T'ytDy|T, (I, Tp)tDp|Tp (T, Ip)FS
Block (Tv,Tp) Fbegin Dy Dp S end

Empt; AT T

proc. pdzcl. (Cv.Tp) el Tp

(Tv,Ip)FS (I'v,Tp[p— proc]) - Dp | I p & DP(Dp)
(T'v,I'p)Fprocpis S; Dp |I'p

Non-empty
proc. decl.

T'p(p) = proc
Call (T'yv,I'p)F callp

Figure 1: Type-checking rules for procedures
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Answer of exercise 1
1. o block statement:
(T'v,I'p) F Dy | T, Ty, Ip)F Dp | T Iy, Te)F S
(Tv,T'r) Fbegin Dy Dp S end

The programm below is rejected by this rule because (for instance !) the block body is not well-typed (it
uses an undefined variable x)

begin x := 0 end

non-empty function declaration:

(Ty,I'p) k- S (Ty,Tp) b e:t (Ty,Tplf = t) F Dp| T f & DF(Dp)
(Ty,Ip) b func fis S ;returne; Dp [T

The programm below is rejected by this rule because function declaration f is not well-typed (it returns
an undefined variable x)

begin func f is skip ; return x ; end

« empty function declaration:

(Tv.Lr)Fe|TF

This rule is always satisfied ...

function call

Lrp(f) =t
(Ty,Tp)Fcallf:t
The program below is rejected by this rule because function £ is not defined

begin call f end

—_

. Complete the following type checking rules for the assignment:

Fx = e:Void

2. Complete the following type checking rules for sequential composition
Syt =Sy : Void Syt
Sy So:t FSy; Soit

w

. Complete the following type checking rules for conditional statement
Syt Syt
- if e then S| else Sy fi:t
Give the proof tree obtained with your rule for the following code example:

// statement S3
if true then
return true // returns a bool
else
return x+1 // returns an int
fi
This example is not well-typed with respect to this type system since the two alternatives do not return
values of the same type:

- return true : Bool F return x+1 : Int
b if e then S; else Sp fi: ...
Since type-checking is performed at compile time, “correct” programs may be rejected. In this example
the “else” branch is not executed and the return value is always true.

'y

. Complete the following type checking rules for iterative statement:
A first solution is to simply check that the loop body satisfies P (i.e., it contains a “return” statement on
each of its execution paths):
FS:t
Fwhileedo Sod:t
According to this solution P is not satisfied if the loop is never executed, and the loop body cannot be
executed more than once (since each of its execution path contains a return statement). A better solution
could be to consider that iterative statements never satisfy P, and hence cannot be used as the last
statement of a function ...:

F while e do S od : Void

. Rewrite the non-empty function declaration rule taking into account this new syntactic definition of functions:

Tv,Trp)E S FS:t (Tv,Tplf —t)F Dp | f & DF(Dp)
(T'v,I'p) Ffunc fis S; Dp | T

4. To reject programs containing “dead code”, i.e., code lying after a return statement, we need to use (only) the

following rule when type-checking a sequential composition:

=51 : Void Syt
Sy Se:t

According to this rule only the last statement of a block may return a value.




void main() {
int x ;
int F1(int u) {
int y ;
void G2 (int t) {
int z ;
z=4,;
X = y+x+z+t;
} /* end G2 */
void F20) {
y=3;
G2 (y);
} /* end F2 %/
F20);
return (u+l);
} /* end F1 %/
x=2 ;
x=3+F1(x);
}/* end main */

Figure 2: Program for exercise 77
Answer of exercise 2

1. see the stack layout on Figure 3 below.

2. In procedure F2, give the sequence of instructions associated with G2(y).

// @y = Env(F1)-4
// LS(G2)=LS(F2)=Env(F1)

LD R1, [FP+8] // R1 = L8(F2) = Env(F1)
LD R2, [R1-4] // R2 =y

push(y) // push parameter y
push(R1) // push Env(F1) = LS(G2)
CALL G2

ADD SP, SP, #8 // clean the stack
3. In procedure G2, give the sequence of instructions associated with x=y+x+z+t.

// @x = Env(main)-4
// @y = Env(F1)-4
// @z = Env(G2)-4
// @t = Env(G2)+12

LD R1, [FP+8] // Rl = LS(G2) = Env(F1)
LD R2, [R1-4] // R2 =y

LD R3, [R1+8] // R3 = LS(F1) = Env(main)
LD R4, [R3-4] // R4 = x

LD R5, [FP-4] // R5 =z

LD R6, [FP+12] // R6 =t

ADD R7, R2, R& // R7 = y+x
ADD R8, R7, RS  // R8 = y+x+z
ADD R9, R8, R6 // R9 = y+x+z+t
ST R9, [R3-4] // x =R9

4. In function F1, give the sequence of instructions associated with return(u+1).
// @u = Env(F1)+16 (instead of 12, due to the return value of F1 !)

LD R1, [FP+16] // Rl = u
ADD R2, R1, #1 // R2 = u+l

ST R2, [FP+8] // return value for F1
Epilogue
RET

5. In procedure main, give the sequence of instructions associated with x=3+ F1(x).
// @x = Env(main)-4

LD R1, [FP-4] // Rl = x

push(R1) // push param x

push (FP) // push static link of F1 (= Env(Main) )
ADD SP, SP, #4 // allocate space for F1 return value ...
CALL F1

LD R2, [SP] // R2 = F1(x)

ADD SP, SP, #12 // clean the stack ...

ADD R3, R2, #3 // R3 = 3 + F1(x)

ST R3, [FP-4] // x = R3
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Figure 3: Stack layout when G2 is executed
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