
M2 CySec  - Advanced Security

   Race Condition vulnerability

Credits : Wenliang Du 

 www.handsonsecurity.net



Outline

 What is Race Condition?
 Race Condition Problem
 Race Condition Vulnerability
 How to exploit?
 Countermeasures



Race Condition

 Happens when:
 Multiple processes access and manipulate the same data concurrently.
 The outcome of execution depends on a particular order.

 If a privileged program has a race condition, the attackers may be able to affect 
the output of the privileged program by putting influences on the uncontrollable 
events.

 Some « famous » race conditions attacks: 

             Dirty COW, Dirty Pipe, Spectre, Meltdown ...



Race Condition Problem
When two concurrent threads of execution access a shared resource in a way that 
unintentionally produces different results depending on the timing of the threads or 
processes.

Race Condition can occur 
here if there are two 
simultaneous withdraw 
requests. 



A Special Type of Race Condition

 Time-Of-Check To Time-Of-Use (TOCTTOU) 

 Occurs when checking for a condition before using a resource.



Race Condition Vulnerability
 Root-owned Set-UID 

program.
 Effective UID : root
 Real User ID : seed

 The above program writes to a file in the /tmp directory (world-writable)
 As the root can write to any file, The program ensures that the real user has 

permissions to write to the target file.
 access() system call checks if the Real User ID has write access to /tmp/X.
 After the check, the file is opened for writing.
 open() checks the effective user id which is 0 and hence file will be opened.



Race Condition Vulnerability

Goal : To write to a protected file like /etc/passwd. 

To achieve this goal we need to make /etc/passwd as our target file without 
changing the file name in the program.

 Symbolic link (soft link) helps us to achieve it.
 It is a special kind of file that points to another file.



Race Condition Vulnerability

Create a regular file X inside /tmp directory Pass the access() check

 Change “/tmp/X” to symbolic link, pointing 
to  “/etc/passwd”

    open() checks for the EID which is root.

    Open password file for write.

Issues :

As the program runs billions of instructions 
per second, the window between the time to 
check and time to use lasts for a very short 
period of time, making it impossible to 
change to a symbolic link
 If the change is too early, access() 

will fail.
 If the change is little late, the program 

will finish using the file.



Race Condition Vulnerability

To win the race condition 
(TOCTTOU window), we 
need two processes :

 Run vulnerable 
program in a loop

 Run the attack 
program



Understanding the attack

Let’s consider steps for two programs :

A1 : Make “/tmp/X” point to a file owned by 
us

A2 : Make “/tmp/X” point to /etc/passwd

V1 : Check user’s permission on “/tmp/X”

V2 : Open the file

Attack program runs: 
A1,A2,A1,A2…….

Vulnerable program runs : 
V1,V2,V1,V2…..

As the programs are running 
simultaneously on a multi-core 
machine, the instructions will be 
interleaved (mixture of two 
sequences)

A1, V1 , A2, V2 : vulnerable prog 
opens /etc/passwd for editing.



Another Race Condition Example
Set-UID program that runs 
with root privilege.

1. Checks if the file 
“/tmp/X” exists.

2. If not, open() system 
call is invoked. If the 
file doesn’t exist, new 
file is created with the 
provided name.

3.  There is a window between the check and use     
(opening the file).

4.  If the file already exists, the open() system call will 
not fail. It will open the file for writing.

5.  So, we can use this window between the check 
and use and point the file to an existing file 
“/etc/passwd” and eventually write into it. 



Experiment Setup

Race condition between access() 
and fopen(). Any protected file 
can be written.

Make the vulnerable program 
Set-UID :



Experiment Setup

Disable countermeasure: It restricts the program to follow a symbolic link in world-
writable directory like /tmp.



How to Exploit Race Condition?

 Choose a target file
 Launch Attack

 Attack Process
 Vulnerable Process

 Monitor the result
 Run the exploit



Attack: Choose a Target File

 Add the following line to /etc/passwd to add a new user

                    test:U6aMy0wojraho:0:0:test:/root:/bin/bash

 Username

Hash value for 
empty password

         UID (0 means root)



Attack: Run the Vulnerable Program

 Two processes that race against each other: vulnerable process and attack 
process

Run the vulnerable process

 Vulnerable program is run in an 
infinite loop (target_process.sh)

 passwd_input contains the 
string to be inserted in 
/etc/passwd [in previous slide]



Attack: Run the Attack Program

1) Create a symlink to a file 
owned by us. (to pass 
the access() check)

2) Sleep for 10000 
microseconds to let the 
vulnerable process run.

3) Unlink the symlink

4) Create a symlink to 
/etc/passwd (this is the 
file we want to open)



Monitor the Result

 Check the timestamp of /etc/passwd to see whether it has been modified.

 The ls -l command prints out the timestamp. 



Running the Exploit

Added an entry in 
/etc/passwd

We get a root shell as we log in 
using the created user.

Run both attack and vulnerable 
programs to start the “race”.



Countermeasures

 Atomic Operations: To eliminate the window between check and use

 Repeating Check and Use: To make it difficult to win the “race”.

 Sticky Symlink Protection: To prevent creating symbolic links.
 Principles of Least Privilege:  To prevent the damages after the race is won by 

the attacker.



Atomic Operations

f = open(file, O_CREAT | O_EXCL)

 These two options combined 
together will not open the 
specified file if the file already 
exists.

 Guarantees the atomicity of the 
check and the use.

f = open(file ,O_WRITE  | 
O_REAL_USER_ID

 This is just an idea, not 
implemented in the real system.

 With this option, open() will only 
check the real User ID

 Therefore, open() achieves check 
and use on it’s own and the 
operations are atomic.



Repeating Check and Use

 Check-and-use is done three times.
 Check if the inodes are same.
 For a successful attack, “/tmp/XYZ” 

needs to be changed 5 times.
 The chance of winning the race 5 times is 

much lower than a code with one race 
condition.

1

2

3



Sticky Symlink Protection

To enable the sticky symlink protection for world-writable sticky directories:

 When the sticky symlink protection is enabled, symbolic links inside a 
sticky world-writable can only be followed when the owner of the 
symlink matches either the follower or the directory owner.



Experiment with Symlink Protection

 Using the code and user IDs 
(seed and root), experiments 
were conducted to understand 
the protection.



Sticky Symlink Protection
 Symlink protection 

allows fopen() when 
the owner of the 
symlink match either 
the follower (EID of 
the process) or the 
directory owner.

 In our vulnerable program (EID is root), /tmp 
directory is also owned by the root, the program 
will not allowed to follow the symbolic link unless 
the link is created by the root.



Principle of Least Privilege

Principle of Least Privilege:

A program should not use more privilege than what is needed 
by the task.

 Our vulnerable program has more privileges than required while opening 
the file.

 seteuid() and setuid() can be used to discard or temporarily disable 
privileges.



Principle of Least Privilege
Right before opening the 
file, the program should drop 
its privilege by setting EID = 
RID

After writing, privileges are 
restored by setting EUID = 
root



Question

Q: The least-privilege principle can be used to effectively defend against the race 
condition attacks discussed in this chapter. Can we use the same principle to defeat 
buffer-overflow attacks? Why or why not? Namely, before executing the vulnerable 
function, we disable the root privilege; after the vulnerable function returns, we 
enable the privilege back. 



Summary

 What is race condition

 How to exploit the TOCTTOU type of race condition vulnerability

 How to avoid having race condition problems


