:

UFR IM?AG Grenomemv
- EnsimAg U
UNIVERSITE

N
Se Grenoble
! Alpes

Software security, secure programming

Reverse-engineering from binary code

Master M2 Cybersecurity

Academic Year 2024 - 2025

Outline

Introduction

Software = several knowledge/information levels

v

(formal) models: overall architecture, component behaviors

v

specifications, algorithms, abstract data structures

» source code
objects, variables, types, functions, control and data flows

» possible intermediate representations: Java bytecode, LLVM IR, etc.
assembly
» binary code (relocatable / shared object / executable)

v

Some reverse-engineering settings:
» source level — model level ...
» de-compiling: binary — source level
» disassembling: binary — assembly level
> etc.

2/40

Why and when bothering with binary code ? (1)

3/40

Why and when bothering with binary code ? (1)

— when the source code is not/no longer available

» updating/maintaining legacy code

» “off-the-shell” components (COST), external libraries

» dynamically loaded code (applets, plugins, mobile apps)

> pieces of assembly code in the source

» suspicious files (malware, etc.)

3/40

Why and when bothering with binary code ? (2)

— when the source code is not sufficient

“What You See Is Not What You Execute” [T. Reps]

» untrusted compilation chain
> low-level bugs, at the HW/SW interface

> security analysis
going beyond standard programming language semantics
(optimization, memory layout, undefined behavior, protections, etc.)

4/40

Why and when bothering with binary code ? (2)

— when the source code is not sufficient

“What You See Is Not What You Execute” [T. Reps]

» untrusted compilation chain
> low-level bugs, at the HW/SW interface

> security analysis
going beyond standard programming language semantics
(optimization, memory layout, undefined behavior, protections, etc.)

Beware | Reverse-engineering is restricted by the law
(“Intellectual Property”, e.g. Art. L122-6-1 du Code de la Propriété Intellectuelle)

4/40

Outline

Low-level code representations

Example 1: Java ByteCode (stack machine)’

public static int main()

int x, r;

x=42 ; r=1
while (x>0)
r r+X;
x = x-1;
b

return r ;

}

'use javap -c to produce the bytecode

{

public static int main(java.lang.Stringl[]);
Code:
0: bipush 42
2: istore_1
3: iconst_1
4: istore_2
5: iload_1
6: ifle 20
9: iload_2
10: iload_1
11: imul
12: istore_2
13: iload_1
14: iconst_1
15: isub
16: istore_1
17: goto 5
20: iload_2
21: ireturn

5/40

Example 2: LLVM IR (register based machine)

%0:

%1 = alloca 132, align 4

%x = alloca i32, align 4

%r = alloca i32, align 4
store i32 0, i32* %1

store i32 42, i32* %x, align 4
store i32 1, i32* %r, align 4
br label %2

int main () { l
int x, r;

%2:
x=42 ; r=1 ;
. %3 = load i32* %x, align 4
while (x>0) { %4 = icmp sgt 132 %3, 0
i1 9 9 9
r = r+x; br il %4, label %5, label %11
T [F
x = x-1;
b A
return r ; %5:
} %6 = load i32* %r, align 4
%7 = load i32* %x, align 4 %11:
%8 = mul nsw i32 %6, %7
store i32 %8, 132* %, align 4 %12 = load i32* %r, align 4
%9 = load i32* %x, align 4 ret i32 %12
%10 = sub nsw i32 %9, 1
store i32 %10, i32* %x, align 4
br label %2

CFG for 'main' function

6/40

Example 3: assembly code (x86-64)2

main:
push rbp
mov rbp, rsp
mov DWORD PTR [rbp-4], 42
int main() { mov DWORD PTR [rbp-8], 1
int x, r; Jjmp L2
x=42 ; r=1 ; .L3:
while (x>0) { mov eax, DWORD PTR [rbp-8]
r = rxx; imul eax, DWORD PTR [rbp-4]
x = x-1; mov DWORD PTR [rbp-8], eax
}og sub DWORD PTR [rbp-4], 1
return r ; L2
} cmp DWORD PTR [rbp-4], O
jg .L3
mov eax, DWORD PTR [rbp-8]
pop rbp
ret

2see https://godbolt.org/
7140

Memory layout at runtime (simplified)

Executable code = (binary) file produced by the compiler
— need to be loaded in memory to be executed (using a loader)
However:

» no abolute addresses are stored in the executable code
— decided at “load time”

» not all the executable code is stored in the executable file
(e.g., dynamic libraries)
— lazy binding using relocation tables (e.g., GOT and PLT)

» data memory can be dynamically allocated
data can become code (and conversely ...)

v

> etc.

— the executable file should contain all the information required . ..

8/40

Memory layout at runtime (simplified)

Executable code = (binary) file produced by the compiler
— need to be loaded in memory to be executed (using a loader)
However:

» no abolute addresses are stored in the executable code
— decided at “load time”

» not all the executable code is stored in the executable file
(e.g., dynamic libraries)
— lazy binding using relocation tables (e.g., GOT and PLT)
» data memory can be dynamically allocated
» data can become code (and conversely ...)

> etc.

— the executable file should contain all the information required ...
3 standards executable formats: ELF (Linux), PE (Windows), etc.
> header
» sections: text, initialized/unitialized data, symbol tables, relocation
tables, etc.
Rks: stripped (no symbol table) vs verbose (debug info) executables ...

8/40

Example 1: Linux ELF

ELF object file format

Program header table
text
.data
rodata
.bss
-sym
rel.text
rel.data
.rel.rodata
line
.debug
_strtab
Section header table

Demo: memory layout at runtime: more /proc/xxxx/maps

9/40

Main ELF sections

text : executable code (but may contain data as well!)
can be accessed using objdump -S

.data, .bss, .rodata : data, un-initialized, read-only data
(but data can be transformed into code!)

.symtab : symbol table, maps function/global variables names to
(relative) adresses
can be accessed using nm . ..

.strtab : string table, list of symbolic names

Some useful commands:

» to print a list of all the sections:
readelf -section -wide

» to print the content of a given section:
readelf -x <sectioname>...

10/40

Example 2: Windows PE

PE File Format

FE File Formal

MeE-OOE
T Haadai

MEDOE Fea- s
Sl Frogram

PE P Sagriahine

PE File
Hoager

FE Fis
Oiphaonal Hio dair

bl 2] B H T

bs Easttian Hip g

s S50 chon Handar

11/40

x86_64 assembly language in one slide

Registers: (64 bits)
» stack pointer (RSP), frame pointer (RBP), program counter (RIP)
» general purpose: RAX, RBX, RCX, RDX, RSI, RDI
> flags

Instructions:
» data transfer (MOV), arithmetic (ADD, etc.)
> logic (AND, TEST, etc.)
» control transfer (JUMP, CALL, RET, etc)

Adressing modes (AT&T syntax):
> register: movl %rax, Y%rbx // rbx + rax
> immediate: movl $1, %rax // rax « 1
» direct memory: movl %rax, -0x10(%rbp) / Mem[rbp-16] < rax

12/40

x86_64 integer registers

x86-64 Integer Registers

$rax $eax %r8 $r8d
$rbx %ebx %r9 $rod

%rcx %ecx %rlo $r10d
$rdx $edx %rll $rlld
Srdi %edi %rl3 $r13d

szsp Acl4 oo
%rbp %ebp %rl5 %r15d

Each register can be accessed as 8, 16, 32 or 64 (least significant) bits, e.g.:

rax
| [[ax

Lebis fobis]
ah al

eax

13/40

Stack layout for the x86 64-bits architecture (1)

free stack
...locals...
Saved REP &
Return address| "

1
...locals...
Saved RBP @
Return address | "
> .

...locals...
Saved RBP
Return address

a

main

14740

Stack layout for the x86 64-bits architecture (2)

QXSZG <assign>:
X526 push

ax527
= 9x52a
@x531
@x534
@x535

mov
mov
mov
pop
retq

%rbp

%rsp, %rbp
$6x28, -@x4(%rbp)
-@x4(%rbp), %eax
%rbp

Registers

%eax

%edi

%rsp

0xd20

%rbp

0xd20

%rip

0x531

@0 (

— stack "op"

retum address

Oxdic ox28
0xi20 oxd4o
0xd28 Ox55f
@
% 0xd30
£ o
5 Dxdm} ox830
E 0Oxd48
Stack “bottom”
call stack
Terminal:

‘$./prog

Rk: note that stack addresses are 6 bytes (24 bits) long . ..

15/40

ABI (Application Binary Interface)

to “standardize” how processor resources should be used
= required to ensure compatibilities at binary level

> sizes, layouts, and alignments of basic data types

» calling conventions
argument & return value passing, saved registers, etc.

» system calls to the operating system

16/40

ABI (Application Binary Interface)

to “standardize” how processor resources should be used
= required to ensure compatibilities at binary level

> sizes, layouts, and alignments of basic data types

» calling conventions
argument & return value passing, saved registers, etc.

» system calls to the operating system

[Cleans Stack| Arg Ordering
cdecl Caller On the Stack | Right-to-left
fasteall | callee | VD% | oo pight
then stack
stdcall Callee | On the Stack | Left-to-Right
Vet thiscall| Callee | EPXNS) | oot toutert
then stack
On the Stack
GCC thiscall Caller (this pointer | Right-to-left
first)

Figure: calling conventions examples

(x86)

Calling Convention. How parameters are passed | Who does the stack
clean-up?

x86__fastcall

x64 __fastcall

First two parameters are Callee

passed in ECX, EDX. Remaining

are pushed to the stack in

right to left order

First four parameters are Caller, in the caller's
passed in RCX, RDX, R8,R9. Epilog

Remaining ones are copied to

the stackin right to left order

Figure: x86_64 fastcall

System V AMD64 calling convention (Linux) :

Integer/Pointer Arguments 1-6 transmitted on RDI, RSI, RDX, RCX, R8, R9

16/40

Outline

Disassembling

Understanding and analysing binary code ?

01010100
01101001
01101011
01100100

01100110
01100101
01100101
01110100

01101000
01101110
00100000
01101001
01100110
01110010
01101110
00101110

17/40

Understanding and analysing binary code ?

S LsTsTs]s Is s) push ebp

00000001 mou ebp, esp

g0000083 movzx ecx, [ebp+arg_@]

aABBnea8a7 pop ebp

aaoo0008 novzx dx, cl
01010100 01101000 8808008 lea eax, [edx+edx]
01101001 01101110 AABARABF add eax, edx
01101011 00100000 aneoapi shl - eax. 2
01100100 01101001 aa83B015 e i
01100110 01100110 osooowo s clal
01100101 01110010 G
01100101 01101110 SStonsir B
01110100 00101110 gaaeaez2 movzx eax, al

AABB0AA25 retn

Disassembling !

statically:
disassemble the whole file content without executing it . ..

dynamically: disassemble the current instruction path during
execution/emulation . ..

17/40

Main challenges

» no symbolic information
(meaninful) function/variable/type names might be missing
(in particular in case of stripped binaries)

» no explicit type information
only possible hints regarding the size and the sign of data accessed
(through data transfer or arithmetic/logic operation)

» no structure information
functions, objects, classes, etc. are potentially lost

» no distinction between code and data ...

» hard to modify /instrument ...

18/40

Static Disassembling (1)

Assume “reasonnable” (stripped) code only
— no obfuscation, no packing, no auto-modification, . ..
Enough pitfalls to make it undecidable ...
main issue: distinguishing code vs data ...
> interleavings between code and data segments
» dynamic jumps (jmp <register>)

» possible variable-length instruction encoding, # addressing modes, ...
e.g, > 1000 distinct x86 instructions
1.5 year to fix the semantics of x86 shift instruction at CMU

19/40

Static Disassembling (1)

Assume “reasonnable” (stripped) code only
— no obfuscation, no packing, no auto-modification, . ..
Enough pitfalls to make it undecidable ...
main issue: distinguishing code vs data ...
> interleavings between code and data segments
» dynamic jumps (jmp <register>)

» possible variable-length instruction encoding, # addressing modes, ...
e.g, > 1000 distinct x86 instructions
1.5 year to fix the semantics of x86 shift instruction at CMU

— much worse when considering self-modifying code, packers, etc.
Example: x86 instruction format

Instruction

Prefixes Opcode

ModR/M ‘ SIB ‘ Displacement Immediate

Up to four 1-, 2-, or 3-byte 1 byte 1 byte Address Immediate
prefixes of opcode (if required) (if required) displacement data of
1 byte each

of 1,2, 0r4 1,2,0r4
(optional) / \ bytes ornone bytes or none
7 65 32 0 7 65 32 0
| Mod ‘ O§ceo§:1/e ‘ R/M | |Scale ’ Index ‘ Base |

19/40

Static Disassembling (2)

Classical static disassembling techniques
> linear sweep: follows increasing addresses (ex: objdump)
— pb with interleaved code/data ?

> recursive disassembly: control-flow driven (ex: IDAPro)
— pb with dynamic jumps ?
» hybrid: combines both to better detect errors ...

Some existing tools

» Disassemblers/Decompilers:

> IDA Pro [HexRays]
» Ghidra [NSA, open-source]

» On Linux plateforms (for ELF formats):

» objdump (-S for code disassembling)
» readelf

» and many others (Capstone, Miasm, Radare2, Triton, etc.)

» ...+ ahuge number of utility tools
(hexadecimal operations, executable dissectors, etc.)

20/40

Static disassembly (cont'd)

See some Emmanuel Fleury slides ...

21/40

Indirect Jumps

BRANCH R;

(branch address computed at runtime and stored inside register R;)

= A critical issue for static disassemblers/analysers ...

Occurs when compiling:
> some swicth statements
high-order functions (with function as parameters and/or return values)

>
» pointers to functions

» dynamic method binding in OO-languages, virtual calls
>

etc.

22/40

Example of Indirect Jump

Source code example:

enum {DIGIT, AT, BANG, MINUS}
f (char c) {
switch(c) {

case '0': case "1’: case ’'2’': case '3':
case '5': case '6’: case '7’': case '8':

case 'Q@’: return AT ;
case ’!’: return BANG ;
case '-’: return MINUS ;
}

}

3See https://godbolt.org/

(borrowed from E. Fleury)

case "4':
case ’9’: return DIGIT

7

23/40

Example of Indirect Jump (borrowed from E. Fleury)

Source code example:

enum {DIGIT, AT, BANG, MINUS}

f (char c) {

switch(c) {

case '0': case "1’: case ’'2’': case '3': case "4’:

case '5": case '6’: case '7’: case ’'8’: case "9’: return DIGIT ;
case 'Q@’: return AT ;

case ’!’: return BANG ;

case ’'-': return MINUS ;

}

}

Code produced with x86-64 gccs.2®

f:
push rbp
mov rbp, rsp
mov eax, edi
mov BYTE PTR [rbp-4], al
movsx eax, BYTE PTR [rbp-4]
sub eax, 33 ; Ascii for ’!’
cmp eax, 31 ; 64 is Ascii for '@’
ja L2 ; out of bounds
mov eax, eax
mov rax, QWORD PTR .L4[0O+rax=*8] ; offset in a jump table
Jjmp rax

3See https://godbolt.org/
23/40

Dynamic disassembly

Main advantage: disassembling process guided by the execution
» ensures that instructions only are disassembled

» the whole execution context is available (registers, flags, addresses, etc.)

» dynamic jump destinations are resolved

» dymanic libraries are handled

> etc.

However:

» only a (small) part of the executable is disassembled
» need some suitable execution plateform, e.g.:

> emulation environment

> binary level code instrumentation
> (scriptable) debugger

> etc.

24/40

Outline

Application to BoF exploitation

Reminder

A classical buffer overflow sitation ...
» the content of the target buffer is attacker controlled
> the return address can be overwritten (no protections)
» the control-flow can be re-directed to a shell code

target buffer

saved EBP

return address

Remaining questions:
»> where to put the shell-code ?
» which “input value” should be provided by the attacker ?

25/40

Writting the shell-code in the stack (1)

Solution 1: put the shell-code below the return address
(i.e., in the caller’s stack frame)

shellAddr

attacker input = padding + | shellAddr | + shell-code

target buffer

saved EBP

i

return address

shell Addr

shell-code

26/40

Writting the shell-code in the stack (2)

Solution 2: put the shell-code inside the target buffer
(i.e., in the current stack frame)

shell Addr
(= buffAdr)

attacker input = shell-code + padding + | shellAddr

R

target buffer

shell-code

saved EBP

return address

shell Addr

27/40

When the stack segment is not executable ?

Do not store shellcode in the stack ... use existing code instructions instead !

» return-to-libc: redirect the control-flow towards library code

28/40

When the stack segment is not executable ?

Do not store shellcode in the stack ... use existing code instructions instead !

» return-to-libc: redirect the control-flow towards library code
» return oriented programming (ROP)
payload = sequence of return-terminated instructions (gadgets)
Gadget

Instruction
Sequence

Stack

-{1)-# Return Address 1 @

ret

,’:@I Instruction
(@

Sequence

Data

Return Address 2

H—__r=t
I?J) Instructi
Data "“*-‘ nstruction

Sequence

Return Address 3 ~

ret

28/40

When the stack segment is not executable ?

Do not store shellcode in the stack ... use existing code instructions instead !

» return-to-libc: redirect the control-flow towards library code
» return oriented programming (ROP)
payload = sequence of return-terminated instructions (gadgets)
Gadget

Instruction
Sequence

Stack

-{1)-# Return Address 1 @

ret

Data

@.
- Instruction
Return Address 2 A:k‘}," Sequence

PR
® -
\J"‘w.‘ Instruction
Data P
Sequence

Return Address 3 ~

ret

> gadget programming is “turing complete”
»> 3 tools for gagdget extraction (ROPgadget, Ropper, ROPium, etc.)
» 3 ROP variants:

COP (call-oriented programming), JOP (jump-oriented programming)

28/40

When the stack segment is not executable ?

Do not store shellcode in the stack ... use existing code instructions instead !

» return-to-libc: redirect the control-flow towards library code
» return oriented programming (ROP)
payload = sequence of return-terminated instructions (gadgets)
Gadget

Instruction
Sequence

Stack

-{1)-# Return Address 1 @

ret

Data

@.
- Instruction
Return Address 2 A:k‘}," Sequence

PR
® -
\J"‘w.‘ Instruction
Data P
Sequence

Return Address 3 ~

ret

> gadget programming is “turing complete”
»> 3 tools for gagdget extraction (ROPgadget, Ropper, ROPium, etc.)
» 3 ROP variants:

COP (call-oriented programming), JOP (jump-oriented programming)

Rks: may also 3 library calls allowing to make the stack executable ...

28/40

Outline

Retrieving source-level information

Objectives

When the code has been (partially !) disassembled ...

... how to retrieve useful source-level information ?
(e.g.: variables, types, functions, control and data-flow relations, etc.)

Challenges
Still a gap between assembly and source-level code ...

» basic source elements lost in translation:
functions, variables, types, (conditionnal) expressions, ...

> pervasive address computations (addresses = values)
> etc.

Rk: # between code produced by a compiler and written by hand
(structural patterns, calling conventions, .. .)

Again, 3 static and dynamic approaches ...

29/40

Function identification
Retrieve functions boundaries in a stripped binary code ?

Why is it difficult ?
» not always clean call/ret patterns:
optimizations, multiple entry points, inlining, etc.

» not always clean code segment layout:
extra bytes (¢ any function), non-contiguous functions, etc.

Possible solution ...
» from pattern-matching on (manually generated) binary signatures

» simple ones (push [ebp]) or advanced heuristics as in [TDAPro]
» standart library function signature database (FLIRT)

> ...
» to supervised machine learning classification ...

— no “sound and complete” solutions ...

30/40

Variable and type recovery

2 main issues
» retrieve the memory layout (stack frames, heap structure, etc.)
» infer size and (basic) type of each accessed memory location

31/40

Variable and type recovery

2 main issues
» retrieve the memory layout (stack frames, heap structure, etc.)
» infer size and (basic) type of each accessed memory location

Memory Layout

“addresses” of global/local variables, parameters, allocated chunks
> static basic access paterns (epb+offset) [IDAPro]
» Value-Set-Analysis (VSA)

31/40

Variable and type recovery

2 main issues
» retrieve the memory layout (stack frames, heap structure, etc.)
» infer size and (basic) type of each accessed memory location

Memory Layout

“addresses” of global/local variables, parameters, allocated chunks
> static basic access paterns (epb+offset) [IDAPro]
» Value-Set-Analysis (VSA)

Types
» dynamic analysis:
type chunks (library calls) + loop pattern analysis (arrays)
» static analysis: VSA + Abstract Structure Identification

» Proof-based decompilation relation inference
type system + program witness [POPL 2016]

31/40

Static variable recovery
Retrieve the address (and size) of each program “variable” ?

Difficult because:
> addresses and other values are not distinguishable
> address <« variable is not one-to-one
» address arithmetic is pervasive
» both direct and indirect memory adresssing

32/40

Static variable recovery
Retrieve the address (and size) of each program “variable” ?

Difficult because:
> addresses and other values are not distinguishable
> address <« variable is not one-to-one
> address arithmetic is pervasive
» both direct and indirect memory adresssing

Memory regions + abstract locations
A memory model with 3 distinct regions:
» Global: global variables
» Local: local variables + parameters (1 per proc.)
» Dynamic: dynamically allocated chunks
> Registers
< associates a relative address to each variable (a-loc)

32/40

The so-called “naive” approach (IDAPro)

Heuristic
Adresses used for direct variable accesses are:

» absolute (for globals + dynamic)
> relative w.r.t frame/stack pointer (for globals)
— can be statically retrieved with simple patterns ...

Limitations

» variables indirectly accessed (e.g., [eax]) are not retrieved
(e.g., structure fields)

» array = (large) contiguous block of data

= Fast recovery technique, can be used as a bootstrap
But coarse-grained information, may hamper further analyses ...

33/40

Example

typedef struct
{int 1 ;

int main() {

S x,
char
pl =
p2 =

a[lo]
*pl
&(al9]
&(x.1)

return 0 ;

a -60
x.i -10
p2 -8
pl | 4

char c ;}
int *xp2
.c) ;

7

’

S

7

var_60= byte
var_10= byte
var_8= dword
var_4= dword

push
mov
sub
lea
add
mov
lea
mov
mowv

leave

retn

ebp

ebp,
esp,
eax,
eax,

ptr -60h
ptr -10h
ptr -8
ptr -4

esp
60h
[ebpt+var_60]
4Ch

[ebp+var_4], eax

eax,

[ebp+var_10]

[ebptvar_8], eax

eax,

main endp

0

34/40

Going beyond: Value Set Analysis (VSA)

Compute the contents of each a-loc at each program location ...

...as an over-approximation of:

> the set of (integer) values of each data at each prog. loc.

» the addresses of “new” a-locs (indirectly accessed)

— combines simultaneously numeric and pointer-analysis
Rk: should be also combined with CFG-recovery ...

= Can be expressed as a forward data-flow analysis ... ‘

35/40

Going beyond: Value Set Analysis (VSA)

Compute the contents of each a-loc at each program location ...

...as an over-approximation of:

> the set of (integer) values of each data at each prog. loc.

» the addresses of “new” a-locs (indirectly accessed)

— combines simultaneously numeric and pointer-analysis
Rk: should be also combined with CFG-recovery ...

= Can be expressed as a forward data-flow analysis ... ‘

A building block for many other static analysis ...
» function “signature” (size and number of parameters)
> data-flow dependencies, taint analysis
> alias analysis
> type recovery, abstract structure identification
> etc.

35/40

Example: data-flow analysis

Does the value of y depend from x ?

int
X
p:

y =

Xy *Py Y7
= 3 ;

&X

*p + 4 ; // data-flow from x to y ?

At assembly level:
1. needs to retrieve x address

2. needs to follow memory transfers from x address ...

mov
lea
mov
mov

mov
add
mov

l[ebp-4], 3 /x x=3 ; */
eax, [ebp-4]

[ebp-8], eax /+ p = &x ;*/

eax, [ebp-8]

/* follow operations on eax

eax, [eax] /* y *p+4
eax, 4

[ebp-12], eax

’

2?2 x/

36/40

CFG construction

Main issue
handling dynamic jumps (e.g., jmp eax) due to:
» switch statements (“jump table”)
» function pointers, trampoline, object-oriented source code, ...

Some existing solutions

» heuristic-based approach (“simple” switch statements) [IDA]
» abstract interpretation: interleaving between VSA and CFG expansion

» use of dedicated abstract domains
» use of under-approximations ...

Rk: may create many program “entry points” = many CFGs ...

37/40

Outline

Some Tools ...

IDA Pro [HexRays]

vVvVvyVvTVvVvVYyvyy

Commercial disassembler and debugger

Supports 50+ processors (intel, ARM, .NET, PowerPC, MIPS, etc.)
Recognizes library functions FLIRT (C/C++ only)

Builds call graphs and CFGs

Tags arguments/local variables

Rename labels (variables names etc.)

Provides scripting environment (IDC, Python) and debugging facilities

38/40

Script example

#include <idc.ide>
/* this IDA pro script enumerate all funtions and prints info about them =/
static main()
{
auto addr, end, args, locals, frame, firstArg, name, ret;
addr=0;
for (addr=NextFunction (addr); addr != BADADDR; addr=NextFunction (addr))
{
name=Name (addr) ;
end= GetFunctionAttr (addr, FUNCATTR_END) ;
locals=GetFunctionAttr (addr, FUNCATTR_FRSIZE) ;
frame=GetFunctionAttr (aiddr, FUNCATTR_FRAME) ;

ret=GetMemberOffset (frame, " r");
if (ret == -1) continue;
firstArg=ret +4;

args=GetStrucSize (frame) -firstArg;

Message ("function %s start at %x, end at $x\n",name, addr, end);
Message ("Local variables size is %d bytes\n",locals);
Message ("arguments size %d (%d arguments)\n",args, args/4);

39/40

PIN [Intel]

A dynamic code instrumentation framework

» run time instrumentation on the binary files

» provides APlIs to define insertion points and callbacks
(e.g., after specific inst., at each function entry point, etc.)

» Free for non-commercial use, works on Linux and windows

40/40

Example: instruction counting

#include "pin.h"
UINT64 icount = 0;
void docount () { icount++; }

void Instruction (INS ins, void =*v)

{

INS_InsertCall (ins, IPOINT_BEFORE, (AFUNPTR)docount, IARG_END) ;
}

void Fini (INT32 code, void =*v)
{ std::cerr << "Count " << icount << endl; }

int main(int argc, char * argv([])

{

PIN_Init (argc, argv);
INS_AddInstrumentFunction (Instruction, 0);
PIN_AddFiniFunction (Fini, 0);
PIN_StartProgram() ;

return 0;

}

41/40

	Introduction
	Low-level code representations
	Disassembling
	Application to BoF exploitation
	Retrieving source-level information
	Some Tools …

