T'ytDy|T, (I, Tp)tDp|Tp (T, Ip)FS
Block (Tv,Tp) Fbegin Dy Dp S end

Empt; AT T

proc. pdzcl. (Cv.Tp) el Tp

(Tv,Ip)FS (I'v,Tp[p— proc]) - Dp | I p & DP(Dp)
(T'v,I'p)Fprocpis S; Dp |I'p

Non-empty
proc. decl.

T'p(p) = proc
Call (T'yv,I'p)F callp

Figure 1: Type-checking rules for procedures
Univ. Grenoble Alpes
MoSIG 1

Programming Language Semantics and Compiler Design

UFR IM2AG
Year 2021-2022

Final Exam of Thursday 9 December

. The care of your submission will be taken into account.
Duration: 3h.

Exercises are independent.

5 sheets of A4 paper are authorized.

If you don’t know how to answer to some question, you may
assume the result and proceed with the next question.

Any electronic device is forbidden.

The grading scale is indicative.

The maximal grade is obtained with 20 points.

. ‘ Submit each part on a separate answer sheet (negative point otherwise). ‘

o Care will be taken into account (-1 point in case of lack of care).
« Unreadable parts will be ignored.

Answer of exercise 1
1. o block statement:
(T'v,I'p) F Dy | T, Ty, Ip)F Dp | T Iy, Te)F S
(Tv,T'r) Fbegin Dy Dp S end

The programm below is rejected by this rule because (for instance !) the block body is not well-typed (it
uses an undefined variable x)

begin x := 0 end

non-empty function declaration:

(Ty,I'p) k- S (Ty,Tp) b e:t (Ty,Tplf = t) F Dp| T f & DF(Dp)
(Ty,Ip) b func fis S ;returne; Dp [T

The programm below is rejected by this rule because function declaration f is not well-typed (it returns
an undefined variable x)

begin func f is skip ; return x ; end

« empty function declaration:

(Tv.Lr)Fe|TF

This rule is always satisfied ...

function call

Lrp(f) =t
(Ty,Tp)Fcallf:t
The program below is rejected by this rule because function £ is not defined

begin call f end

—_

. Complete the following type checking rules for the assignment:

Fx = e:Void

2. Complete the following type checking rules for sequential composition
Syt =Sy : Void Syt
Sy So:t FSy; Soit

w

. Complete the following type checking rules for conditional statement
Syt Syt
- if e then S| else Sy fi:t
Give the proof tree obtained with your rule for the following code example:

// statement S3
if true then
return true // returns a bool
else
return x+1 // returns an int
fi
This example is not well-typed with respect to this type system since the two alternatives do not return
values of the same type:

- return true : Bool F return x+1 : Int
b if e then S; else Sp fi: ...
Since type-checking is performed at compile time, “correct” programs may be rejected. In this example
the “else” branch is not executed and the return value is always true.

'y

. Complete the following type checking rules for iterative statement:
A first solution is to simply check that the loop body satisfies P (i.e., it contains a “return” statement on
each of its execution paths):
FS:t
Fwhileedo Sod:t
According to this solution P is not satisfied if the loop is never executed, and the loop body cannot be
executed more than once (since each of its execution path contains a return statement). A better solution
could be to consider that iterative statements never satisfy P, and hence cannot be used as the last
statement of a function ...:

F while e do S od : Void

. Rewrite the non-empty function declaration rule taking into account this new syntactic definition of functions:

Tv,Trp)E S FS:t (Tv,Tplf —t)F Dp | f & DF(Dp)
(T'v,I'p) Ffunc fis S; Dp | T

4. To reject programs containing “dead code”, i.e., code lying after a return statement, we need to use (only) the

following rule when type-checking a sequential composition:

=51 : Void Syt
Sy Se:t

According to this rule only the last statement of a block may return a value.




void main() {
int x ;
int F1(int u) {
int y ;
void G2 (int t) {
int z ;
z=4,;
X = y+x+z+t;
} /* end G2 */
void F20) {
y=3;
G2 (y);
} /* end F2 %/
F20);
return (u+l);
} /* end F1 %/
x=2 ;
x=3+F1(x);
}/* end main */

Figure 2: Program for exercise 77
Answer of exercise 2

1. see the stack layout on Figure 3 below.

2. In procedure F2, give the sequence of instructions associated with G2(y).

// @y = Env(F1)-4
// LS(G2)=LS(F2)=Env(F1)

LD R1, [FP+8] // R1 = L8(F2) = Env(F1)
LD R2, [R1-4] // R2 =y

push(y) // push parameter y
push(R1) // push Env(F1) = LS(G2)
CALL G2

ADD SP, SP, #8 // clean the stack
3. In procedure G2, give the sequence of instructions associated with x=y+x+z+t.

// @x = Env(main)-4
// @y = Env(F1)-4
// @z = Env(G2)-4
// @t = Env(G2)+12

LD R1, [FP+8] // Rl = LS(G2) = Env(F1)
LD R2, [R1-4] // R2 =y

LD R3, [R1+8] // R3 = LS(F1) = Env(main)
LD R4, [R3-4] // R4 = x

LD R5, [FP-4] // R5 =z

LD R6, [FP+12] // R6 =t

ADD R7, R2, R& // R7 = y+x
ADD R8, R7, RS  // R8 = y+x+z
ADD R9, R8, R6 // R9 = y+x+z+t
ST R9, [R3-4] // x =R9

4. In function F1, give the sequence of instructions associated with return(u+1).
// @u = Env(F1)+16 (instead of 12, due to the return value of F1 !)

LD R1, [FP+16] // Rl = u
ADD R2, R1, #1 // R2 = u+l

ST R2, [FP+8] // return value for F1
Epilogue
RET

5. In procedure main, give the sequence of instructions associated with x=3+ F1(x).
// @x = Env(main)-4

LD R1, [FP-4] // Rl = x

push(R1) // push param x

push (FP) // push static link of F1 (= Env(Main) )
ADD SP, SP, #4 // allocate space for F1 return value ...
CALL F1

LD R2, [SP] // R2 = F1(x)

ADD SP, SP, #12 // clean the stack ...

ADD R3, R2, #3 // R3 = 3 + F1(x)

ST R3, [FP-4] // x = R3




Static links z Dynamic links

DL(G2) |——

return @

1 sue

y

by [

return @

™1 SLF2)

y

—* DL(FD

return @

return value

SL(F1)

X

Figure 3: Stack layout when G2 is executed

s3]




