UFR IM?AG

Wy UNIVERSITE
Se Grenoble
! Alpes

Advanced Security

About Code Obfuscation

Master M2 on Cybersecurity

Academic Year 2024 - 2025

Grenoble INP

ensimAg U

Code Obfuscation

— Protecting a code against reverse-engineering techniques allowing to
inspect and/or tamper a software (man at the end attacks !)

2/18

Code Obfuscation

— Protecting a code against reverse-engineering techniques allowing to
inspect and/or tamper a software (man at the end attacks !)

Typical applications domains:

v

intellectual property of some algorithms
» data confidentiality

» white-box cryptography

» digital rights managements (DRM)

>

>

and malware implementation !

2/18

Code Obfuscation

— Protecting a code against reverse-engineering techniques allowing to
inspect and/or tamper a software (man at the end attacks !)

Typical applications domains:
» intellectual property of some algorithms
» data confidentiality
» white-box cryptography
» digital rights managements (DRM)
>
>

and malware implementation !

obfuscation may target various reverse-engineering approaches
» from source code vs from binary code
» manual vs tool-assisted
> static (i.e., code inspection) vs dymanic (i.e., code execution) techniques
> etc

‘ = alarge spectrum of obfuscation techniques ... ‘

2/18

Some examples of code obfuscation techniques

Kinds of obfuscation for each target
information

) Data obfuscation @
. 9 Layout
Storage & _Aggragation Drdering cbfuscation
split Nerge scalar |[Reorder Scramble
variables variables inseancs Identifiers
Pronate Nodify bt L Changs
scalars to inheritance || Reorder formatting
sbjects relations Bethods >
Comvart Split,fold, || Reorder i
static data marge, arrays
to procedurd arrays
) Contrel obfuscation tg) Preveati
- F Transfornations
Aggregation Ordering Computations
-
Inline Resrder Reducible to Targeted Inherent
b
method on- Lol Explore weax] [Explers
Outline Reorder nesses in AmBE——
statements losps Extend loap current s
condition decompilara with known
Clone Reorder deobf= decbfuscation
methods expression || Table imter- uscators techniques
S pretatics
Loop

3/18

Outline

Basic transformations

Example: source-level obfuscation against manual RE (1/3)

Example:From Stunnix

OooOo O Doooo

O

Actual code: a
function foo(argl) o
{

var myVarl = "some

string"; //first comment
var intVar = 24 * 3600;
//second comment
/* here is
a long
multi-line comment blah */

document. write("vars
are:"+ myVarl + "" +
intVar + "" + argl) ;

=

Obfuscated code:

function z001c775808(
23833986e2c) { var
z0d8bd8ba25=
"\X73\x6f\x6d\x65\x20\x73\x
74\x72\x69\x6e\x67"; var
z0ed9bcbcc2= (0x90b+785-
0xc04?)* (0x1136+6437-
0Ox1c4b); document. \n\.rrn:e((J
"\7x?6 x61\x72\x73\x20\x61\
x72\x65\x3a"+
z0d8bd8ba25+ "\x20"+
z0ed9bcbcc2+ "\x20"+
23833986e2c);};

4/18

Example: source-level obfuscation against manual RE (2/3)

Step by step examination

O The Stunnix obfuscator targets at obfuscating
only the layout of the JavaScript code

O As the obfuscator parses the code, it removes
spaces, comments and new line feeds

O While doing so, as it encounters user defined
names, it replaces them with some random
string

O It replaces print strings with their hexadecimal
values

O It replaces integer values with complex
equations

5/18

Example: source-level obfuscation against manual RE (3/3)

|
In the sample code that was obfuscated, the following
can be observed
User defined variables:
® foo replaced with z001c775808
® argl replaced with z3833986e2c
B myvarl replaced with z0d8bd8ba25
B intvar replaced with z0ed9bcbcc2
O Integers:
B 20 replaced with (0x90b+785-0xc04)
B 3600 replaced with (0x1136+6437-0x1c4b)
O Print strings:

m “vars are” replaced with
\WX76\x61\x72\x73\x20\x61\x72\x65\x3a
B Space replaced with \x20

6/18

Example: source-level obfuscation against manual RE (3/3)

|
In the sample code that was obfuscated, the following
can be observed
User defined variables:
® foo replaced with z001c775808
® argl replaced with z3833986e2c
B myvarl replaced with z0d8bd8ba25
B intvar replaced with z0ed9bcbcc2
O Integers:
B 20 replaced with (0x90b+785-0xc04)
B 3600 replaced with (0x1136+6437-0x1c4b)
O Print strings:

m “vars are” replaced with
\WX76\x61\x72\x73\x20\x61\x72\x65\x3a
B Space replaced with \x20

7/18

Outline

Examples of Data Obfuscation

Data re-encoding

Replace variables by complex expressions, e.g.,
int a = argl;
int b = arg2;
int x = axb;
printf ("x=%i\n", x);
replaced by

a = 1789355803 x argl + 1391591831;

b 1789355803 x arg2 + 1391591831;

X ((3537017619 % (a % b) — 3670706997 % a) -
3670706997 * b) + 3171898074;

printf ("x=%i\n", -757949677 x x - 3670706997);

8/18

Data re-encoding

Replace variables by complex expressions, e.g.,
int a = argl;
int b = arg2;
int x = axb;
printf ("x=%i\n", x);
replaced by

a = 1789355803 x argl + 1391591831;

b 1789355803 x arg2 + 1391591831;

X ((3537017619 % (a % b) — 3670706997 % a) -
3670706997 * b) + 3171898074;

printf ("x=%i\n", -757949677 x x - 3670706997);

Replace standart arithmetic operations by more complex ones,e.qg.,

Z=X+y+w

replaced by:
z = (((x " y) + ((x&y) <<1)) | w +
(((x 7 y) + ((x & y) << 1)) & w)

8/18

Data re-encoding

Replace variables by complex expressions, e.g.,
int a = argl;
int b = arg2;
int x = axb;
printf ("x=%i\n", x);
replaced by

1789355803 * argl + 1391591831;
1789355803 x arg2 + 1391591831;
((3537017619 % (a % b) — 3670706997 % a) -

a
b
X

3670706997 * b) + 3171898074;

printf ("x=%i\n", -757949677 x x - 3670706997);

Replace standart arithmetic operations by more complex ones,e.g.,

Z=X+y+w
replaced by:

z = (((x ((x & y) << 1))

+ | w) +
(((x " y) + ((x & y) <<1)) &

)

W
W

= obfuscate the data operations performed in the code

8/18

Data split, fold or merge

» Split some variables of type T; into sets of variables of type T», e.g.:
int a
split into

struct {char al; char a2; char a3 ; char a4} a

»> Merge some variables of type T, T into a variables of type T, e.g.:
int a ; char b
merged into
long ab

» Fold or Flatten arrays into higer/lower dimensionnal arrays

» Convert static data into procedural data (“table look-up”, see next
slide)

— needs alias computations and encoding/decoding functions

9/18

Converting Static Data to
Procedural Data

main() {
String 51,52,83,84;
= "
"BAAL";
*CCB";
*CCB";

r

gBBR

wouow

main() {

String 51,52,853,54,85;

81 = G(1);
82 = G(2);
83 = G(3);
54 = G(8);
it (PF) 85 = G(9);

static String G (int n) {

int i=0;
int k;
char[] § = new char[20];
while (true) |
Li: if (n==1) {B[i++]='A’; k=0; goto L6);
L2t if (n==2) {B[i++]="B'; k=-2; goto L6};
L3: if (n==3) {8[i++]='C'; goto LO};
L4: if (n==4) {S[i++]="X'; goto LO};
LE: if (n==6) {8[i++]='C'; goto Li1};
if (n212) goto L1;
L6: if (kescz2) {S[i++]='A"; goto L6}
else goto LB;
LB: return String.valueDf (3);

Le:

L10:
Li1:
L12;

S[is4)="C"; goto L10;
5[i++]="B"'; goto L§;
8[i++]="C’; goto L12;
goto L10;

10/18

Outline

Examples of Code Obfuscation

Opaque predicates

Tramsform the control-flow graph (CFG) by inserting spurious conditions
(evaluating always to true)
The condition is given as complex predicate, those value is hard to predict at
compile-time, i.e.:

> not removed by the optimizer

> not detected by static code analyser

1http ://tigress.cs.arizona.edu/transformPage/docs/addOpaque/index.html
11/18

Opaque predicates

Tramsform the control-flow graph (CFG) by inserting spurious conditions
(evaluating always to true)
The condition is given as complex predicate, those value is hard to predict at
compile-time, i.e.:

> not removed by the optimizer

> not detected by static code analyser

Some applications’

» if expr=false then
call to random existing function

> if expr=false then
call to non-existing function

> if expr=true then
existing statement
else
buggified version of the statement

1http ://tigress.cs.arizona.edu/transformPage/docs/addOpaque/index.html
11/18

Virtualization

Turns a function into a interpreter by:
» generating a dedicated (bytecode) instruction set

» a bytecode array, a virtual program counter (VPC) and a virtual stack
pointer (VSP)

» a dispatch unit, and the bytecode instruction handlers

Virtual \ ADD

Instruction Set

JMP PUSH

Specialized

Bytcode ——>| ADD ’ X I 7 ‘PUSH‘J‘MP ‘l

Program
void foo () { fVPc

[> Erstatan I — ——
} Stack —
Tvsp
Dispatch

Unit >

Instruction

Handler ADD: {push (pop () +pop () }

MUL: {push (pop () *pop () }

12/18

Outline

Some other obfuscation techniques

Anti-Disassembling

/"
: Code Obfuscation in

. Disassembly Phase
o

« Thwarting disassembly

» Junk Insertion

» Thwarting Linear Sweep

» Thwarting Recursive Traversal
Branch functions
Call conversion
Opaque predicates
Jump Table Spoofing

13/18

Anti-Dynamic analysis

Prevent a program to be analyzed under a debugger, an emulator, a virtual
machine ...

> use process control primitives to prevent debugging
e.g., ptrace on Linux,

> try to access regular peripherals (network, printer, filesystem, etc.)
» monitor the execution time
> etc.

Rk: (highly) used by malwares .. .!

14/18

De-obfuscation techniques (1)

Library System Basic Instruc-
/-J Load /-J)(llalls m /-l Blocks /J tions

libe OEen(E)

libcrypto TELES (e

movl ..

* addl ..
libssh getpld() call ..
libstdo++ read(...) popl ..

close(..) \ be ..

‘\\‘~—~________————"”’-maln(){

— —

lerary Function Memory
Al Gy | A Calls lAddresses /) Values
printf(..) main (.. 0xlaf0 EAX 42

puts(...) foo(..) Oxlaf4 Oxlaf= 9
strcmp () bar() Oxlaff EBX = 99
sqrt(.) baz(..) 0xlaf0 Oxlaf= 8
malloc(..) qux(..) Oxlaf4d EAX = 41

15/18

De-obfuscation techniques (2)

Static techniques
> de-assembling, de-compilation
» static code-analysis (call graph, control-flow graph, data-flow relations)

Dynamic techniques
» debugging
» code-instrumentaion, trace analysis
» symbolic/concolic execution (see next week!)

16/18

Some Linux tools for basic trace analysis

System calls with strace

Command Definition

strace ./foo.exe

Run foo.exe and print the system calls.

--trace=syscall

Only log syscall

--instruction-pointer

Print the instruction pointerat the time of the
system call.

--stack-traces

Print the execution stack trace of the traced
processes after each system call.

-tt

Library calls with 1trace

(Command

ltrace ./foo.exe

Prefix each line of the trace with the wall clock

time.

Run foo.exe and print the library calls.

-e=funl+fun2,..

Only log funt, fun2, ...

—where n

Show a backtrace of n stack frames

Prefix each line of the trace with the wall clock
time.

17/18

Conclusion
Many other transformations proposed so far . ..

Expected properties of an obfuscator

» correctness: should preserve the code semantics
» resilience: should prevent (basic/advanced ?) reverse-engineering
» cost: should not “explode” the code complexity (time, memory, etc.)

18/18

Conclusion
Many other transformations proposed so far . ..

Expected properties of an obfuscator

» correctness: should preserve the code semantics
» resilience: should prevent (basic/advanced ?) reverse-engineering
» cost: should not “explode” the code complexity (time, memory, etc.)

However ...

» no chance to build an universal obfuscator
(i.e., able to obfuscate any input program)

» de-obfuscation tools are guided by existing obfuscation techniques .. .
(keep your obfusactor secret !)

18/18

Conclusion
Many other transformations proposed so far . ..

Expected properties of an obfuscator

» correctness: should preserve the code semantics
» resilience: should prevent (basic/advanced ?) reverse-engineering
» cost: should not “explode” the code complexity (time, memory, etc.)

However ...

» no chance to build an universal obfuscator
(i.e., able to obfuscate any input program)

» de-obfuscation tools are guided by existing obfuscation techniques . ..
(keep your obfusactor secret !)

Credits

» https://fr.slideshare.net/bijondesai/code-obfuscation
» https://fr.slideshare.net/amolkamblel6121/code-obfuscation-40283580

sunsEgiTious
?iii:

» Christian Collberg web page: http://tigress.cs.arizona.edu/index.html

18/18

	Basic transformations
	Examples of Data Obfuscation
	Examples of Code Obfuscation
	Some other obfuscation techniques

