules for the switch-case statements, which reuse the rules found in the
previous question. The switch-case statement executes as follows: the arithmetic expression is evaluated and
the value is used to execute the list of case statements, then if no break statement has been encountered the
default case executes (otherwise, it does not).

Complete the following semantic rules providing a semantics to switch-case statements.

(case_list,o,...) — (o', tt)
(switch(a) {case_list default option},o) — ...

(case list,o,...) = (...,...) (case 1list,o,...) = (c..,.o) (oeyen) =i
(switch(a) {case list},o) — ... (switch(a) {case 1list default:S},0) — ...

