
Advanced Security

About Code Obfuscation

Master M2 on Cybersecurity

Academic Year 2024 - 2025



Code Obfuscation

→ Protecting a code against reverse-engineering techniques allowing to
inspect and/or tamper a software (man at the end attacks !)

Typical applications domains:
▶ intellectual property of some algorithms
▶ data confidentiality
▶ white-box cryptography
▶ digital rights managements (DRM)
▶ . . .
▶ and malware implementation !

obfuscation may target various reverse-engineering approaches
▶ from source code vs from binary code
▶ manual vs tool-assisted
▶ static (i.e., code inspection) vs dymanic (i.e., code execution) techniques
▶ etc

⇒ a large spectrum of obfuscation techniques . . .

2 / 18



Code Obfuscation

→ Protecting a code against reverse-engineering techniques allowing to
inspect and/or tamper a software (man at the end attacks !)

Typical applications domains:
▶ intellectual property of some algorithms
▶ data confidentiality
▶ white-box cryptography
▶ digital rights managements (DRM)
▶ . . .
▶ and malware implementation !

obfuscation may target various reverse-engineering approaches
▶ from source code vs from binary code
▶ manual vs tool-assisted
▶ static (i.e., code inspection) vs dymanic (i.e., code execution) techniques
▶ etc

⇒ a large spectrum of obfuscation techniques . . .

2 / 18



Code Obfuscation

→ Protecting a code against reverse-engineering techniques allowing to
inspect and/or tamper a software (man at the end attacks !)

Typical applications domains:
▶ intellectual property of some algorithms
▶ data confidentiality
▶ white-box cryptography
▶ digital rights managements (DRM)
▶ . . .
▶ and malware implementation !

obfuscation may target various reverse-engineering approaches
▶ from source code vs from binary code
▶ manual vs tool-assisted
▶ static (i.e., code inspection) vs dymanic (i.e., code execution) techniques
▶ etc

⇒ a large spectrum of obfuscation techniques . . .

2 / 18



Some examples of code obfuscation techniques

3 / 18



Outline

Basic transformations

Examples of Data Obfuscation

Examples of Code Obfuscation

Some other obfuscation techniques



Example: source-level obfuscation against manual RE (1/3)

4 / 18



Example: source-level obfuscation against manual RE (2/3)

5 / 18



Example: source-level obfuscation against manual RE (3/3)

6 / 18



Example: source-level obfuscation against manual RE (3/3)

7 / 18



Outline

Basic transformations

Examples of Data Obfuscation

Examples of Code Obfuscation

Some other obfuscation techniques



Data re-encoding

Replace variables by complex expressions, e.g.,

int a = arg1;
int b = arg2;
int x = a*b;
printf("x=%i\n",x);

replaced by

a = 1789355803 * arg1 + 1391591831;
b = 1789355803 * arg2 + 1391591831;
x = ((3537017619 * (a * b) - 3670706997 * a) -

3670706997 * b) + 3171898074;
printf("x=%i\n", -757949677 * x - 3670706997);

Replace standart arithmetic operations by more complex ones,e.g.,

z = x + y + w
replaced by:

z = (((x ^ y) + ((x & y) << 1)) | w) +
(((x ^ y) + ((x & y) << 1)) & w)

⇒ obfuscate the data operations performed in the code

8 / 18



Data re-encoding

Replace variables by complex expressions, e.g.,

int a = arg1;
int b = arg2;
int x = a*b;
printf("x=%i\n",x);

replaced by

a = 1789355803 * arg1 + 1391591831;
b = 1789355803 * arg2 + 1391591831;
x = ((3537017619 * (a * b) - 3670706997 * a) -

3670706997 * b) + 3171898074;
printf("x=%i\n", -757949677 * x - 3670706997);

Replace standart arithmetic operations by more complex ones,e.g.,

z = x + y + w
replaced by:

z = (((x ^ y) + ((x & y) << 1)) | w) +
(((x ^ y) + ((x & y) << 1)) & w)

⇒ obfuscate the data operations performed in the code

8 / 18



Data re-encoding

Replace variables by complex expressions, e.g.,

int a = arg1;
int b = arg2;
int x = a*b;
printf("x=%i\n",x);

replaced by

a = 1789355803 * arg1 + 1391591831;
b = 1789355803 * arg2 + 1391591831;
x = ((3537017619 * (a * b) - 3670706997 * a) -

3670706997 * b) + 3171898074;
printf("x=%i\n", -757949677 * x - 3670706997);

Replace standart arithmetic operations by more complex ones,e.g.,

z = x + y + w
replaced by:

z = (((x ^ y) + ((x & y) << 1)) | w) +
(((x ^ y) + ((x & y) << 1)) & w)

⇒ obfuscate the data operations performed in the code

8 / 18



Data split, fold or merge

▶ Split some variables of type T1 into sets of variables of type T2, e.g.:

int a
split into

struct {char a1; char a2; char a3 ; char a4} a

▶ Merge some variables of type T1, T2 into a variables of type T , e.g.:

int a ; char b
merged into

long ab

▶ Fold or Flatten arrays into higer/lower dimensionnal arrays

▶ Convert static data into procedural data (“table look-up”, see next
slide)

→ needs alias computations and encoding/decoding functions

9 / 18



10 / 18



Outline

Basic transformations

Examples of Data Obfuscation

Examples of Code Obfuscation

Some other obfuscation techniques



Opaque predicates

Tramsform the control-flow graph (CFG) by inserting spurious conditions
(evaluating always to true)
The condition is given as complex predicate, those value is hard to predict at
compile-time, i.e.:
▶ not removed by the optimizer
▶ not detected by static code analyser

Some applications1

▶ if expr=false then
call to random existing function

▶ if expr=false then
call to non-existing function

▶ if expr=true then
existing statement

else
buggified version of the statement

1http://tigress.cs.arizona.edu/transformPage/docs/addOpaque/index.html
11 / 18



Opaque predicates

Tramsform the control-flow graph (CFG) by inserting spurious conditions
(evaluating always to true)
The condition is given as complex predicate, those value is hard to predict at
compile-time, i.e.:
▶ not removed by the optimizer
▶ not detected by static code analyser

Some applications1

▶ if expr=false then
call to random existing function

▶ if expr=false then
call to non-existing function

▶ if expr=true then
existing statement

else
buggified version of the statement

1http://tigress.cs.arizona.edu/transformPage/docs/addOpaque/index.html
11 / 18



Virtualization

Turns a function into a interpreter by:
▶ generating a dedicated (bytecode) instruction set
▶ a bytecode array, a virtual program counter (VPC) and a virtual stack

pointer (VSP)
▶ a dispatch unit, and the bytecode instruction handlers

12 / 18



Outline

Basic transformations

Examples of Data Obfuscation

Examples of Code Obfuscation

Some other obfuscation techniques



Anti-Disassembling

13 / 18



Anti-Dynamic analysis

Prevent a program to be analyzed under a debugger, an emulator, a virtual
machine . . .

▶ use process control primitives to prevent debugging
e.g., ptrace on Linux,

▶ try to access regular peripherals (network, printer, filesystem, etc.)

▶ monitor the execution time

▶ etc.

Rk: (highly) used by malwares . . . !

14 / 18



De-obfuscation techniques (1)

15 / 18



De-obfuscation techniques (2)

Static techniques
▶ de-assembling, de-compilation
▶ static code-analysis (call graph, control-flow graph, data-flow relations)

Dynamic techniques
▶ debugging
▶ code-instrumentaion, trace analysis
▶ symbolic/concolic execution (see next week!)

16 / 18



Some Linux tools for basic trace analysis

System calls with strace

Library calls with ltrace

17 / 18



Conclusion

Many other transformations proposed so far . . .

Expected properties of an obfuscator
▶ correctness: should preserve the code semantics
▶ resilience: should prevent (basic/advanced ?) reverse-engineering
▶ cost: should not “explode” the code complexity (time, memory, etc.)

However . . .
▶ no chance to build an universal obfuscator

(i.e., able to obfuscate any input program)
▶ de-obfuscation tools are guided by existing obfuscation techniques . . .

(keep your obfusactor secret !)

Credits
▶ https://fr.slideshare.net/bijondesai/code-obfuscation

▶ https://fr.slideshare.net/amolkamble16121/code-obfuscation-40283580

▶ Christian Collberg web page: http://tigress.cs.arizona.edu/index.html

18 / 18



Conclusion

Many other transformations proposed so far . . .

Expected properties of an obfuscator
▶ correctness: should preserve the code semantics
▶ resilience: should prevent (basic/advanced ?) reverse-engineering
▶ cost: should not “explode” the code complexity (time, memory, etc.)

However . . .
▶ no chance to build an universal obfuscator

(i.e., able to obfuscate any input program)
▶ de-obfuscation tools are guided by existing obfuscation techniques . . .

(keep your obfusactor secret !)

Credits
▶ https://fr.slideshare.net/bijondesai/code-obfuscation

▶ https://fr.slideshare.net/amolkamble16121/code-obfuscation-40283580

▶ Christian Collberg web page: http://tigress.cs.arizona.edu/index.html

18 / 18



Conclusion

Many other transformations proposed so far . . .

Expected properties of an obfuscator
▶ correctness: should preserve the code semantics
▶ resilience: should prevent (basic/advanced ?) reverse-engineering
▶ cost: should not “explode” the code complexity (time, memory, etc.)

However . . .
▶ no chance to build an universal obfuscator

(i.e., able to obfuscate any input program)
▶ de-obfuscation tools are guided by existing obfuscation techniques . . .

(keep your obfusactor secret !)

Credits
▶ https://fr.slideshare.net/bijondesai/code-obfuscation

▶ https://fr.slideshare.net/amolkamble16121/code-obfuscation-40283580

▶ Christian Collberg web page: http://tigress.cs.arizona.edu/index.html

18 / 18


	Basic transformations
	Examples of Data Obfuscation
	Examples of Code Obfuscation
	Some other obfuscation techniques

